1
|
Srinivasan S, Sherwood DR. The life cycle of type IV collagen. Matrix Biol 2025; 139:14-28. [PMID: 40306374 PMCID: PMC12146070 DOI: 10.1016/j.matbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Type IV collagen is a large triple helical molecule that forms a covalently cross-linked network within basement membranes (BMs). Type IV collagen networks play key roles in mechanically supporting tissues, shaping organs, filtering blood, and cell signaling. To ensure tissue health and function, all aspects of the type IV collagen life cycle must be carried out accurately. However, the large triple helical structure and complex life-cycle of type IV collagen, poses many challenges to cells and tissues. Type IV collagen predominantly forms heterotrimers and to ensure proper construction, expression of the distinct α-chains that comprise a heterotrimer needs tight regulation. The α-chains must also be accurately modified by several enzymes, some of which are specific to collagens, to build and stabilize the triple helical trimer. In addition, type IV collagen is exceptionally long (400 nm) and thus the packaging and trafficking of the triple helical trimer from the ER to the Golgi must be modified to accommodate the large type IV collagen molecule. During ER-to-Golgi trafficking, as well as during secretion and transport in the extracellular space, type IV collagen also associates with specific chaperone molecules that maintain the structure and solubility of collagen IV. Type IV collagen trimers are then delivered to BMs from local and distant sources where they are integrated into BMs by interactions with cell surface receptors and many diverse BM resident proteins. Within BMs type IV collagen self-associates into a network and is crosslinked by BM resident enzymes. Finally, homeostatic type IV collagen levels in BMs are maintained by poorly understood mechanisms involving proteolysis and endocytosis. Here, we provide an overview of the life cycle of collagen IV, highlighting unique mechanisms and poorly understood aspects of type IV collagen regulation.
Collapse
Affiliation(s)
- Sandhya Srinivasan
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Knudsen C, Moriya A, Nakato E, Gulati R, Akiyama T, Nakato H. Chondroitin sulfate regulates proliferation of Drosophila intestinal stem cells. PLoS Genet 2025; 21:e1011686. [PMID: 40343906 PMCID: PMC12063844 DOI: 10.1371/journal.pgen.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
The basement membrane (BM) plays critical roles in stem cell maintenance and activity control. Here we show that chondroitin sulfate (CS), a major component of the Drosophila midgut BM, is required for proper control of intestinal stem cells (ISCs). Loss of Chsy, a critical CS biosynthetic gene, resulted in elevated levels of ISC proliferation during homeostasis, leading to midgut hyperplasia. Regeneration assays demonstrated that Chsy mutant ISCs failed to properly downregulate mitotic activity at the end of regeneration. We also found that CS is essential for the barrier integrity to prevent leakage of the midgut epithelium. CS is known to be polymerized by the action of the complex of Chsy and another critical protein, Chondroitin polymerizing factor (Chpf). We found that Chpf mutants show increased ISC division during midgut homeostasis and regeneration, similar to Chsy mutants. As Chpf is induced by a tissue damage during regeneration, our data suggest that Chpf functions with Chsy to facilitate CS remodeling and stimulate tissue repair. We propose that the completion of the repair of CS-containing BM acts as a prerequisite to properly terminate the regeneration process.
Collapse
Affiliation(s)
- Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ayano Moriya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rishi Gulati
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Takuya Akiyama
- Department of Biology, The Porter Cancer Research Center, Indiana State University, Terre Haute, Indiana, United States of America
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
3
|
Patel A, Wu Y, Han X, Su Y, Maugel T, Shroff H, Roy S. Cytonemes coordinate asymmetric signaling and organization in the Drosophila muscle progenitor niche. Nat Commun 2022; 13:1185. [PMID: 35246530 PMCID: PMC8897416 DOI: 10.1038/s41467-022-28587-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/02/2022] [Indexed: 12/29/2022] Open
Abstract
Asymmetric signaling and organization in the stem-cell niche determine stem-cell fates. Here, we investigate the basis of asymmetric signaling and stem-cell organization using the Drosophila wing-disc that creates an adult muscle progenitor (AMP) niche. We show that AMPs extend polarized cytonemes to contact the disc epithelial junctions and adhere themselves to the disc/niche. Niche-adhering cytonemes localize FGF-receptor to selectively adhere to the FGF-producing disc and receive FGFs in a contact-dependent manner. Activation of FGF signaling in AMPs, in turn, reinforces disc-specific cytoneme polarity/adhesion, which maintains their disc-proximal positions. Loss of cytoneme-mediated adhesion promotes AMPs to lose niche occupancy and FGF signaling, occupy a disc-distal position, and acquire morphological hallmarks of differentiation. Niche-specific AMP organization and diversification patterns are determined by localized expression and presentation patterns of two different FGFs in the wing-disc and their polarized target-specific distribution through niche-adhering cytonemes. Thus, cytonemes are essential for asymmetric signaling and niche-specific AMP organization.
Collapse
Affiliation(s)
- Akshay Patel
- grid.164295.d0000 0001 0941 7177Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD USA
| | - Yicong Wu
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA
| | - Xiaofei Han
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA
| | - Yijun Su
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD USA
| | - Tim Maugel
- grid.164295.d0000 0001 0941 7177Department of Biology, Laboratory for Biological Ultrastructure, University of Maryland, College Park, MD USA
| | - Hari Shroff
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD USA
| | - Sougata Roy
- grid.164295.d0000 0001 0941 7177Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD USA
| |
Collapse
|
4
|
Scholl A, Ndoja I, Jiang L. Drosophila Trachea as a Novel Model of COPD. Int J Mol Sci 2021; 22:ijms222312730. [PMID: 34884534 PMCID: PMC8658011 DOI: 10.3390/ijms222312730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
COPD, a chronic obstructive pulmonary disease, is one of the leading causes of death worldwide. Clinical studies and research in rodent models demonstrated that failure of repair mechanisms to cope with increased ROS and inflammation in the lung leads to COPD. Despite this progress, the molecular mechanisms underlying the development of COPD remain poorly understood, resulting in a lack of effective treatments. Thus, an informative, simple model is highly valued and desired. Recently, the cigarette smoke-induced Drosophila COPD model showed a complex set of pathological phenotypes that resemble those seen in human COPD patients. The Drosophila trachea has been used as a premier model to reveal the mechanisms of tube morphogenesis. The association of these mechanisms to structural changes in COPD can be analyzed by using Drosophila trachea. Additionally, the timeline of structural damage, ROS, and inflammation can be studied in live organisms using fluorescently-tagged proteins. The related function of human COPD genes identified by GWAS can be screened using respective fly homologs. Finally, the Drosophila trachea can be used as a high-throughput drug screening platform to identify novel treatments for COPD. Therefore, Drosophila trachea is an excellent model that is complementary to rodent COPD models.
Collapse
|
5
|
Ronchi P, Mizzon G, Machado P, D’Imprima E, Best BT, Cassella L, Schnorrenberg S, Montero MG, Jechlinger M, Ephrussi A, Leptin M, Mahamid J, Schwab Y. High-precision targeting workflow for volume electron microscopy. J Cell Biol 2021; 220:e202104069. [PMID: 34160561 PMCID: PMC8225610 DOI: 10.1083/jcb.202104069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.
Collapse
Affiliation(s)
- Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Giulia Mizzon
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edoardo D’Imprima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Benedikt T. Best
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lucia Cassella
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schnorrenberg
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marta G. Montero
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Jechlinger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors’ Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
6
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
8
|
Hughes CJR, Turner S, Andrews RM, Vitkin A, Jacobs JR. Matrix metalloproteinases regulate ECM accumulation but not larval heart growth in Drosophila melanogaster. J Mol Cell Cardiol 2020; 140:42-55. [PMID: 32105665 DOI: 10.1016/j.yjmcc.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
The Drosophila heart provides a simple model to examine the remodelling of muscle insertions with growth, extracellular matrix (ECM) turnover, and fibrosis. Between hatching and pupation, the Drosophila heart increases in length five-fold. If major cardiac ECM components are secreted remotely, how is ECM "self assembly" regulated? We explored whether ECM proteases were required to maintain the morphology of a growing heart while the cardiac ECM expanded. An increase in expression of Drosophila's single tissue inhibitor of metalloproteinase (TIMP), or reduced function of metalloproteinase MMP2, resulted in fibrosis and ectopic deposition of two ECM Collagens; type-IV and fibrillar Pericardin. Significant accumulations of Collagen-IV (Viking) developed on the pericardium and in the lumen of the heart. Congenital defects in Pericardin deposition misdirected further assembly in the larva. Reduced metalloproteinase activity during growth also increased Pericardin fibre accumulation in ECM suspending the heart. Although MMP2 expression was required to remodel and position cardiomyocyte cell junctions, reduced MMP function did not impair expansion of the heart. A previous study revealed that MMP2 negatively regulates the size of the luminal cell surface in the embryonic heart. Cardiomyocytes align at the midline, but do not adhere to enclose a heart lumen in MMP2 mutant embryos. Nevertheless, these embryos hatch and produce viable larvae with bifurcated hearts, indicating a secondary pathway to lumen formation between ipsilateral cardiomyocytes. MMP-mediated remodelling of the ECM is required for organogenesis, and to prevent assembly of excess or ectopic ECM protein during growth. MMPs are not essential for normal growth of the Drosophila heart.
Collapse
Affiliation(s)
- C J R Hughes
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - S Turner
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - R M Andrews
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - A Vitkin
- Dept. Biomedical Physics, University of Toronto, Toronto, Cananda.
| | - J R Jacobs
- Dept. Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
9
|
Fereres S, Hatori R, Hatori M, Kornberg TB. Cytoneme-mediated signaling essential for tumorigenesis. PLoS Genet 2019; 15:e1008415. [PMID: 31568500 PMCID: PMC6786653 DOI: 10.1371/journal.pgen.1008415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/10/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Communication between neoplastic cells and cells of their microenvironment is critical to cancer progression. To investigate the role of cytoneme-mediated signaling as a mechanism for distributing growth factor signaling proteins between tumor and tumor-associated cells, we analyzed EGFR and RET Drosophila tumor models and tested several genetic loss-of-function conditions that impair cytoneme-mediated signaling. Neuroglian, capricious, Irk2, SCAR, and diaphanous are genes that cytonemes require during normal development. Neuroglian and Capricious are cell adhesion proteins, Irk2 is a potassium channel, and SCAR and Diaphanous are actin-binding proteins, and the only process to which they are known to contribute jointly is cytoneme-mediated signaling. We observed that diminished function of any one of these genes suppressed tumor growth and increased organism survival. We also noted that EGFR-expressing tumor discs have abnormally extensive tracheation (respiratory tubes) and ectopically express Branchless (Bnl, a FGF) and FGFR. Bnl is a known inducer of tracheation that signals by a cytoneme-mediated process in other contexts, and we determined that exogenous over-expression of dominant negative FGFR suppressed tumor growth. Our results are consistent with the idea that cytonemes move signaling proteins between tumor and stromal cells and that cytoneme-mediated signaling is required for tumor growth and malignancy. The growth of many types of tumors depend on productive interactions with stromal, non-tumor neighbors, and although there is evidence that tumor and stromal cells exchange signaling proteins and growth factors that they produce, the mechanism by which these proteins move between the signaling cells has not been investigated and is not known. Our previous work has shown that normal cells make transient chemical synapses at sites where specialized filopodia called cytonemes contact signaling partners, and in this work we explore the possibility that tumors use the same mechanism to communicate with stromal cells. We show that cytoneme-mediated signaling is essential for growth of Drosophila tumors that model human EGFR over-expression and RET-driven disease. Remarkably, inhibition of cytonemes cures flies of lethal tumors.
Collapse
Affiliation(s)
- Sol Fereres
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Ryo Hatori
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Makiko Hatori
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Huang H, Liu S, Kornberg TB. Glutamate signaling at cytoneme synapses. Science 2019; 363:948-955. [PMID: 30819957 DOI: 10.1126/science.aat5053] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/14/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
We investigated the roles of components of neuronal synapses for development of the Drosophila air sac primordium (ASP). The ASP, an epithelial tube, extends specialized signaling filopodia called cytonemes that take up signals such as Dpp (Decapentaplegic, a homolog of the vertebrate bone morphogenetic protein) from the wing imaginal disc. Dpp signaling in the ASP was compromised if disc cells lacked Synaptobrevin and Synaptotagmin-1 (which function in vesicle transport at neuronal synapses), the glutamate transporter, and a voltage-gated calcium channel, or if ASP cells lacked Synaptotagmin-4 or the glutamate receptor GluRII. Transient elevations of intracellular calcium in ASP cytonemes correlate with signaling activity. Calcium transients in ASP cells depend on GluRII, are activated by l-glutamate and by stimulation of an optogenetic ion channel expressed in the wing disc, and are inhibited by EGTA and by the GluR inhibitor NASPM (1-naphthylacetyl spermine trihydrochloride). Activation of GluRII is essential but not sufficient for signaling. Cytoneme-mediated signaling is glutamatergic.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Songmei Liu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Gao K, Su Z, Liu H, Liu Y. RETRACTED: Anti-proliferation and anti-metastatic effects of sevoflurane on human osteosarcoma U2OS and Saos-2 cells. Exp Mol Pathol 2019; 108:121-130. [PMID: 30974101 DOI: 10.1016/j.yexmp.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/17/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief and the authors. The journal was initially contacted by the corresponding author to request the retraction of the article as the results were reportedly not reproducible post-publication. Further investigation by the journal revealed also that the author name Hailin Liu was added to the authorship without editorial approval, after the article was accepted by the handling Editor. Other authorship issues as well as data realiability issues with the article were further revealed by the institutional investigation: http://med.china.com.cn/content/pid/291148/tid/1013/iswap/1. Given the concerns raised regarding panels from Figure 3A and also the comments of Dr Elisabeth Bik regarding this article “This paper belongs to a set of over 400 papers (as per February 2020) that share very similar Western blots with tadpole-like shaped bands, the same background pattern, and striking similarities in title structures, paper layout, bar graph design, and - in a subset - flow cytometry panels”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Ke Gao
- Department of Cardiovascular, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Zhen Su
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hailin Liu
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yan Liu
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China.
| |
Collapse
|
12
|
Atzeni F, Lanfranconi F, Aegerter CM. Disentangling geometrical, viscoelastic and hyperelastic effects in force-displacement relationships of folded biological tissues. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:47. [PMID: 31011840 DOI: 10.1140/epje/i2019-11807-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Drosophila wing discs show a remarkable variability when subject to mechanical perturbation. We developed a stretching bench that allows accurate measurements of instantaneous and time-dependent material behaviour of the disc as a whole, while determining the exact three-dimensional structure of the disc during stretching. Our experiments reveal force relaxation dynamics on timescales that are significant for development, along with a surprisingly nonlinear force-displacement relationship. Concurrently our imaging indicates that the disc is a highly heterogeneous tissue with a complex geometry. Using image-based 3D finite element modelling we are able to identify the contributions of size, shape and materials parameters to the measured force-displacement relations. In particular, we find that simulating the stretching of a disc with stiffness patterns in the extra-cellular matrix (ECM) recapitulates the experimentally found stretched geometries. In our simulations, linear hyperelasticity explains the measured nonlinearity to a surprising extent. To fully match the experimental force-displacement curves, we use an exponentially elastic material, which, when coupled to material relaxation also explains time-dependent experiments. Our simulations predict that as the disc develops, two counteracting effects, namely the discs foldedness and the hardening of the ECM lead to force-relative displacement curves that are nearly conserved during development.
Collapse
Affiliation(s)
- Francesco Atzeni
- Physics Institute, University of Zurich, Zurich, Switzerland
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - Christof M Aegerter
- Physics Institute, University of Zurich, Zurich, Switzerland.
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Powers N, Srivastava A. JAK/STAT signaling is involved in air sac primordium development of Drosophila melanogaster. FEBS Lett 2019; 593:658-669. [PMID: 30854626 DOI: 10.1002/1873-3468.13355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
The dorsal thoracic air sacs in fruit flies (Drosophila melanogaster) are functionally and developmentally comparable to human lungs. The progenitors of these structures, air sac primordia (ASPs), invasively propagate into wing imaginal disks, employing mechanisms similar to those that promote metastasis in malignant tumors. We investigated whether Janus kinase/signal transducer and activator of transcription JAK/STAT signaling plays a role in the directed morphogenesis of ASPs. We find that JAK/STAT signaling occurs in ASP tip cells and misexpression of core components in the JAK/STAT signaling cascade significantly impedes ASP development. We further identify Upd2 as an activating ligand for JAK/STAT activity in the ASP. Together, these data constitute a considerable step forward in understanding the role of JAK/STAT signaling in ASPs and similar structures in mammalian models.
Collapse
Affiliation(s)
- Nathan Powers
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, KY, USA
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
14
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
15
|
Powers N, Srivastava A. The Air Sac Primordium of Drosophila: A Model for Invasive Development. Int J Mol Sci 2018; 19:ijms19072074. [PMID: 30018198 PMCID: PMC6073991 DOI: 10.3390/ijms19072074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022] Open
Abstract
The acquisition of invasive properties preceding tumor metastasis is critical for cancer progression. This phenomenon may result from mutagenic disruption of typical cell function, but recent evidence suggests that cancer cells frequently co-opt normal developmental programs to facilitate invasion as well. The signaling cascades that have been implicated present an obstacle to identifying effective therapeutic targets because of their complex nature and modulatory capacity through crosstalk with other pathways. Substantial efforts have been made to study invasive behavior during organogenesis in several organisms, but another model found in Drosophilamelanogaster has not been thoroughly explored. The air sac primordium (ASP) appears to be a suitable candidate for investigating the genes and morphogens required for invasion due to the distinct overlap in the events that occur during its normal growth and the development of metastatic tumor cells. Among these events are the conversion of larval cells in the trachea into a population of mitotically active cells, reduced cell–cell contact along the leading edge of the ASP, and remodeling of the extracellular matrix (ECM) that surrounds the structure. Here, we summarize the development of ASPs and invasive behavior observed therein.
Collapse
Affiliation(s)
- Nathan Powers
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA.
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA.
| |
Collapse
|
16
|
Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. Nat Protoc 2017; 12:2081-2096. [PMID: 28880279 DOI: 10.1038/nprot.2017.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell invasion through basement membrane (BM) barriers is crucial in development, leukocyte trafficking and the spread of cancer. The mechanisms that direct invasion, despite their importance in normal and disease states, are poorly understood, largely because of the inability to visualize dynamic cell-BM interactions in vivo. This protocol describes multichannel time-lapse confocal imaging of anchor-cell invasion in live Caenorhabditis elegans. Methods presented include outline-slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min) and quantitative analysis (variable timing). The acquired images enable direct measurement of invasive dynamics including formation of invadopodia and cell-membrane protrusions, and removal of BM. This protocol can be combined with genetic analysis, molecular-activity probes and optogenetic approaches to uncover the molecular mechanisms underlying cell invasion. These methods can also be readily adapted by any worm laboratory for real-time analysis of cell migration, BM turnover and cell-membrane dynamics.
Collapse
|
17
|
Du L, Zhou A, Patel A, Rao M, Anderson K, Roy S. Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis. Dev Biol 2017; 427:35-48. [PMID: 28502613 DOI: 10.1016/j.ydbio.2017.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/29/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Fibroblast growth factors (FGF) are essential signaling proteins that regulate diverse cellular functions in developmental and metabolic processes. In Drosophila, the FGF homolog, branchless (bnl) is expressed in a dynamic and spatiotemporally restricted pattern to induce branching morphogenesis of the trachea, which expresses the Bnl-receptor, breathless (btl). Here we have developed a new strategy to determine bnl- expressing cells and study their interactions with the btl-expressing cells in the range of tissue patterning during Drosophila development. To enable targeted gene expression specifically in the bnl expressing cells, a new LexA based bnl enhancer trap line was generated using CRISPR/Cas9 based genome editing. Analyses of the spatiotemporal expression of the reporter in various embryonic stages, larval or adult tissues and in metabolic hypoxia, confirmed its target specificity and versatility. With this tool, new bnl expressing cells, their unique organization and functional interactions with the btl-expressing cells were uncovered in a larval tracheoblast niche in the leg imaginal discs, in larval photoreceptors of the developing retina, and in the embryonic central nervous system. The targeted expression system also facilitated live imaging of simultaneously labeled Bnl sources and tracheal cells, which revealed a unique morphogenetic movement of the embryonic bnl- source. Migration of bnl- expressing cells may create a dynamic spatiotemporal pattern of the signal source necessary for the directional growth of the tracheal branch. The genetic tool and the comprehensive profile of expression, organization, and activity of various types of bnl-expressing cells described in this study provided us with an important foundation for future research investigating the mechanisms underlying Bnl signaling in tissue morphogenesis.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Amy Zhou
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Akshay Patel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Mishal Rao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Kelsey Anderson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sougata Roy
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
18
|
Pflugfelder G, Eichinger F, Shen J. T-Box Genes in Drosophila Limb Development. Curr Top Dev Biol 2017; 122:313-354. [DOI: 10.1016/bs.ctdb.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Huang H, Kornberg TB. Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes. eLife 2016; 5. [PMID: 27591355 PMCID: PMC5030081 DOI: 10.7554/elife.18979] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/31/2016] [Indexed: 01/10/2023] Open
Abstract
Drosophila dorsal air sac development depends on Decapentaplegic (Dpp) and Fibroblast growth factor (FGF) proteins produced by the wing imaginal disc and transported by cytonemes to the air sac primordium (ASP). Dpp and FGF signaling in the ASP was dependent on components of the planar cell polarity (PCP) system in the disc, and neither Dpp- nor FGF-receiving cytonemes extended over mutant disc cells that lacked them. ASP cytonemes normally navigate through extracellular matrix (ECM) composed of collagen, laminin, Dally and Dally-like (Dlp) proteins that are stratified in layers over the disc cells. However, ECM over PCP mutant cells had reduced levels of laminin, Dally and Dlp, and whereas Dpp-receiving ASP cytonemes navigated in the Dally layer and required Dally (but not Dlp), FGF-receiving ASP cytonemes navigated in the Dlp layer, requiring Dlp (but not Dally). These findings suggest that cytonemes interact directly and specifically with proteins in the stratified ECM.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
20
|
Cruz J, Bota-Rabassedas N, Franch-Marro X. FGF coordinates air sac development by activation of the EGF ligand Vein through the transcription factor PntP2. Sci Rep 2015; 5:17806. [PMID: 26632449 PMCID: PMC4668582 DOI: 10.1038/srep17806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/05/2015] [Indexed: 01/25/2023] Open
Abstract
How several signaling pathways are coordinated to generate complex organs through regulation of tissue growth and patterning is a fundamental question in developmental biology. The larval trachea of Drosophila is composed of differentiated functional cells and groups of imaginal tracheoblasts that build the adult trachea during metamorphosis. Air sac primordium cells (ASP) are tracheal imaginal cells that form the dorsal air sacs that supply oxygen to the flight muscles of the Drosophila adult. The ASP emerges from the tracheal branch that connects to the wing disc by the activation of both Bnl-FGF/Btl and EGFR signaling pathways. Together, these pathways promote cell migration and proliferation. In this study we demonstrate that Vein (vn) is the EGF ligand responsible for the activation of the EGFR pathway in the ASP. We also find that the Bnl-FGF/Btl pathway regulates the expression of vn through the transcription factor PointedP2 (PntP2). Furthermore, we show that the FGF target gene escargot (esg) attenuates EGFR signaling at the tip cells of the developing ASP, reducing their mitotic rate to allow proper migration. Altogether, our results reveal a link between Bnl-FGF/Btl and EGFR signaling and provide novel insight into how the crosstalk of these pathways regulates migration and growth.
Collapse
Affiliation(s)
- Josefa Cruz
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), P. de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| | - Neus Bota-Rabassedas
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), P. de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), P. de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Dong Q, Brenneman B, Fields C, Srivastava A. A Cathepsin-L is required for invasive behavior during Air Sac Primordium development in Drosophila melanogaster. FEBS Lett 2015; 589:3090-7. [PMID: 26341534 DOI: 10.1016/j.febslet.2015.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/16/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
The Drosophila Air Sac Primordium (ASP) has emerged as an important structure where cellular, genetic and molecular events responsible for invasive behavior and branching morphogenesis can be studied. In this report we present data which demonstrate that a Cathepsin-L encoded by the gene CP1 in Drosophila is necessary for invasive behavior during ASP development. We find that CP1 is expressed in ASP and knockdown of CP1 results in suppression of migratory and invasive behavior observed during ASP development. We further show that CP1 possibly regulates invasive behavior by promoting degradation of Basement Membrane. Our data provide clues to the possible role of Cathepsin L in human lung development and tumor invasion, especially, given the similarities between human lung and Drosophila ASP development.
Collapse
Affiliation(s)
- Qian Dong
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA
| | - Breanna Brenneman
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA
| | - Christopher Fields
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Boulevard, TCCW 351, Bowling Green, KY 42101, USA.
| |
Collapse
|
22
|
Isabella AJ, Horne-Badovinac S. Building from the Ground up: Basement Membranes in Drosophila Development. CURRENT TOPICS IN MEMBRANES 2015; 76:305-36. [PMID: 26610918 DOI: 10.1016/bs.ctm.2015.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Basement membranes (BMs) are sheetlike extracellular matrices found at the basal surfaces of epithelial tissues. The structural and functional diversity of these matrices within the body endows them with the ability to affect multiple aspects of cell behavior and communication; for this reason, BMs are integral to many developmental processes. The power of Drosophila genetics, as applied to the BM, has yielded substantial insight into how these matrices influence development. Here, we explore three facets of BM biology to which Drosophila research has made particularly important contributions. First, we discuss how newly synthesized BM proteins are secreted to and assembled exclusively on basal epithelial surfaces. Next, we examine how regulation of the structural properties of the BM mechanically supports and guides tissue morphogenesis. Finally, we explore how BMs influence development through the modulation of several major signaling pathways.
Collapse
Affiliation(s)
- Adam J Isabella
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Huang H, Kornberg TB. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium. eLife 2015; 4:e06114. [PMID: 25951303 PMCID: PMC4423120 DOI: 10.7554/elife.06114] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/16/2015] [Indexed: 12/17/2022] Open
Abstract
The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts.
Collapse
Affiliation(s)
- Hai Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
24
|
Kornberg TB. Cytonemes and the dispersion of morphogens. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:445-63. [PMID: 25186102 PMCID: PMC4199865 DOI: 10.1002/wdev.151] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/10/2014] [Accepted: 07/25/2014] [Indexed: 01/07/2023]
Abstract
Filopodia are cellular protrusions that have been implicated in many types of mechanosensory activities. Morphogens are signaling proteins that regulate the patterned development of embryos and tissues. Both have long histories that date to the beginnings of cell and developmental biology in the early 20th century, but recent findings tie specialized filopodia called cytonemes to morphogen movement and morphogen signaling. This review explores the conceptual and experimental background for a model of paracrine signaling in which the exchange of morphogens between cells is directed to sites where cytonemes directly link cells that produce morphogens to cells that receive and respond to them.
Collapse
Affiliation(s)
- Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
25
|
Handke B, Szabad J, Lidsky PV, Hafen E, Lehner CF. Towards long term cultivation of Drosophila wing imaginal discs in vitro. PLoS One 2014; 9:e107333. [PMID: 25203426 PMCID: PMC4159298 DOI: 10.1371/journal.pone.0107333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/14/2014] [Indexed: 12/26/2022] Open
Abstract
The wing imaginal disc of Drosophila melanogaster is a prominent experimental system for research on control of cell growth, proliferation and death, as well as on pattern formation and morphogenesis during organogenesis. The precise genetic methodology applicable in this system has facilitated conceptual advances of fundamental importance for developmental biology. Experimental accessibility and versatility would gain further if long term development of wing imaginal discs could be studied also in vitro. For example, culture systems would allow live imaging with maximal temporal and spatial resolution. However, as clearly demonstrated here, standard culture methods result in a rapid cell proliferation arrest within hours of cultivation of dissected wing imaginal discs. Analysis with established markers for cells in S- and M phase, as well as with RGB cell cycle tracker, a novel reporter transgene, revealed that in vitro cultivation interferes with cell cycle progression throughout interphase and not just exclusively during G1. Moreover, quantification of EGFP expression from an inducible transgene revealed rapid adverse effects of disc culture on basic cellular functions beyond cell cycle progression. Disc transplantation experiments confirmed that these detrimental consequences do not reflect fatal damage of imaginal discs during isolation, arguing clearly for a medium insufficiency. Alternative culture media were evaluated, including hemolymph, which surrounds imaginal discs during growth in situ. But isolated larval hemolymph was found to be even less adequate than current culture media, presumably as a result of conversion processes during hemolymph isolation or disc culture. The significance of prominent growth-regulating pathways during disc culture was analyzed, as well as effects of insulin and disc co-culture with larval tissues as potential sources of endocrine factors. Based on our analyses, we developed a culture protocol that prolongs cell proliferation in cultured discs.
Collapse
Affiliation(s)
- Björn Handke
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - János Szabad
- Department of Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Peter V. Lidsky
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | - Ernst Hafen
- Department of Biology, Institute of Molecular Systems Biology (IMSB), ETH Zurich, Zurich, Switzerland
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
27
|
Chu WC, Lee YM, Henry Sun Y. FGF /FGFR signal induces trachea extension in the drosophila visual system. PLoS One 2013; 8:e73878. [PMID: 23991208 PMCID: PMC3753266 DOI: 10.1371/journal.pone.0073878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/24/2013] [Indexed: 11/29/2022] Open
Abstract
The Drosophila compound eye is a large sensory organ that places a high demand on oxygen supplied by the tracheal system. Although the development and function of the Drosophila visual system has been extensively studied, the development and contribution of its tracheal system has not been systematically examined. To address this issue, we studied the tracheal patterns and developmental process in the Drosophila visual system. We found that the retinal tracheae are derived from air sacs in the head, and the ingrowth of retinal trachea begin at mid-pupal stage. The tracheal development has three stages. First, the air sacs form near the optic lobe in 42-47% of pupal development (pd). Second, in 47-52% pd, air sacs extend branches along the base of the retina following a posterior-to-anterior direction and further form the tracheal network under the fenestrated membrane (TNUFM). Third, the TNUFM extend fine branches into the retina following a proximal-to-distal direction after 60% pd. Furthermore, we found that the trachea extension in both retina and TNUFM are dependent on the FGF(Bnl)/FGFR(Btl) signaling. Our results also provided strong evidence that the photoreceptors are the source of the Bnl ligand to guide the trachea ingrowth. Our work is the first systematic study of the tracheal development in the visual system, and also the first study demonstrating the interactions of two well-studied systems: the eye and trachea.
Collapse
Affiliation(s)
- Wei-Chen Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi Henry Sun
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Kamimura K, Ueno K, Nakagawa J, Hamada R, Saitoe M, Maeda N. Perlecan regulates bidirectional Wnt signaling at the Drosophila neuromuscular junction. ACTA ACUST UNITED AC 2013; 200:219-33. [PMID: 23319599 PMCID: PMC3549968 DOI: 10.1083/jcb.201207036] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Perlecan/Trol at the neuromuscular junction suppresses presynaptic canonical Wg signaling but enhances the postsynaptic Frizzled nuclear import pathway. Heparan sulfate proteoglycans (HSPGs) play pivotal roles in the regulation of Wnt signaling activity in several tissues. At the Drosophila melanogaster neuromuscular junction (NMJ), Wnt/Wingless (Wg) regulates the formation of both pre- and postsynaptic structures; however, the mechanism balancing such bidirectional signaling remains elusive. In this paper, we demonstrate that mutations in the gene of a secreted HSPG, perlecan/trol, resulted in diverse postsynaptic defects and overproduction of synaptic boutons at NMJ. The postsynaptic defects, such as reduction in subsynaptic reticulum (SSR), were rescued by the postsynaptic activation of the Frizzled nuclear import Wg pathway. In contrast, overproduction of synaptic boutons was suppressed by the presynaptic down-regulation of the canonical Wg pathway. We also show that Trol was localized in the SSR and promoted postsynaptic accumulation of extracellular Wg proteins. These results suggest that Trol bidirectionally regulates both pre- and postsynaptic activities of Wg by precisely distributing Wg at the NMJ.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Xu XY, Shen YB, Fu JJ, Liu F, Guo SZ, Yang XM, Li JL. Matrix metalloproteinase 2 of grass carp Ctenopharyngodon idella (CiMMP2) is involved in the immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2012; 33:251-257. [PMID: 22626808 DOI: 10.1016/j.fsi.2012.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
The gene encoding matrix metalloproteinase 2 (MMP2) was cloned from grass carp (Ctenopharyngodon idella), and its expression levels during Aeromonas hydrophila infection and embryonic development stages were evaluated. The complete open reading frame of CiMMP2 was 1974 bp in length, encoding a 658-amino acid polypeptide. The deduced MMP2 protein contained four conserved domain structures, including an N-terminal signal sequence, a propeptide domain, three repeats of fibronectin-type II domain inserted in the catalytic domain and a C-terminal hemopexin-like domain. Phylogenetic analysis of MMP2s grouped grass carp with other teleosts. Detected in all fish tissues examined, CiMMP2 expression increased in the spleen and head kidney at 4 h and was significantly downregulated at 1 d after A. hydrophila infection. CiMMP2 transcripts were present in unfertilized eggs, suggesting its maternal origin. These findings implicate an important role for CiMMP2 in A. hydrophila-related diseases and early embryonic developmental stages of grass carp.
Collapse
Affiliation(s)
- Xiao-Yan Xu
- Key Laboratory of Freshwater Fisheries Genetic Resources Certificated by Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cytonemes are types of filopodia in the Drosophila wing imaginal disc that are proposed to serve as conduits in which morphogen signaling proteins move between producing and target cells. We investigated the specificity of cytonemes that are made by target cells. Cells in wing discs made cytonemes that responded specifically to Decapentaplegic (Dpp) and cells in eye discs made cytonemes that responded specifically to Spitz (the Drosophila epidermal growth factor protein). Tracheal cells had at least two types: one made in response to Branchless (a Drosophila fibroblast growth factor protein, Bnl), to which they segregate the Bnl receptor, and another to which they segregate the Dpp receptor. We conclude that cells can make several types of cytonemes, each of which responds specifically to a signaling pathway by means of the selective presence of a particular signaling protein receptor that has been localized to that cytoneme.
Collapse
Affiliation(s)
- Sougata Roy
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | | - Thomas B. Kornberg
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
31
|
Adhikari AS, Chai J, Dunn AR. Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J Am Chem Soc 2011; 133:1686-9. [PMID: 21247159 PMCID: PMC3320677 DOI: 10.1021/ja109972p] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although mechanical stress is known to profoundly influence the composition and structure of the extracellular matrix (ECM), the mechanisms by which this regulation occurs remain poorly understood. We used a single-molecule magnetic tweezers assay to study the effect of force on collagen proteolysis by matrix metalloproteinase-1 (MMP-1). Here we show that the application of ∼10 pN in extensional force causes an ∼100-fold increase in proteolysis rates. Our results support a mechanistic model in which the collagen triple helix unwinds prior to proteolysis. The data and resulting model predict that biologically relevant forces may increase localized ECM proteolysis, suggesting a possible role for mechanical force in the regulation of ECM remodeling.
Collapse
Affiliation(s)
- Arjun S. Adhikari
- Department of Chemical Engineering, Stanford University, Stanford, CA
| | - Jack Chai
- Department of Chemical Engineering, Stanford University, Stanford, CA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
32
|
Spatial restriction of FGF signaling by a matrix metalloprotease controls branching morphogenesis. Dev Cell 2010; 18:157-64. [PMID: 20152186 DOI: 10.1016/j.devcel.2009.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/13/2009] [Accepted: 11/19/2009] [Indexed: 01/18/2023]
Abstract
FGF signaling is a central regulator of branching morphogenesis processes, such as angiogenesis or the development of branched organs including lung, kidney, and mammary gland. The formation of the air sac during the development of the Drosophila tracheal system is a powerful genetic model to investigate how FGF signaling patterns such emerging structures. This article describes the characterization of the Drosophila matrix metalloprotease Mmp2 as an extracellular inhibitor of FGF morphogenetic function. Mmp2 expression in the developing air sac is controlled by the Drosophila FGF homolog Branchless and then participates in a negative feedback and lateral inhibition mechanism that defines the precise pattern of FGF signaling. The signaling function for MMPs described here may not be limited to branching morphogenesis processes.
Collapse
|