1
|
Actin Filament in the First Cell Cycle Contributes to the Determination of the Anteroposterior Axis in Ascidian Development. J Dev Biol 2022; 10:jdb10010010. [PMID: 35225963 PMCID: PMC8884010 DOI: 10.3390/jdb10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
In many animal species, the body axis is determined by the relocalization of maternal determinants, organelles, or unique cell populations in a cytoskeleton-dependent manner. In the ascidian first cell cycle, the myoplasm, including mitochondria, endoplasmic reticulum (ER), and maternal mRNAs, move to the future posterior side concomitantly (called ooplasmic segregation or cytoplasmic and cortical reorganization). This translocation consists of first and second phases depending on the actin and microtubule, respectively. However, the transition from first to second phase, that is, translocation of myoplasmic components from microfilaments to microtubules, has been poorly investigated. In this study, we analyzed the relationship between these cytoskeletons and myoplasmic components during the first cell cycle and their role in morphogenesis by inhibitor experiments. Owing to our improved visualization techniques, there was unexpected F-actin accumulation at the vegetal pole during this transition period. When this F-actin was depolymerized, the microtubule structure was strongly affected, the myoplasmic components, including maternal mRNA, were mislocalized, and the anteroposterior axis formation was disordered. These results suggested the importance of F-actin during the first cell cycle and the existence of interactions between microfilaments and microtubules, implying the enigmatic mechanism of ooplasmic segregation. Solving this mystery leads us to an improved understanding of ascidian early development.
Collapse
|
2
|
Zheng T, Nakamoto A, Kumano G. H3K27me3 suppresses sister-lineage somatic gene expression in late embryonic germline cells of the ascidian, Halocynthia roretzi. Dev Biol 2020; 460:200-214. [PMID: 31904374 DOI: 10.1016/j.ydbio.2019.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 10/25/2022]
Abstract
Protection of the germline from somatic differentiation programs is crucial for germ cell development. In many animals, whose germline development relies on the maternally inherited germ plasm, such protection in particular at early stages of embryogenesis is achieved by maternally localized global transcriptional repressors, such as PIE-1 of Caenorhabditis elegans, Pgc of Drosophila melanogaster and Pem of ascidians. However, zygotic gene expression starts in later germline cells eventually and mechanisms by which somatic gene expression is selectively kept under repression in the transcriptionally active cells are poorly understood. By using the ascidian species Halocynthia roretzi, we found that H3K27me3, a repressive transcription-related chromatin mark, became enriched in germline cells starting at the 64-cell stage when Pem protein level and its contribution to transcriptional repression decrease. Interestingly, inhibition of H3K27me3 together with Pem knockdown resulted in ectopic expression in germline cells of muscle developmental genes Muscle actin (MA4) and Snail, and of Clone 22 (which is expressed in all somatic but not germline cells), but not of other tissue-specific genes such as the notochord gene Brachyury, the nerve cord marker ETR-1 and a heart precursor gene Mesp, at the 110-cell stage. Importantly, these ectopically expressed genes are normally expressed in the germline sister cells (B7.5), the last somatic lineage separated from the germline. Also, the ectopic expression of MA4 was dependent on a maternally localized muscle determinant Macho-1. Taken together, we propose that H3K27me3 may be responsible for selective transcriptional repression for somatic genes in later germline cells in Halocynthia embryos and that the preferential repression of germline sister-lineage genes may be related to the mechanism of germline segregation in ascidian embryos, where the germline is segregated progressively by successive asymmetric cell divisions during cell cleavage stages. Together with findings from C. elegans and D. melanogaster, our data for this urochordate animal support the proposal for a mechanism, conserved widely throughout the animal kingdom, where germline transcriptional repression is mediated initially by maternally localized factors and subsequently by a chromatin-based mechanism.
Collapse
Affiliation(s)
- Tao Zheng
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan.
| | - Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| |
Collapse
|
3
|
Massive cytoplasmic transport and microtubule organization in fertilized chordate eggs. Dev Biol 2018; 448:154-160. [PMID: 30521810 DOI: 10.1016/j.ydbio.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 01/13/2023]
Abstract
Eggs have developed their own strategies for early development. Amphibian, teleost fish, and ascidian eggs show cortical rotation and an accompanying structure, a cortical parallel microtubule (MT) array, during the one-cell embryonic stage. Cortical rotation is thought to relocate maternal deposits to a certain compartment of the egg and to polarize the embryo. The common features and differences among chordate eggs as well as localized maternal proteins and mRNAs that are related to the organization of MT structures are described in this review. Furthermore, recent studies report progress in elucidating the molecular nature and functions of the noncentrosomal MT organizing center (ncMTOC). The parallel array of MT bundles is presumably organized by ncMTOCs; therefore, the mechanism of ncMTOC control is likely inevitable for these species. Thus, the molecules related to the ncMTOC provide clues for understanding the mechanisms of early developmental systems, which ultimately determine the embryonic axis.
Collapse
|
4
|
Initiation of the zygotic genetic program in the ascidian embryo. Semin Cell Dev Biol 2018; 84:111-117. [DOI: 10.1016/j.semcdb.2018.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/26/2022]
|
5
|
Oda-Ishii I, Abe T, Satou Y. Dynamics of two key maternal factors that initiate zygotic regulatory programs in ascidian embryos. Dev Biol 2018; 437:50-59. [PMID: 29550363 DOI: 10.1016/j.ydbio.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
In animal embryos, transcription is repressed for a definite period of time after fertilization. In the embryo of the ascidian, Ciona intestinalis (type A; or Ciona robusta), transcription of regulatory genes is repressed before the 8- or 16-cell stages. This initial transcriptional quiescence is important to enable the establishment of initial differential gene expression patterns along the animal-vegetal axis by maternal factors, because the third cell division separates the animal and vegetal hemispheres into distinct blastomeres. Indeed, maternal transcription factors directly activate zygotic gene expression by the 16-cell stage; Tcf7/β-catenin activates genes in the vegetal hemisphere, and Gata.a activates genes in the animal hemisphere. In the present study, we revealed the dynamics of Gata.a and β-catenin, and expression profiles of their target genes precisely. β-catenin began to translocate into the nuclei at the 16-cell stage, and thus expression of β-catenin targets began at the 16-cell stage. Although Gata.a is abundantly present before the 8-cell stage, transcription of Gata.a targets was repressed at and before the 4-cell stage, and their expression began at the 8-cell stage. Transcription of the β-catenin targets may be repressed by the same mechanism in early embryos, because β-catenin targets were not expressed in 4-cell embryos treated with a GSK inhibitor, in which β-catenin translocated to the nuclei. Thus, these two maternal factors have different dynamics, which establish the pre-pattern for zygotic genetic programs in 16-cell embryos.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Abe
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
6
|
Kumano G. Microinjection of Exogenous DNA into Eggs of Halocynthia roretzi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542078 DOI: 10.1007/978-981-10-7545-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Exogenous gene expression assays during development, including reporters under the control of 5' upstream enhancer regions of genes, constitute a powerful technique for understanding the mechanisms of tissue-specific gene expression regulation and determining the characteristics, behaviors, and functions of cells that express these genes. The simple marine chordate Halocynthia roretzi has been used for these transgenic analyses for a long time and is an excellent model system for such studies, especially in comparative analyses with other ascidians. In this study, I describe simple methods for microinjecting H. roretzi eggs with exogenous DNA, such as a promoter construct consisting of a 5' upstream region and a reporter gene, which are prerequisites for transgenic analyses. I also describe basic knowledge regarding this ascidian species, providing reasons why it is an ideal subject for developmental biology studies.
Collapse
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Asamushi, Aomori, Japan.
| |
Collapse
|
7
|
Ogura Y, Sasakura Y. Emerging mechanisms regulating mitotic synchrony during animal embryogenesis. Dev Growth Differ 2017; 59:565-579. [DOI: 10.1111/dgd.12391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Yosuke Ogura
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shizuoka Japan
| |
Collapse
|
8
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
9
|
Kumano G, Negoro N, Nishida H. Transcription factor Tbx6 plays a central role in fate determination between mesenchyme and muscle in embryos of the ascidian,Halocynthia roretzi. Dev Growth Differ 2014; 56:310-22. [DOI: 10.1111/dgd.12133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology; Graduate School of Life Science; Tohoku University; 9 Sakamoto Asamushi Aomori 039-3501 Japan
| | - Nobue Negoro
- Department of Biological Sciences; Graduate School of Science; Osaka University; 1-1 Machikaneyama-cho Toyonaka Osaka 560-0043 Japan
| | - Hiroki Nishida
- Department of Biological Sciences; Graduate School of Science; Osaka University; 1-1 Machikaneyama-cho Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
10
|
Shirae-Kurabayashi M, Matsuda K, Nakamura A. Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germline of Ciona intestinalis embryos. Development 2011; 138:2871-81. [PMID: 21693510 DOI: 10.1242/dev.058131] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In many animal embryos, germ-cell formation depends on maternal factors located in the germ plasm. To ensure the development of germ cells, germline progenitors must be prevented from differentiating inappropriately into somatic cells. A common mechanism for this appears to be the active repression of somatic gene transcription. Species-specific germ-plasm components, such as Pgc in Drosophila and PIE-1 in C. elegans, establish germline transcriptional quiescence by inhibiting general transcriptional machineries. In the ascidian Ciona intestinalis, although transcriptional repression in the germline has been proposed, the factors and mechanisms involved have been unknown. We found that the protein products of Ci-pem-1 RNA, which is an ascidian-specific component of the postplasm (the germ plasm equivalent in ascidians), localized to the nucleus of germline blastomeres, as well as to the postplasm. Morpholino oligonucleotide-mediated Ci-pem-1 knockdown resulted in the ectopic expression of several somatic genes that are usually silent in the germline. In the Ci-pem-1 knockdown embryos, the expression of both β-catenin- and GATAa-dependent genes was derepressed in the germline blastomeres, suggesting that Ci-Pem-1 broadly represses germline mRNA transcription. Immunoprecipitation assays showed that Ci-Pem-1 could interact with two C. intestinalis homologs of Groucho, which is a general co-repressor of mRNA transcription. These results suggest that Ci-pem-1 is the C. intestinalis version of a germ-plasm RNA whose protein product represses the transcription of somatic genes during specification of the germ-cell fate, and that this repression may be operated through interactions between Ci-Pem-1 and Groucho co-repressors.
Collapse
Affiliation(s)
- Maki Shirae-Kurabayashi
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| | | | | |
Collapse
|
11
|
Kumano G, Takatori N, Negishi T, Takada T, Nishida H. A maternal factor unique to ascidians silences the germline via binding to P-TEFb and RNAP II regulation. Curr Biol 2011; 21:1308-13. [PMID: 21782435 DOI: 10.1016/j.cub.2011.06.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/19/2011] [Accepted: 06/21/2011] [Indexed: 12/11/2022]
Abstract
Suppression of zygotic transcription in early embryonic germline cells is tightly linked to their separation from the somatic lineage. Many invertebrate embryos utilize localized maternal factors that are successively inherited by the germline cells for silencing the germline. Germline quiescence has also been associated with the underphosphorylation of Ser2 of the C-terminal domain (CTD-Ser2) of RNA polymerase II [1-3]. Here, using the ascidian Halocynthia roretzi, we identified a first deuterostome example of a maternally localized factor, posterior end mark (PEM), which globally represses germline transcription. PEM knockdown resulted in ectopic transcription and ectopic phosphorylation of CTD-Ser2 in the germline. Overexpression of PEM abolished all transcription and led to the underphosphorylation of CTD-Ser2 in the somatic cells. PEM protein was reiteratively detected in the nucleus of the germline cells and coimmunoprecipitated with CDK9, a component of posterior transcription elongation factor b (P-TEFb). These results suggest that nonhomologous proteins, PEM and Pgc of Drosophila [3-5] and PIE-1 of C. elegans [1, 6, 7], repress germline gene expression through analogous functions: by keeping CTD-Ser2 underphosphorylated through binding to the P-TEFb complex. The present study is an interesting example of evolutionary constraint on how a mechanism of germline silencing can evolve in diverse animals.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
12
|
Paix A, Le Nguyen PN, Sardet C. Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER). Dev Biol 2011; 357:211-26. [PMID: 21723275 DOI: 10.1016/j.ydbio.2011.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/07/2023]
Abstract
Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum.
Collapse
Affiliation(s)
- Alexandre Paix
- Université Pierre et Marie Curie and Centre National de la Recherche Scientifique, BioMarCell, UMR BioDev, Observatoire Océanologique, Villefranche-sur-mer, France
| | | | | |
Collapse
|
13
|
Hashimoto H, Enomoto T, Kumano G, Nishida H. The transcription factor FoxB mediates temporal loss of cellular competence for notochord induction in ascidian embryos. Development 2011; 138:2591-600. [DOI: 10.1242/dev.053082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In embryos of the ascidian Halocynthia roretzi, the competence of isolated presumptive notochord blastomeres to respond to fibroblast growth factor (FGF) for induction of the primary notochord decays by 1 hour after cleavage from the 32- to 64-cell stage. This study analyzes the molecular mechanisms responsible for this loss of competence and provides evidence for a novel mechanism. A forkhead family transcription factor, FoxB, plays a role in competence decay by preventing the induction of notochord-specific Brachyury (Bra) gene expression by the FGF/MAPK signaling pathway. Unlike the mechanisms reported previously in other animals, no component in the FGF signal transduction cascade appeared to be lost or inactivated at the time of competence loss. Knockdown of FoxB functions allowed the isolated cells to retain their competence for a longer period, and to respond to FGF with expression of Bra beyond the stage at which competence was normally lost. FoxB acts as a transcription repressor by directly binding to the cis-regulatory element of the Bra gene. Our results suggest that FoxB prevents ectopic induction of the notochord fate within the cells that assume a default nerve cord fate, after the stage when notochord induction has been completed. The merit of this system is that embryos can use the same FGF signaling cascade again for another purpose in the same cell lineage at later stages by keeping the signaling cascade itself available. Temporally and spatially regulated FoxB expression in nerve cord cells was promoted by the ZicN transcription factor and absence of FGF/MAPK signaling.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Takashi Enomoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
14
|
Newman SA. Animal egg as evolutionary innovation: a solution to the “embryonic hourglass” puzzle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:467-83. [DOI: 10.1002/jez.b.21417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 12/26/2022]
|
15
|
Negishi T, Kumano G, Nishida H. Polo-like kinase 1 is required for localization of Posterior End Mark protein to the centrosome-attracting body and unequal cleavages in ascidian embryos. Dev Growth Differ 2011; 53:76-87. [PMID: 21261613 DOI: 10.1111/j.1440-169x.2010.01231.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In ascidian embryos, the posterior-localized maternal factor Posterior End Mark (PEM) is responsible for patterning embryos along the anterior-posterior axis with regard to both cleavage pattern involving unequal cell divisions and gene expression. Although PEM plays important roles in embryogenesis, its mechanism of action is still unclear because PEM has no known functional domain. In the present study, we explored the candidate of PEM partner proteins in Halocynthia roretzi using yeast two-hybrid screening. We isolated a homologue of Polo-like kinase 1 (Plk1), a key regulator of cell division and highly conserved in eukaryotes, as the first potential binding partner of PEM. We biochemically confirmed that interaction occurred between the Plk1 and PEM proteins. Immunostaining showed that Plk1 protein concentrates in the centrosome-attracting body (CAB) at the posterior pole, where PEM protein is also localized. The CAB is a subcellular structure that plays an important role in generating the posterior cleavage pattern. Plk1 localization to the CAB was dependent on the cell cycle phases during unequal cleavage. Inhibition of Plk1 with specific drugs resulted in failure of the nucleus to migrate towards the posterior pole and formation of a microtubule bundle between the CAB and a centrosome, similarly to inhibition of PEM function, suggesting that both proteins are involved in the same process of unequal cleavages. This interrupted nuclear migration was rescued by overexpression of PEM. In Plk1-inhibited embryos, the localization of PEM protein to the CAB was impaired, indicating that Plk1 is required for appropriate localization of PEM.
Collapse
Affiliation(s)
- Takefumi Negishi
- Department of Biological Sciences, Osaka University, Toyonaka, Japan.
| | | | | |
Collapse
|
16
|
Kumano G, Kawai N, Nishida H. Macho-1 regulates unequal cell divisions independently of its function as a muscle determinant. Dev Biol 2010; 344:284-92. [PMID: 20478299 DOI: 10.1016/j.ydbio.2010.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/30/2010] [Accepted: 05/08/2010] [Indexed: 02/05/2023]
Abstract
The anterior-posterior (A-P) axis in ascidian embryos is established through the posteriorizing activities of a localized egg region known as the posterior vegetal cortex/cytoplasm (PVC). Here we describe a novel function of macho-1, a maternally-localized muscle determinant, in establishment of the A-P axis in the Halocynthia roretzi embryo. Macho-1, in addition to its known function in the formation of posterior tissue such as muscle and mesenchyme, and suppression of the anterior-derived notochord fate, acts independently of its transcriptional activity as a regulator of posterior-specific unequal cell divisions, in cooperation with beta-catenin. Our results suggest that macho-1 and beta-catenin regulate the formation of a microtubule bundle that shortens and pulls the centrosome toward a sub-cellular cortical structure known as centrosome-attracting body (CAB), which is located at the posterior pole of the embryo during unequal cell divisions, and act upstream of PEM, a recently-identified regulator of unequal cell divisions. We also present data that suggest that PEM localization to the CAB may not be required for unequal cleavage regulation. The present study provides an important and novel insight into the role of the zinc-finger-containing transcription factor and indicates that it constitutes a major part of the PVC activity.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|