1
|
Frolov A, Atwood SG, Guzman MA, Martin JR. A Rare Case of Polymicrogyria in an Elderly Individual With Unique Polygenic Underlining. Cureus 2024; 16:e74300. [PMID: 39717325 PMCID: PMC11665267 DOI: 10.7759/cureus.74300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case study is presented where an elderly individual with a medical history of unspecified PMG was examined postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological, and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS) platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants revealed that a significant number of affected genes were associated with most of the biological processes known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes (ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2 warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its compound heterozygous mutations.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Stuart G Atwood
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
2
|
Frolov A, Guzman MA, Hayat G, Martin JR. Two Cases of Sporadic Amyotrophic Lateral Sclerosis With Contrasting Clinical Phenotypes: Genetic Insights. Cureus 2024; 16:e56023. [PMID: 38606235 PMCID: PMC11008550 DOI: 10.7759/cureus.56023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease that affects individuals of diverse racial and ethnic backgrounds. There is currently no cure for ALS, and the number of efficient disease-modifying drugs for ALS is limited to a few, despite the large number of clinical trials conducted in recent years. The latter could be attributed to the significant heterogeneity of ALS clinical phenotypes even in their familial forms. To address this issue, we conducted postmortem genetic screening of two female patients with sporadic ALS (sALS) and contrasting clinical phenotypes. The results demonstrated that despite their contrasting clinical phenotypes, both patients had rare pathologic/deleterious mutations in five genes: ACSM5, BBS12, HLA-DQB1, MUC20, and OBSCN, with mutations in three of those genes being identical: BBS12, HLA-DQB1, and MUC20. Additional groups of mutated genes linked to ALS, other neurologic disorders, and ALS-related pathologies were also identified. These data are consistent with a hypothesis that an individual could be primed for ALS via mutations in a specific set of genes not directly linked to ALS. The disease could be initiated by a concerted action of several mutated genes linked to ALS and the disease's clinical phenotype will evolve further through accessory gene mutations associated with other neurological disorders and ALS-related pathologies.
Collapse
Affiliation(s)
- Andrey Frolov
- Center for Anatomical Science and Education, Saint Louis University School of Medicine, Saint Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Ghazala Hayat
- Department of Neurology, Saint Louis University School of Medicine, Saint Louis, USA
- ALS Center of Excellence, Saint Louis University School of Medicine, Saint Louis, USA
| | - John R Martin
- Center for Anatomical Science and Education, Saint Louis University School of Medicine, Saint Louis, USA
| |
Collapse
|
3
|
Bilecki W, Latusz J, Gawlińska K, Chmelova M, Maćkowiak M. Prenatal MAM treatment altered fear conditioning following social isolation: Relevance to schizophrenia. Behav Brain Res 2021; 406:113231. [PMID: 33737089 DOI: 10.1016/j.bbr.2021.113231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Adolescent social isolation (SI) might change the trajectory of brain development. In the present study, we investigated the effect of short-term adolescent SI on fear memory, anxiety and protein levels in the adult medial prefrontal cortex of rats prenatally treated with methylazoxymethanol, MAM-E17 model of schizophrenia. The animals were maintained in standard housing (SH) or social isolation (P30-P40, SI) conditions. Behavioural tests (trace or delay fear conditioning, light/dark box) were performed in late adolescence and early adulthood. The results showed that MAM treatment did not alter fear memory, which was investigated with the use of either trace or delay fear conditioning, at any age, and SI decreased the fear response in adult control animals only under trace conditioning. Neither MAM nor SI influenced anxiety-related behaviour measured in the light/dark box. A proteomics study showed that both MAM and SI changed the protein levels related to synapse maturation and cytoskeletal organization, energy transfer and metabolic processes. Prenatal or adolescent environmental factors are able to change the expression of proteins that are correlated with behavioural impairments. Moreover, SI reversed some alterations in proteins induced by MAM. Thus, normally developing brains showed different responses to adolescent SI than those with altering courses of MAM administration.
Collapse
Affiliation(s)
- Wiktor Bilecki
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Joachim Latusz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Kinga Gawlińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Magdalena Chmelova
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343 Kraków, Poland.
| |
Collapse
|
4
|
Ebner JN, Ritz D, von Fumetti S. Abiotic and past climatic conditions drive protein abundance variation among natural populations of the caddisfly Crunoecia irrorata. Sci Rep 2020; 10:15538. [PMID: 32968134 PMCID: PMC7512004 DOI: 10.1038/s41598-020-72569-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Deducing impacts of environmental change on species and the populations they form in nature is an important goal in contemporary ecology. Achieving this goal is hampered by our limited understanding of the influence of naturally occurring environmental variation on the molecular systems of ecologically relevant species, as the pathways underlying fitness-affecting plastic responses have primarily been studied in model organisms and under controlled laboratory conditions. Here, to test the hypothesis that proteome variation systematically relates to variation in abiotic conditions, we establish such relationships by profiling the proteomes of 24 natural populations of the spring-dwelling caddisfly Crunoecia irrorata. We identified protein networks whose abundances correlated with environmental (abiotic) gradients such as in situ pH, oxygen- and nitrate concentrations but also climatic data such as past thermal minima and temperature seasonality. Our analyses suggest that variations in abiotic conditions induce discrete proteome responses such as the differential abundance of proteins associated with cytoskeletal function, heat-shock proteins and proteins related to post-translational modification. Identifying these drivers of proteome divergence characterizes molecular "noise", and positions it as a background against which molecular signatures of species' adaptive responses to stressful conditions can be identified.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Danilo Ritz
- Proteomics Core Facility, University of Basel, Biozentrum Basel, Switzerland
| | - Stefanie von Fumetti
- Geoecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Grogan A, Kontrogianni-Konstantopoulos A. Unraveling obscurins in heart disease. Pflugers Arch 2018; 471:735-743. [PMID: 30099631 DOI: 10.1007/s00424-018-2191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
Abstract
Obscurins, expressed from the single OBSCN gene, are a family of giant, modular, cytoskeletal proteins that play key structural and regulatory roles in striated muscles. They were first implicated in the development of heart disease in 2007 when two missense mutations were found in a patient diagnosed with hypertrophic cardiomyopathy (HCM). Since then, the discovery of over a dozen missense, frameshift, and splicing mutations that are linked to various forms of cardiomyopathy, including HCM, dilated cardiomyopathy (DCM), and left ventricular non-compaction (LVNC), has highlighted OBSCN as a potential disease-causing gene. At this time, the functional consequences of the identified mutations remain largely elusive, and much work has yet to be done to characterize the disease mechanisms of pathological OBSCN variants. Herein, we describe the OBSCN mutations known to date, discuss their potential impact on disease development, and provide future directions in order to better understand the involvement of obscurins in heart disease.
Collapse
Affiliation(s)
- Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD, 21201, USA
| | | |
Collapse
|
6
|
Randazzo D, Pierantozzi E, Rossi D, Sorrentino V. The potential of obscurin as a therapeutic target in muscle disorders. Expert Opin Ther Targets 2017; 21:897-910. [DOI: 10.1080/14728222.2017.1361931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Manring HR, Carter OA, Ackermann MA. Obscure functions: the location-function relationship of obscurins. Biophys Rev 2017; 9:245-258. [PMID: 28510116 DOI: 10.1007/s12551-017-0254-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022] Open
Abstract
The obscurin family of polypeptides is essential for normal striated muscle function and contributes to the pathogenesis of fatal diseases, including cardiomyopathies and cancers. The single mammalian obscurin gene, OBSCN, gives rise to giant (∼800 kDa) and smaller (∼40-500 kDa) proteins that are composed of tandem adhesion and signaling motifs. Mammalian obscurin proteins are expressed in a variety of cell types, including striated muscles, and localize to distinct subcellular compartments where they contribute to diverse cellular processes. Obscurin homologs in Caenorhabditis elegans and Drosophila possess a similar domain architecture and are also expressed in striated muscles. The long sought after question, "what does obscurin do?" is complex and cannot be addressed without taking into consideration the subcellular distribution of these proteins and local isoform concentration. Herein, we present an overview of the functions of obscurins and begin to define the intricate relationship between their subcellular distributions and functions in striated muscles.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA
| | - Olivia A Carter
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Abstract
Striated cardiac and skeletal muscles play very different roles in the body, but they are similar at the molecular level. In particular, contraction, regardless of the type of muscle, is a precise and complex process involving the integral protein myofilaments and their associated regulatory components. The smallest functional unit of muscle contraction is the sarcomere. Within the sarcomere can be found a sophisticated ensemble of proteins associated with the thick filaments (myosin, myosin binding protein-C, titin, and obscurin) and thin myofilaments (actin, troponin, tropomyosin, nebulin, and nebulette). These parallel thick and thin filaments slide across one another, pulling the two ends of the sarcomere together to regulate contraction. More specifically, the regulation of both timing and force of contraction is accomplished through an intricate network of intra- and interfilament interactions belonging to each myofilament. This review introduces the sarcomere proteins involved in striated muscle contraction and places greater emphasis on the more recently identified and less well-characterized myofilaments: cardiac myosin binding protein-C, titin, nebulin, and obscurin. © 2017 American Physiological Society. Compr Physiol 7:675-692, 2017.
Collapse
Affiliation(s)
- Brian Leei Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Taejeong Song
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Jacob AE, Amack JD, Turner CE. Paxillin genes and actomyosin contractility regulate myotome morphogenesis in zebrafish. Dev Biol 2017; 425:70-84. [PMID: 28315297 DOI: 10.1016/j.ydbio.2017.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 02/07/2023]
Abstract
Paxillin (Pxn) is a key adapter protein and signaling regulator at sites of cell-extracellular matrix (ECM) adhesion. Here, we investigated the role of Pxn during vertebrate development using the zebrafish embryo as a model system. We have characterized two Pxn genes, pxna and pxnb, in zebrafish that are maternally supplied and expressed in multiple tissues. Gene editing and antisense gene knockdown approaches were used to uncover Pxn functions during zebrafish development. While mutation of either pxna or pxnb alone did not cause gross embryonic phenotypes, double mutants lacking maternally supplied pxna or pxnb displayed defects in cardiovascular, axial, and skeletal muscle development. Transient knockdown of Pxn proteins resulted in similar defects. Irregular myotome shape and ECM composition were observed, suggesting an "inside-out" signaling role for Paxillin genes in the development of myotendinous junctions. Inhibiting non-muscle Myosin-II during somitogenesis altered the subcellular localization of Pxn protein and phenocopied pxn gene loss-of-function. This indicates that Paxillin genes are effectors of actomyosin contractility-driven morphogenesis of trunk musculature in zebrafish. Together, these results reveal new functions for Pxn during muscle development and provide novel genetic models to elucidate Pxn functions.
Collapse
Affiliation(s)
- Andrew E Jacob
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States.
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States.
| |
Collapse
|
10
|
Baek JI, Kwon SH, Zuo X, Choi SY, Kim SH, Lipschutz JH. Dynamin Binding Protein (Tuba) Deficiency Inhibits Ciliogenesis and Nephrogenesis in Vitro and in Vivo. J Biol Chem 2016; 291:8632-43. [PMID: 26895965 DOI: 10.1074/jbc.m115.688663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
Dysfunction of renal primary cilia leads to polycystic kidney disease. We previously showed that the exocyst, a protein trafficking complex, is essential for ciliogenesis and regulated by multiple Rho and Rab family GTPases, such as Cdc42. Cdc42 deficiency resulted in a disruption of renal ciliogenesis and a polycystic kidney disease phenotype in zebrafish and mice. Here we investigate the role of Dynamin binding protein (also known as Tuba), a Cdc42-specific guanine nucleotide exchange factor, in ciliogenesis and nephrogenesis using Tuba knockdown Madin-Darby canine kidney cells and tuba knockdown in zebrafish. Tuba depletion resulted in an absence of cilia, with impaired apical polarization and inhibition of hepatocyte growth factor-induced tubulogenesis in Tuba knockdown Madin-Darby canine kidney cell cysts cultured in a collagen gel. In zebrafish, tuba was expressed in multiple ciliated organs, and, accordingly, tuba start and splice site morphants showed various ciliary mutant phenotypes in these organs. Co-injection of tuba and cdc42 morpholinos at low doses, which alone had no effect, resulted in genetic synergy and led to abnormal kidney development with highly disorganized pronephric duct cilia. Morpholinos targeting two other guanine nucleotide exchange factors not known to be in the Cdc42/ciliogenesis pathway and a scrambled control morpholino showed no phenotypic effect. Given the molecular nature of Cdc42 and Tuba, our data strongly suggest that tuba and cdc42 act in the same ciliogenesis pathway. Our study demonstrates that Tuba deficiency causes an abnormal renal ciliary and morphogenetic phenotype. Tuba most likely plays a critical role in ciliogenesis and nephrogenesis by regulating Cdc42 activity.
Collapse
Affiliation(s)
- Jeong-In Baek
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Sang-Ho Kwon
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Xiaofeng Zuo
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Soo Young Choi
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Seok-Hyung Kim
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Joshua H Lipschutz
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and the Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
11
|
Konijnendijk N, Shikano T, Daneels D, Volckaert FAM, Raeymaekers JAM. Signatures of selection in the three-spined stickleback along a small-scale brackish water - freshwater transition zone. Ecol Evol 2015; 5:4174-86. [PMID: 26445666 PMCID: PMC4588664 DOI: 10.1002/ece3.1671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 01/31/2023] Open
Abstract
Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three-spined stickleback Gasterosteus aculeatus L. across a small-scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three-spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.
Collapse
Affiliation(s)
- Nellie Konijnendijk
- Laboratory of Biodiversity and Evolutionary Genomics University of Leuven Ch. Deberiotstraat 32, B-3000 Leuven Belgium
| | - Takahito Shikano
- Ecological Genetics Research Unit Department of Biosciences University of Helsinki P.O. Box 65 FI-000 14 Helsinki Finland
| | - Dorien Daneels
- Laboratory of Biodiversity and Evolutionary Genomics University of Leuven Ch. Deberiotstraat 32, B-3000 Leuven Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics University of Leuven Ch. Deberiotstraat 32, B-3000 Leuven Belgium
| | - Joost A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics University of Leuven Ch. Deberiotstraat 32, B-3000 Leuven Belgium
| |
Collapse
|
12
|
Yang J, Shih YH, Xu X. Understanding cardiac sarcomere assembly with zebrafish genetics. Anat Rec (Hoboken) 2015; 297:1681-93. [PMID: 25125181 DOI: 10.1002/ar.22975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
Abstract
Mutations in sarcomere genes have been found in many inheritable human diseases, including hypertrophic cardiomyopathy. Elucidating the molecular mechanisms of sarcomere assembly shall facilitate understanding of the pathogenesis of sarcomere-based cardiac disease. Recently, biochemical and genomic studies have identified many new genes encoding proteins that localize to the sarcomere. However, their precise functions in sarcomere assembly and sarcomere-based cardiac disease are unknown. Here, we review zebrafish as an emerging vertebrate model for these studies. We summarize the techniques offered by this animal model to manipulate genes of interest, annotate gene expression, and describe the resulting phenotypes. We survey the sarcomere genes that have been investigated in zebrafish and discuss the potential of applying this in vivo model for larger-scale genetic studies.
Collapse
Affiliation(s)
- Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | |
Collapse
|
13
|
Fan X, Hou N, Fan K, Yuan J, Mo X, Deng Y, Wan Y, Teng Y, Yang X, Wu X. Geft is dispensable for the development of the second heart field. BMB Rep 2014; 45:153-8. [PMID: 22449701 DOI: 10.5483/bmbrep.2012.45.3.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geft is a guanine nucleotide exchange factor, which can specifically activate Rho family of small GTPase by catalyzing the exchange of bound GDP for GTP. Geft is highly expressed in the excitable tissue as heart and skeletal muscle and plays important roles in many cellular processes, such as cell proliferation, migration, and cell fate decision. However, the in vivo role of Geft remains unknown. Here, we generated a Geft conditional knockout mouse by flanking exons 5-17 of Geft with loxP sites. Cre-mediated deletion of the Geft gene in heart using Mef2c-Cre transgenic mice resulted in a dramatic decrease of Geft expression. Geft knockout mice develop normally and exhibit no discernable phenotype, suggesting Geft is dispensable for the development of the second heart field in mouse. The Geft conditional knockout mouse will be a valuable genetic tool for uncovering the in vivo roles of Geft during development and in adult homeostasis.
Collapse
Affiliation(s)
- Xiongwei Fan
- The Center for Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
15
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
16
|
Obscurins: Goliaths and Davids take over non-muscle tissues. PLoS One 2014; 9:e88162. [PMID: 24516603 PMCID: PMC3916441 DOI: 10.1371/journal.pone.0088162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/03/2014] [Indexed: 12/11/2022] Open
Abstract
Obscurins comprise a family of proteins originally identified in striated muscles, where they play essential roles in myofibrillogenesis, cytoskeletal organization, and Ca2+ homeostasis. They are encoded by the single OBSCN gene, and are composed of tandem adhesion domains and signaling motifs. To date, two giant obscurin isoforms have been described in detail that differ only at the extreme COOH-terminus; while obscurin-A (∼720 kDa) contains a non-modular COOH-terminus that harbors binding sites for the adaptor proteins ankyrins, obscurin-B (∼870 kDa) contains two COOH-terminal serine-threonine kinase domains preceded by adhesion motifs. Besides the two known giant obscurins, a thorough search of transcript databases suggests that complex alternative splicing of the obscurin transcript results in the generation of additional giant as well as small isoforms with molecular masses ranging between ∼50–970 kDa. These novel isoforms share common domains with the characterized isoforms, but also contain unique regions. Using a panel of highly specific antibodies directed against epitopes spanning the entire length of giant obscurins, we employed western blotting and immunohistochemistry to perform a systematic and comprehensive characterization of the expression profile of obscurins in muscle and non-muscle tissues. Our studies demonstrate for the first time that obscurins are not restricted to striated muscles, but are abundantly expressed in several tissues and organs including brain, skin, kidney, liver, spleen, and lung. While some obscurin isoforms are ubiquitously expressed, others are preferentially present in specific tissues and organs. Moreover, obscurins are present in select structures and cell types where they assume nuclear, cytosolic, and membrane distributions. Given the ubiquitous expression of some obscurins, along with the preferential expression of others, it becomes apparent that obscurins may play common and unique roles, respectively, in the regulation and maintenance of cell homeostasis in various tissues and organs throughout the body.
Collapse
|
17
|
Spindler MJ, Burmeister BT, Huang Y, Hsiao EC, Salomonis N, Scott MJ, Srivastava D, Carnegie GK, Conklin BR. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy. PLoS One 2013; 8:e62705. [PMID: 23658642 PMCID: PMC3637253 DOI: 10.1371/journal.pone.0062705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/28/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A-kinase anchoring proteins (AKAPs) are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA) and D (PKD) and an active Rho-guanine nucleotide exchange factor (Rho-GEF) domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown. METHODOLOGY/PRINCIPAL FINDINGS To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction. CONCLUSIONS These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Matthew J Spindler
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Perry NA, Ackermann MA, Shriver M, Hu LYR, Kontrogianni-Konstantopoulos A. Obscurins: unassuming giants enter the spotlight. IUBMB Life 2013; 65:479-86. [PMID: 23512348 DOI: 10.1002/iub.1157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/31/2013] [Indexed: 02/04/2023]
Abstract
Discovered about a decade ago, obscurin (~720 kDa) is a member of a family of giant proteins expressed in striated muscle that are essential for normal muscle function. Much of what we understand about obscurin stems from its functions in cardiac and skeletal muscle. However, recent evidence has indicated that variants of obscurin ("obscurins") are expressed in diverse cell types, where they contribute to distinct cellular processes. Dysfunction or abrogation of obscurins has also been implicated in the development of several pathological conditions, including cardiac hypertrophy and cancer. Herein, we present an overview of obscurins with an emphasis on novel findings that demonstrate their heretofore-unsuspected importance in cell signaling and disease progression.
Collapse
Affiliation(s)
- Nicole A Perry
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
19
|
Kähne T, Kolodziej A, Smalla KH, Eisenschmidt E, Haus UU, Weismantel R, Kropf S, Wetzel W, Ohl FW, Tischmeyer W, Naumann M, Gundelfinger ED. Synaptic proteome changes in mouse brain regions upon auditory discrimination learning. Proteomics 2012; 12:2433-44. [PMID: 22696468 PMCID: PMC3509369 DOI: 10.1002/pmic.201100669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in synaptic efficacy underlying learning and memory processes are assumed to be associated with alterations of the protein composition of synapses. Here, we performed a quantitative proteomic screen to monitor changes in the synaptic proteome of four brain areas (auditory cortex, frontal cortex, hippocampus striatum) during auditory learning. Mice were trained in a shuttle box GO/NO-GO paradigm to discriminate between rising and falling frequency modulated tones to avoid mild electric foot shock. Control-treated mice received corresponding numbers of either the tones or the foot shocks. Six hours and 24 h later, the composition of a fraction enriched in synaptic cytomatrix-associated proteins was compared to that obtained from naïve mice by quantitative mass spectrometry. In the synaptic protein fraction obtained from trained mice, the average percentage (±SEM) of downregulated proteins (59.9 ± 0.5%) exceeded that of upregulated proteins (23.5 ± 0.8%) in the brain regions studied. This effect was significantly smaller in foot shock (42.7 ± 0.6% down, 40.7 ± 1.0% up) and tone controls (43.9 ± 1.0% down, 39.7 ± 0.9% up). These data suggest that learning processes initially induce removal and/or degradation of proteins from presynaptic and postsynaptic cytoskeletal matrices before these structures can acquire a new, postlearning organisation. In silico analysis points to a general role of insulin-like signalling in this process.
Collapse
Affiliation(s)
- Thilo Kähne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Large isoforms of UNC-89 (obscurin) are required for muscle cell architecture and optimal calcium release in Caenorhabditis elegans. PLoS One 2012; 7:e40182. [PMID: 22768340 PMCID: PMC3388081 DOI: 10.1371/journal.pone.0040182] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/01/2012] [Indexed: 11/19/2022] Open
Abstract
Calcium, a ubiquitous intracellular signaling molecule, controls a diverse array of cellular processes. Consequently, cells have developed strategies to modulate the shape of calcium signals in space and time. The force generating machinery in muscle is regulated by the influx and efflux of calcium ions into the muscle cytoplasm. In order for efficient and effective muscle contraction to occur, calcium needs to be rapidly, accurately and reliably regulated. The mechanisms underlying this highly regulated process are not fully understood. Here, we show that the Caenorhabditis elegans homolog of the giant muscle protein obscurin, UNC-89, is required for normal muscle cell architecture. The large immunoglobulin domain-rich isoforms of UNC-89 are critical for sarcomere and sarcoplasmic reticulum organization. Furthermore, we have found evidence that this structural organization is crucial for excitation-contraction coupling in the body wall muscle, through the coordination of calcium signaling. Thus, our data implicates UNC-89 in maintaining muscle cell architecture and that this precise organization is essential for optimal calcium mobilization and efficient and effective muscle contraction.
Collapse
|
21
|
Katzemich A, Kreisköther N, Alexandrovich A, Elliott C, Schöck F, Leonard K, Sparrow J, Bullard B. The function of the M-line protein obscurin in controlling the symmetry of the sarcomere in the flight muscle of Drosophila. J Cell Sci 2012; 125:3367-79. [PMID: 22467859 DOI: 10.1242/jcs.097345] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Obscurin (also known as Unc-89 in Drosophila) is a large modular protein in the M-line of Drosophila muscles. Drosophila obscurin is similar to the nematode protein UNC-89. Four isoforms are found in the muscles of adult flies: two in the indirect flight muscle (IFM) and two in other muscles. A fifth isoform is found in the larva. The larger IFM isoform has all the domains that were predicted from the gene sequence. Obscurin is in the M-line throughout development of the embryo, larva and pupa. Using P-element mutant flies and RNAi knockdown flies, we have investigated the effect of decreased obscurin expression on the structure of the sarcomere. Embryos, larvae and pupae developed normally. In the pupa, however, the IFM was affected. Although the Z-disc was normal, the H-zone was misaligned. Adults were unable to fly and the structure of the IFM was irregular: M-lines were missing and H-zones misplaced or absent. Isolated thick filaments were asymmetrical, with bare zones that were shifted away from the middle of the filaments. In the sarcomere, the length and polarity of thin filaments depends on the symmetry of adjacent thick filaments; shifted bare zones resulted in abnormally long or short thin filaments. We conclude that obscurin in the IFM is necessary for the development of a symmetrical sarcomere in Drosophila IFM.
Collapse
|
22
|
Perry NA, Shriver M, Mameza MG, Grabias B, Balzer E, Kontrogianni-Konstantopoulos A. Loss of giant obscurins promotes breast epithelial cell survival through apoptotic resistance. FASEB J 2012; 26:2764-75. [PMID: 22441987 DOI: 10.1096/fj.12-205419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Obscurins (∼70 - 870 kDa), encoded by the single OBSCN gene, are cytoskeletal proteins originally identified in striated muscles with structural and regulatory roles. Recently, analysis of 13,023 genes in breast and colorectal cancers identified OBSCN as one of the most frequently mutated genes, implicating it in cancer formation. Herein we studied the expression profile of obscurins in breast, colon, and skin cancer cell lines and their involvement in cell survival. Immunoblot analysis demonstrated significant reduction of obscurin proteins [corrected] in cancer cells, resulting from decreased mRNA levels and/or the presence of mutant transcripts. In normal epithelium, obscurins localize in cytoplasmic puncta, the cell membrane, and the nucleus. Accordingly, subcellular fractionation demonstrated the presence of 2 novel nuclear isoforms of ∼110 and ∼120 kDa. Nontumorigenic MCF10A breast epithelial cells stably transduced with shRNAs targeting giant obscurins exhibited increased viability (∼30%) and reduced apoptosis (∼20%) following exposure to the DNA-damaging agent etoposide. Quantitative RT-PCR further indicated that the antiapoptotic genes BAG4 and HAX1 were up-regulated (1.5- and 1.4-fold, respectively), whereas initiator caspase-9 and death caspase-3 transcripts were down-regulated (0.8- and 0.6-fold, respectively). Our findings are the first to pinpoint critical roles for obscurins in cancer development by contributing to the regulation of cell survival.
Collapse
Affiliation(s)
- Nicole A Perry
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. ako
| | | | | | | | | | | |
Collapse
|
23
|
Kirchmaier BC, Poon KL, Schwerte T, Huisken J, Winkler C, Jungblut B, Stainier DY, Brand T. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development. Dev Biol 2012; 363:438-50. [PMID: 22290329 DOI: 10.1016/j.ydbio.2012.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/18/2022]
Abstract
The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)(s878)) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system.
Collapse
Affiliation(s)
- Bettina C Kirchmaier
- Cell- and Developmental Biology, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Obscurin depletion impairs organization of skeletal muscle in developing zebrafish embryos. J Biomed Biotechnol 2011; 2011:479135. [PMID: 22190853 PMCID: PMC3228690 DOI: 10.1155/2011/479135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/10/2011] [Accepted: 07/27/2011] [Indexed: 12/20/2022] Open
Abstract
During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues.
Collapse
|
25
|
Busby B, Oashi T, Willis CD, Ackermann MA, Kontrogianni-Konstantopoulos A, Mackerell AD, Bloch RJ. Electrostatic interactions mediate binding of obscurin to small ankyrin 1: biochemical and molecular modeling studies. J Mol Biol 2011; 408:321-34. [PMID: 21333652 DOI: 10.1016/j.jmb.2011.01.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/25/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
Small ankyrin 1 (sAnk1; also known as Ank1.5) is an integral protein of the sarcoplasmic reticulum (SR) in skeletal and cardiac muscle cells, where it is thought to bind to the C-terminal region of obscurin, a large modular protein that surrounds the contractile apparatus. Using fusion proteins in vitro, in combination with site-directed mutagenesis and surface plasmon resonance measurements, we previously showed that the binding site on sAnk1 for obscurin consists, in part, of six lysine and arginine residues. Here we show that four charged residues in the high-affinity binding site on obscurin for sAnk1 (between residues 6316 and 6345), consisting of three glutamates and a lysine, are necessary, but not sufficient, for this site on obscurin to bind to sAnk1 with high affinity. We also identify specific complementary mutations in sAnk1 that can partially or completely compensate for the changes in binding caused by charge-switching mutations in obscurin. We used molecular modeling to develop structural models of residues 6322-6339 of obscurin bound to sAnk1. The models, based on a combination of Brownian and molecular dynamics simulations, predict that the binding site on sAnk1 for obscurin is organized as two ankyrin-like repeats, with the last α-helical segment oriented at an angle to nearby helices, allowing lysine 6338 of obscurin to form an ionic interaction with aspartate 111 of sAnk1. This prediction was validated by double-mutant cycle experiments. Our results are consistent with a model in which electrostatic interactions between specific pairs of side chains on obscurin and sAnk1 promote binding and complex formation.
Collapse
Affiliation(s)
- Ben Busby
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|