1
|
Camp D, Venkatesh B, Solianova V, Varela L, Goult BT, Tanentzapf G. The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion. PLoS Genet 2024; 20:e1011224. [PMID: 38662776 PMCID: PMC11075885 DOI: 10.1371/journal.pgen.1011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/07/2024] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.
Collapse
Affiliation(s)
- Darius Camp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bhavya Venkatesh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Veronika Solianova
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorena Varela
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
The C-terminal actin-binding domain of talin forms an asymmetric catch bond with F-actin. Proc Natl Acad Sci U S A 2022; 119:e2109329119. [PMID: 35245171 PMCID: PMC8915792 DOI: 10.1073/pnas.2109329119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Talin is a mechanosensitive adaptor protein that links integrins to the actin cytoskeleton at cell–extracellular matrix adhesions. Although the C-terminal actin-binding domain ABS3 of talin is required for function, it binds weakly to actin in solution. We show that ABS3 binds actin strongly only when subjected to mechanical forces comparable to those generated by the cytoskeleton. Moreover, the interaction between ABS3 and actin depends strongly on the direction of force in a manner predicted to organize actin to facilitate adhesion growth and efficient cytoskeletal force generation. These characteristics can explain how force sensing by talin helps to nucleate adhesions precisely when and where they are required to transmit force between the cytoskeleton and the extracellular matrix. Focal adhesions (FAs) are large, integrin-based protein complexes that link cells to the extracellular matrix (ECM). FAs form only when and where they are necessary to transmit force between the cellular cytoskeleton and the ECM, but how this occurs remains poorly understood. Talin is a 270-kDa adaptor protein that links integrins to filamentous (F)-actin and recruits additional components during FA assembly in a force-dependent manner. Cell biological and developmental data demonstrate that the third and C-terminal F-actin–binding site (ABS3) of talin is required for normal FA formation. However, purified ABS3 binds F-actin only weakly in solution. We used a single molecule optical trap assay to examine how and whether ABS3 binds F-actin under physiologically relevant mechanical loads. We find that ABS3 forms a catch bond with F-actin when force is applied toward the pointed end of the actin filament, with binding lifetimes >100-fold longer than when force is applied toward the barbed end. Long-lived bonds to F-actin under load require the ABS3 C-terminal dimerization domain, whose cleavage has been reported to regulate FA turnover. Our results support a mechanism in which talin ABS3 preferentially binds to and orients actin filaments with barbed ends facing the cell periphery, thus nucleating long-range order in the actin cytoskeleton. We suggest that talin ABS3 may function as a molecular AND gate that allows FA growth only when sufficient integrin density, F-actin polarization, and mechanical tension are simultaneously present.
Collapse
|
3
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
4
|
Camp D, Haage A, Solianova V, Castle WM, Xu QA, Lostchuck E, Goult BT, Tanentzapf G. Direct binding of Talin to Rap1 is required for cell-ECM adhesion in Drosophila. J Cell Sci 2018; 131:jcs.225144. [PMID: 30446511 DOI: 10.1242/jcs.225144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Attachment of cells to the extracellular matrix (ECM) via integrins is essential for animal development and tissue maintenance. The cytoplasmic protein Talin (encoded by rhea in flies) is necessary for linking integrins to the cytoskeleton, and its recruitment is a key step in the assembly of the adhesion complex. However, the mechanisms that regulate Talin recruitment to sites of adhesion in vivo are still not well understood. Here, we show that Talin recruitment to, and maintenance at, sites of integrin-mediated adhesion requires a direct interaction between Talin and the GTPase Rap1. A mutation that blocks the direct binding of Talin to Rap1 abolished Talin recruitment to sites of adhesion and the resulting phenotype phenocopies that seen with null alleles of Talin. Moreover, we show that Rap1 activity modulates Talin recruitment to sites of adhesion via its direct binding to Talin. These results identify the direct Talin-Rap1 interaction as a key in vivo mechanism for controlling integrin-mediated cell-ECM adhesion.
Collapse
Affiliation(s)
- Darius Camp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Veronika Solianova
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - William M Castle
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Qinyuan A Xu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| |
Collapse
|
5
|
Abstract
Talin has emerged as the key cytoplasmic protein that mediates integrin adhesion to the extracellular matrix. In this Review, we draw on experiments performed in mammalian cells in culture and Drosophila to present evidence that talin is the most important component of integrin adhesion complexes. We describe how the properties of this adaptor protein enable it to orchestrate integrin adhesions. Talin forms the core of integrin adhesion complexes by linking integrins directly to actin, increasing the affinity of integrin for ligands (integrin activation) and recruiting numerous proteins. It regulates the strength of integrin adhesion, senses matrix rigidity, increases focal adhesion size in response to force and serves as a platform for the building of the adhesion structure. Finally, the mechano-sensitive structure of talin provides a paradigm for how proteins transduce mechanical signals to chemical signals.
Collapse
Affiliation(s)
- Benjamin Klapholz
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
6
|
Kumar A, Ouyang M, Van den Dries K, McGhee EJ, Tanaka K, Anderson MD, Groisman A, Goult BT, Anderson KI, Schwartz MA. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. J Cell Biol 2016; 213:371-83. [PMID: 27161398 PMCID: PMC4862330 DOI: 10.1083/jcb.201510012] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
Integrin-dependent adhesions are mechanosensitive structures in which talin mediates a linkage to actin filaments either directly or indirectly by recruiting vinculin. Here, we report the development and validation of a talin tension sensor. We find that talin in focal adhesions is under tension, which is higher in peripheral than central adhesions. Tension on talin is increased by vinculin and depends mainly on actin-binding site 2 (ABS2) within the middle of the rod domain, rather than ABS3 at the far C terminus. Unlike vinculin, talin is under lower tension on soft substrates. The difference between central and peripheral adhesions requires ABS3 but not vinculin or ABS2. However, differential stiffness sensing by talin requires ABS2 but not vinculin or ABS3. These results indicate that central versus peripheral adhesions must be organized and regulated differently, and that ABS2 and ABS3 have distinct functions in spatial variations and stiffness sensing. Overall, these results shed new light on talin function and constrain models for cellular mechanosensing.
Collapse
Affiliation(s)
- Abhishek Kumar
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511
| | - Mingxing Ouyang
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511
| | - Koen Van den Dries
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511
| | - Ewan James McGhee
- Beatson Institute for Cancer Research, Glasgow G20 0TZ, Scotland, UK
| | - Keiichiro Tanaka
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511
| | - Marie D Anderson
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, England, UK
| | - Alexander Groisman
- Department of Physics, University of California, San Diego, La Jolla, CA 92093
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, England, UK
| | - Kurt I Anderson
- Beatson Institute for Cancer Research, Glasgow G20 0TZ, Scotland, UK
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511 Department of Cell Biology, Yale University, New Haven, CT 06520 Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| |
Collapse
|
7
|
IPP Complex Reinforces Adhesion by Relaying Tension-Dependent Signals to Inhibit Integrin Turnover. Cell Rep 2016; 14:2668-82. [DOI: 10.1016/j.celrep.2016.02.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/05/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
|
8
|
Hákonardóttir GK, López-Ceballos P, Herrera-Reyes AD, Das R, Coombs D, Tanentzapf G. In vivo quantitative analysis of Talin turnover in response to force. Mol Biol Cell 2015; 26:4149-62. [PMID: 26446844 PMCID: PMC4710244 DOI: 10.1091/mbc.e15-05-0304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Cell–ECM adhesion is regulated by mechanical force. Quantitative imaging and mathematical modeling are used to elucidate how the intracellular adhesion complex of integrin-based adhesions responds to force, revealing the molecular mechanisms that allow the adhesion complex to respond to force to stabilize cell–ECM adhesion over development. Cell adhesion to the extracellular matrix (ECM) allows cells to form and maintain three-dimensional tissue architecture. Cell–ECM adhesions are stabilized upon exposure to mechanical force. In this study, we used quantitative imaging and mathematical modeling to gain mechanistic insight into how integrin-based adhesions respond to increased and decreased mechanical forces. A critical means of regulating integrin-based adhesion is provided by modulating the turnover of integrin and its adhesion complex (integrin adhesion complex [IAC]). The turnover of the IAC component Talin, a known mechanosensor, was analyzed using fluorescence recovery after photobleaching. Experiments were carried out in live, intact flies in genetic backgrounds that increased or decreased the force applied on sites of adhesion. This analysis showed that when force is elevated, the rate of assembly of new adhesions increases such that cell–ECM adhesion is stabilized. Moreover, under conditions of decreased force, the overall rate of turnover, but not the proportion of adhesion complex components undergoing turnover, increases. Using point mutations, we identify the key functional domains of Talin that mediate its response to force. Finally, by fitting a mathematical model to the data, we uncover the mechanisms that mediate the stabilization of ECM-based adhesion during development.
Collapse
Affiliation(s)
- Guðlaug Katrín Hákonardóttir
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alejandra Donají Herrera-Reyes
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Raibatak Das
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Talin is required to position and expand the luminal domain of the Drosophila heart tube. Dev Biol 2015; 405:189-201. [DOI: 10.1016/j.ydbio.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
|
10
|
Schardt L, Ander JJ, Lohmann I, Papagiannouli F. Stage-specific control of niche positioning and integrity in the Drosophila testis. Mech Dev 2015; 138 Pt 3:336-48. [PMID: 26226434 DOI: 10.1016/j.mod.2015.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/23/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
A fundamental question is how complex structures are maintained after their initial specification. Stem cells reside in a specialized microenvironment, called niche, which provides essential signals controlling stem cell behavior. We addressed this question by studying the Drosophila male stem cell niche, called the hub. Once specified, the hub cells need to maintain their position and architectural integrity through embryonic, larval and pupal stages of testis organogenesis and during adult life. The Hox gene Abd-B, in addition to its described role in male embryonic gonads, maintains the architecture and positioning of the larval hub from the germline by affecting integrin localization in the neighboring somatic cyst cells. We find that the AbdB-Boss/Sev cascade affects integrin independent of Talin, while genetic interactions depict integrin as the central downstream player in this system. Focal adhesion and integrin-adaptor proteins within the somatic stem cells and cyst cells, such as Paxillin, Pinch and Vav, also contribute to proper hub integrity and positioning. During adult stages, hub positioning is controlled by Abd-B activity in the outer acto-myosin sheath, while Abd-B expression in adult spermatocytes exerts no effect on hub positioning and integrin localization. Our data point at a cell- and stage-specific function of Abd-B and suggest that the occurrence of new cell types and cell interactions in the course of testis organogenesis made it necessary to adapt the whole system by reusing the same players for male stem cell niche positioning and integrity in an alternative manner.
Collapse
Affiliation(s)
- Lisa Schardt
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany; Deutsches Krebsforschungszentrum (DKFZ), D-69120, Germany
| | - Janina-Jacqueline Ander
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany.
| | - Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany.
| |
Collapse
|
11
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
12
|
Schulman VK, Dobi KC, Baylies MK. Morphogenesis of the somatic musculature in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:313-34. [PMID: 25758712 DOI: 10.1002/wdev.180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
In Drosophila melanogaster, the somatic muscle system is first formed during embryogenesis, giving rise to the larval musculature. Later during metamorphosis, this system is destroyed and replaced by an entirely new set of muscles in the adult fly. Proper formation of the larval and adult muscles is critical for basic survival functions such as hatching and crawling (in the larva), walking and flying (in the adult), and feeding (at both larval and adult stages). Myogenesis, from mononucleated muscle precursor cells to multinucleated functional muscles, is driven by a number of cellular processes that have begun to be mechanistically defined. Once the mesodermal cells destined for the myogenic lineage have been specified, individual myoblasts fuse together iteratively to form syncytial myofibers. Combining cytoplasmic contents demands a level of intracellular reorganization that, most notably, leads to redistribution of the myonuclei to maximize internuclear distance. Signaling from extending myofibers induces terminal tendon cell differentiation in the ectoderm, which results in secure muscle-tendon attachments that are critical for muscle contraction. Simultaneously, muscles become innervated and undergo sarcomerogenesis to establish the contractile apparatus that will facilitate movement. The cellular mechanisms governing these morphogenetic events share numerous parallels to mammalian development, and the basic unit of all muscle, the myofiber, is conserved from flies to mammals. Thus, studies of Drosophila myogenesis and comparisons to muscle development in other systems highlight conserved regulatory programs of biomedical relevance to general muscle biology and studies of muscle disease.
Collapse
Affiliation(s)
- Victoria K Schulman
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Krista C Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Mary K Baylies
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
13
|
Klapholz B, Herbert SL, Wellmann J, Johnson R, Parsons M, Brown NH. Alternative mechanisms for talin to mediate integrin function. Curr Biol 2015; 25:847-57. [PMID: 25754646 PMCID: PMC4386027 DOI: 10.1016/j.cub.2015.01.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 02/06/2023]
Abstract
Cell-matrix adhesion is essential for building animals, promoting tissue cohesion, and enabling cells to migrate and resist mechanical force. Talin is an intracellular protein that is critical for linking integrin extracellular-matrix receptors to the actin cytoskeleton. A key question raised by structure-function studies is whether talin, which is critical for all integrin-mediated adhesion, acts in the same way in every context. We show that distinct combinations of talin domains are required for each of three different integrin functions during Drosophila development. The partial function of some mutant talins requires vinculin, indicating that recruitment of vinculin allows talin to duplicate its own activities. The different requirements are best explained by alternative mechanisms of talin function, with talin using one or both of its integrin-binding sites. We confirmed these alternatives by showing that the proximity between the second integrin-binding site and integrins differs, suggesting that talin adopts different orientations relative to integrins. Finally, we show that vinculin and actomyosin activity help change talin’s orientation. These findings demonstrate that the mechanism of talin function differs in each developmental context examined. The different arrangements of the talin molecule relative to integrins suggest that talin is able to sense different force vectors, either parallel or perpendicular to the membrane. This provides a paradigm for proteins whose apparent uniform function is in fact achieved by a variety of distinct mechanisms involving different molecular architectures. Integrin function requires distinct sets of talin domains in three different tissues Vinculin helps talin retain function when domains are removed Talin IBS2 is separated from integrins in muscle but not wing adhesion sites Vinculin and actomyosin contribute to separating IBS2 from integrins
Collapse
Affiliation(s)
- Benjamin Klapholz
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Samantha L Herbert
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jutta Wellmann
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Robert Johnson
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Nicholas H Brown
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
14
|
Ellis SJ, Lostchuck E, Goult BT, Bouaouina M, Fairchild MJ, López-Ceballos P, Calderwood DA, Tanentzapf G. The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering. PLoS Genet 2014; 10:e1004756. [PMID: 25393120 PMCID: PMC4230843 DOI: 10.1371/journal.pgen.1004756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. Cells are the building blocks of our bodies. How do cells rearrange to form three-dimensional body plans and maintain specific tissue structures? Specialized adhesion molecules on the cell surface mediate attachment between cells and their surrounding environment to hold tissues together. Our work uses the developing fruit fly embryo to demonstrate how such connections are regulated during tissue growth. Since the genes and molecules involved in this process are highly similar between flies and humans, we can also apply our findings to our understanding of how human tissues form and are maintained. We observe that, in late developing muscles, clusters of cell adhesion molecules concentrate together to create stronger attachments between muscle cells and tendon cells. This strengthening mechanism allows the fruit fly to accommodate increasing amounts of force imposed by larger, more active muscles. We identify specific genetic mutations that disrupt these strengthening mechanisms and lead to severe developmental defects during fly development. Our results illustrate how subtle fine-tuning of the connections between cells and their surrounding environment is important to form and maintain normal tissue structure across the animal kingdom.
Collapse
Affiliation(s)
- Stephanie J. Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mohamed Bouaouina
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
- Carnegie Mellon University Qatar, Education City, Doha, Qatar
| | - Michael J. Fairchild
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - David A. Calderwood
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
15
|
Shi XH, Wang SL, Zhang YM, Wang YC, Yang Z, Zhou X, Lei ZY, Fan DL. Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-actin. PLoS One 2014; 9:e111503. [PMID: 25386892 PMCID: PMC4227678 DOI: 10.1371/journal.pone.0111503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
Silicone rubber (SR) is a common soft tissue filler material used in plastic surgery. However, it presents a poor surface for cellular adhesion and suffers from poor biocompatibility. In contrast, hydroxyapatite (HA), a prominent component of animal bone and teeth, can promote improved cell compatibility, but HA is an unsuitable filler material because of the brittleness in mechanism. In this study, using a simple and economical method, two sizes of HA was applied to coat on SR to counteract the poor biocompatibility of SR. Surface and mechanical properties of SR and HA/SRs confirmed that coating with HA changes the surface topology and material properties. Analysis of cell proliferation and adhesion as well as measurement of the expression levels of adhesion related molecules indicated that HA-coated SR significantly increased cell compatibility. Furthermore, mass spectrometry proved that the biocompatibility improvement may be related to elongation factor 1-beta (EF1β)/γ-actin adjusted cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Xiao-hua Shi
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Shao-liang Wang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yi-ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yi-cheng Wang
- Department of Plastic and Cosmetic Surgery, Chongqing Armed Police Corps Hospital, Chongqing, 400061, People's Republic of China
| | - Zhi Yang
- Department of War Trauma care, Hainan branch of PLA General Hospital, Sanya, Hainan, 572013, People's Republic of China
| | - Xin Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Ze-yuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Dong-li Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
- * E-mail:
| |
Collapse
|
16
|
Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development. Curr Opin Cell Biol 2012; 24:702-12. [PMID: 22938782 DOI: 10.1016/j.ceb.2012.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
Abstract
We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslational modification, recycling and turnover. Importantly, even ubiquitous adhesion components can function differently in distinct cellular contexts.
Collapse
|
17
|
Pines M, Das R, Ellis SJ, Morin A, Czerniecki S, Yuan L, Klose M, Coombs D, Tanentzapf G. Mechanical force regulates integrin turnover in Drosophila in vivo. Nat Cell Biol 2012; 14:935-43. [DOI: 10.1038/ncb2555] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/06/2012] [Indexed: 12/15/2022]
|
18
|
Le XF, Almeida MI, Mao W, Spizzo R, Rossi S, Nicoloso MS, Zhang S, Wu Y, Calin GA, Bast RC. Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer. PLoS One 2012; 7:e41170. [PMID: 22829924 PMCID: PMC3400637 DOI: 10.1371/journal.pone.0041170] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/18/2012] [Indexed: 12/27/2022] Open
Abstract
Trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of the HER2 oncoprotein, can effectively target HER2-positive breast cancer through several mechanisms. Although the effects of trastuzumab on cancer cell proliferation, angiogenesis and apoptosis have been investigated in depth, the effect of trastuzumab on microRNA (miRNA) has not been extensively studied. We have performed miRNA microarray profiling before and after trastuzumab treatment in SKBr3 and BT474 human breast cancer cells that overexpress HER2. We found that trastuzumab treatment of SKBr3 cells significantly decreased five miRNAs and increased three others, whereas treatment of BT474 cells significantly decreased two miRNAs and increased nine. The only change in miRNA expression observed in both cell lines following trastuzumab treatment was upregulation of miRNA-194 (miR-194) that was further validated in vitro and in vivo. Forced expression of miR-194 in breast cancer cells that overexpress HER2 produced no effect on apoptosis, modest inhibition of proliferation, significant inhibition of cell migration/invasion in vitro and significant inhibition of xenograft growth in vivo. Conversely, knockdown of miR-194 promoted cell migration. Increased miR-194 expression markedly reduced levels of the cytoskeletal protein talin2 and specifically inhibited luciferase reporter activity of a talin2 wild-type 3'-untranslated region, but not that of a mutant reporter, indicating that talin2 is a direct downstream target of miR-194. Trastuzumab treatment inhibited breast cancer cell migration and reduced talin2 expression in vitro and in vivo. Knockdown of talin2 inhibited cell migration/invasion. Knockdown of trastuzumab-induced miR-194 expression with a miR-194 inhibitor compromised trastuzumab-inhibited cell migration in HER2-overexpressing breast cancer cells. Consequently, trastuzumab treatment upregulates miR-194 expression and may exert its cell migration-inhibitory effect through miR-194-mediated downregulation of cytoskeleton protein talin2 in HER2-overexpressing human breast cancer cells.
Collapse
Affiliation(s)
- Xiao-Feng Le
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (XFL); (RCB)
| | - Maria I. Almeida
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | - Weiqun Mao
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Riccardo Spizzo
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Simona Rossi
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Milena S. Nicoloso
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Shu Zhang
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Yun Wu
- Department of Pathology, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - George A. Calin
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Robert C. Bast
- Department of Experimental Therapeutics, the University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (XFL); (RCB)
| |
Collapse
|
19
|
Ellis SJ, Pines M, Fairchild MJ, Tanentzapf G. In vivo functional analysis reveals specific roles for the integrin-binding sites of talin. J Cell Sci 2011; 124:1844-56. [PMID: 21558413 DOI: 10.1242/jcs.083337] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adhesion receptors play diverse roles during animal development and require precise spatiotemporal regulation, which is achieved through the activity of their binding partners. Integrins, adhesion receptors that mediate cell attachment to the extracellular matrix (ECM), connect to the intracellular environment through the cytoplasmic adapter protein talin. Talin has two essential functions: orchestrating the assembly of the intracellular adhesion complex (IAC), which associates with integrin, and regulating the affinity of integrins for the ECM. Talin can bind to integrins through two different integrin-binding sites (IBS-1 and IBS-2, respectively). Here, we have investigated the roles of each in the context of Drosophila development. We find that although IBS-1 and IBS-2 are partially redundant, they each have specialized roles during development: IBS-1 reinforces integrin attachment to the ECM, whereas IBS-2 reinforces the link between integrins and the IAC. Disruption of each IBS has different developmental consequences, illustrating how the functional diversity of integrin-mediated adhesion is achieved.
Collapse
Affiliation(s)
- Stephanie J Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| | | | | | | |
Collapse
|