1
|
Cai QC, Chen CX, Liu HY, Zhang W, Han YF, Zhang Q, Zhou GF, Xu S, Liu T, Xiao W, Zhu QS, Luo KJ. Interactions of Vank proteins from Microplitis bicoloratus bracovirus with host Dip3 suppress eIF4E expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103994. [PMID: 33417999 DOI: 10.1016/j.dci.2021.103994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Microplitis bicoloratus bracovirus (MbBV) inhibits the immune response of the host Spodoptera litura by disrupting nuclear factor (NF)-κB signaling and downstream gene expression. However, the underlying molecular mechanisms are not well understood. Herein, we report that viral ankyrin (Vank) proteins interacted with host dorsal-interacting protein 3 (Dip3) to selectively inhibit the transcription of eukaryotic translation initiation factor 4 E (eIF4E). Dip3 and Vank proteins were co-expressed and colocalized in the nucleus. Furthermore, ectopic expression of Dip3 rescued the transcription of some NF-κB-dependent genes suppressed by Vank proteins, including eIF4E. Co-immunoprecipitation and pull-down assays confirmed that Vank proteins interacted with and bound to full-length Dip3, which including MADF, DNA-binding protein, BESS, and protein-protein interaction motifs as well as non-motif sequences. In vivo, RNAi-mediated dip3 silencing decreased eIF4E levels and was accompanied by an immunosuppressive phenotype in S. litura. Our results provided novel insights into the regulation of host transcription during immune suppression by viral proteins that modulate nuclear NF-κB signaling.
Collapse
Affiliation(s)
- Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Hong-Yu Liu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Wei Zhang
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Sha Xu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China
| | - Tian Liu
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Wei Xiao
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China.
| |
Collapse
|
2
|
Stonewall and Brickwall: Two Partially Redundant Determinants Required for the Maintenance of Female Germline in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:2027-2041. [PMID: 29669801 PMCID: PMC5982830 DOI: 10.1534/g3.118.200192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proper specification of germline stem cells (GSCs) in Drosophila ovaries depends on niche derived non-autonomous signaling and cell autonomous components of transcriptional machinery. Stonewall (Stwl), a MADF-BESS family protein, is one of the cell intrinsic transcriptional regulators involved in the establishment and/or maintenance of GSC fate in Drosophila ovaries. Here we report identification and functional characterization of another member of the same protein family, CG3838/ Brickwall (Brwl) with analogous functions. Loss of function alleles of brwl exhibit age dependent progressive degeneration of the developing ovarioles and loss of GSCs. Supporting the conclusion that the structural deterioration of mutant egg chambers is a result of apoptotic cell death, activated caspase levels are considerably elevated in brwl- ovaries. Moreover, as in the case of stwl mutants, on several instances, loss of brwl activity results in fusion of egg chambers and misspecification of the oocyte. Importantly, brwl phenotypes can be partially rescued by germline specific over-expression of stwl arguing for overlapping yet distinct functional capabilities of the two proteins. Taken together with our phylogenetic analysis, these data suggest that brwl and stwl likely share a common MADF-BESS ancestor and they are expressed in overlapping spatiotemporal domains to ensure robust development of the female germline.
Collapse
|
3
|
Gene duplication, lineage-specific expansion, and subfunctionalization in the MADF-BESS family patterns the Drosophila wing hinge. Genetics 2013; 196:481-96. [PMID: 24336749 DOI: 10.1534/genetics.113.160531] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gene duplication, expansion, and subsequent diversification are features of the evolutionary process. Duplicated genes can be lost, modified, or altered to generate novel functions over evolutionary timescales. These features make gene duplication a powerful engine of evolutionary change. In this study, we explore these features in the MADF-BESS family of transcriptional regulators. In Drosophila melanogaster, the family contains 16 similar members, each containing an N-terminal, DNA-binding MADF domain and a C-terminal, protein-interacting, BESS domain. Phylogenetic analysis shows that members of the MADF-BESS family are expanded in the Drosophila lineage. Three members, which we name hinge1, hinge2, and hinge3 are required for wing development, with a critical role in the wing hinge. hinge1 is a negative regulator of Winglesss expression and interacts with core wing-hinge patterning genes such as teashirt, homothorax, and jing. Double knockdowns along with heterologous rescue experiments are used to demonstrate that members of the MADF-BESS family retain function in the wing hinge, in spite of expansion and diversification for over 40 million years. The wing hinge connects the blade to the thorax and has critical roles in fluttering during flight. MADF-BESS family genes appear to retain redundant functions to shape and form elements of the wing hinge in a robust and fail-safe manner.
Collapse
|