1
|
Baumann N, Wagener RJ, Javed A, Conti E, Abe P, Lopes A, Sansevrino R, Lavalley A, Magrinelli E, Szalai T, Fuciec D, Ferreira C, Fièvre S, Fouassier A, D'Amico D, Harschnitz O, Jabaudon D. Regional differences in progenitor metabolism shape brain growth during development. Cell 2025:S0092-8674(25)00405-2. [PMID: 40300602 DOI: 10.1016/j.cell.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
Mammals have particularly large forebrains compared with other brain parts, yet the developmental mechanisms underlying this regional expansion remain poorly understood. Here, we provide a single-cell-resolution birthdate atlas of the mouse brain (www.neurobirth.org), which reveals that while hindbrain neurogenesis is transient and restricted to early development, forebrain neurogenesis is temporally sustained through reduced consumptive divisions of ventricular zone progenitors. This atlas additionally reveals region-specific patterns of direct and indirect neurogenesis. Using single-cell RNA sequencing, we identify evolutionarily conserved cell-cycle programs and metabolism-related molecular pathways that control regional temporal windows of proliferation. We identify the late neocortex-enriched mitochondrial protein FAM210B as a key regulator using in vivo gain- and loss-of-function experiments. FAM210B elongates mitochondria and increases lactate production, which promotes progenitor self-replicative divisions and, ultimately, the larger clonal size of their progeny. Together, these findings indicate that spatiotemporal heterogeneity in mitochondrial function regulates regional progenitor cycling behavior and associated clonal neuronal production during brain development.
Collapse
Affiliation(s)
- Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Robin J Wagener
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Awais Javed
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Eleonora Conti
- Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Philipp Abe
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
| | - Andrea Lopes
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Adrien Lavalley
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Elia Magrinelli
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Timea Szalai
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Daniel Fuciec
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Clothilde Ferreira
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sabine Fièvre
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | - Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland; Université Paris Cité, Imagine Institute, Paris, France.
| |
Collapse
|
2
|
Fritzsch B. Evolution and development of extraocular motor neurons, nerves and muscles in vertebrates. Ann Anat 2024; 253:152225. [PMID: 38346566 PMCID: PMC11786961 DOI: 10.1016/j.aanat.2024.152225] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
3
|
Di Bonito M, Bourien J, Tizzano M, Harrus AG, Puel JL, Avallone B, Nouvian R, Studer M. Abnormal outer hair cell efferent innervation in Hoxb1-dependent sensorineural hearing loss. PLoS Genet 2023; 19:e1010933. [PMID: 37738262 PMCID: PMC10516434 DOI: 10.1371/journal.pgen.1010933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023] Open
Abstract
Autosomal recessive mutation of HOXB1 and Hoxb1 causes sensorineural hearing loss in patients and mice, respectively, characterized by the presence of higher auditory thresholds; however, the origin of the defects along the auditory pathway is still unknown. In this study, we assessed whether the abnormal auditory threshold and malformation of the sensory auditory cells, the outer hair cells, described in Hoxb1null mutants depend on the absence of efferent motor innervation, or alternatively, is due to altered sensory auditory components. By using a whole series of conditional mutant mice, which inactivate Hoxb1 in either rhombomere 4-derived sensory cochlear neurons or efferent motor neurons, we found that the hearing phenotype is mainly reproduced when efferent motor neurons are specifically affected. Our data strongly suggest that the interactions between olivocochlear motor neurons and outer hair cells during a critical postnatal period are crucial for both hair cell survival and the establishment of the cochlear amplification of sound.
Collapse
Affiliation(s)
- Maria Di Bonito
- Université Côte d’Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Jérôme Bourien
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Monica Tizzano
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Anne-Gabrielle Harrus
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Jean-Luc Puel
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Bice Avallone
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Regis Nouvian
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Michèle Studer
- Université Côte d’Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| |
Collapse
|
4
|
Zhang H, Xie J, So KKH, Tong KK, Sae-Pang JJ, Wang L, Tsang SL, Chan WY, Wong EYM, Sham MH. Hoxb3 Regulates Jag1 Expression in Pharyngeal Epithelium and Affects Interaction With Neural Crest Cells. Front Physiol 2021; 11:612230. [PMID: 33505317 PMCID: PMC7830521 DOI: 10.3389/fphys.2020.612230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022] Open
Abstract
Craniofacial morphogenesis depends on proper migration of neural crest cells and their interactions with placodes and other cell types. Hox genes provide positional information and are important in patterning the neural crest and pharyngeal arches (PAs) for coordinated formation of craniofacial structures. Hox genes are expressed in the surface ectoderm and epibranchial placodes, their roles in the pharyngeal epithelium and their downstream targets in regulating PA morphogenesis have not been established. We altered the Hox code in the pharyngeal region of the Hoxb3Tg/+ mutant, in which Hoxb3 is driven to ectopically expressed in Hoxb2 domain in the second pharyngeal arch (PA2). In the transgenic mutant, ectopic Hoxb3 expression was restricted to the surface ectoderm, including the proximal epibranchial placodal region and the distal pharyngeal epithelium. The Hoxb3Tg/+ mutants displayed hypoplasia of PA2, multiple neural crest-derived facial skeletal and nerve defects. Interestingly, we found that in the Hoxb3Tg/+ mutant, expression of the Notch ligand Jag1 was specifically up-regulated in the ectodermal pharyngeal epithelial cells of PA2. By molecular experiments, we demonstrated that Hoxb3 could bind to an upstream genomic site S2 and directly regulate Jag1 expression. In the Hoxb3Tg/+ mutant, elevated expression of Jag1 in the pharyngeal epithelium led to abnormal cellular interaction and deficiency of neural crest cells migrating into PA2. In summary, we showed that Hoxb3 regulates Jag1 expression and proposed a model of pharyngeal epithelium and neural crest interaction during pharyngeal arch development.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Junjie Xie
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Karl Kam Hei So
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ka Kui Tong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jearn Jang Sae-Pang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Li Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sze Lan Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wood Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Elaine Yee Man Wong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mai Har Sham
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
Tamam Y, Gunes B, Akbayir E, Kizilay T, Karaaslan Z, Koral G, Duzel B, Kucukali CI, Gunduz T, Kurtuncu M, Yilmaz V, Tuzun E, Turkoglu R. CSF levels of HoxB3 and YKL-40 may predict conversion from clinically isolated syndrome to relapsing remitting multiple sclerosis. Mult Scler Relat Disord 2020; 48:102697. [PMID: 33352356 DOI: 10.1016/j.msard.2020.102697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) often initiates with an acute episode of neurological disturbance, known as clinically isolated syndrome (CIS). There is an unmet need for biomarkers that differentiate patients who will convert to MS and who will remain as CIS after the first attack. METHODS First attack serum and cerebrospinal fluid (CSF) samples of 33 CIS patients were collected and these patients were divided as those who converted to MS (CIS-MS, n=17) and those who continued as CIS (CIS-CIS, n=16) in a 3-year follow-up period. Levels of homeobox protein Hox-B3 (HoxB3) and YKL-40 were measured by ELISA in samples of CIS-CIS, CIS-MS, relapsing remitting MS (RRMS) patients (n=15) and healthy controls (n=20). RESULTS CIS-CIS patients showed significantly reduced CSF levels of YKL-40 and increased serum/CSF levels of HoxB3 compared with CIS-MS and RRMS patients. CIS-MS and RRMS patients had comparable YKL-40 and HoxB3 level profiles. Receiver operating characteristic (ROC) curve analysis showed the highest sensitivity for CSF HoxB3 measurements in prediction of CIS-MS conversion. Kaplan-Meier analysis demonstrated that CIS patients with lower CSF HoxB3 (<3.678 ng/ml) and higher CSF YKL-40 (>654.9 ng/ml) displayed a significantly shorter time to clinically definite MS. CONCLUSION CSF levels of HoxB3 and YKL-40 appear to predict CIS to MS conversion, especially when applied in combination. HoxB3, which is a transcription factor involved in immune cell activity, stands out as a potential candidate molecule with biomarker capacity for MS.
Collapse
Affiliation(s)
- Yusuf Tamam
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey.
| | - Betul Gunes
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Ece Akbayir
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Tugce Kizilay
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Zerrin Karaaslan
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gizem Koral
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Berna Duzel
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Cem Ismail Kucukali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Tuncay Gunduz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kurtuncu
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Recai Turkoglu
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
8
|
Molecular specification of facial branchial motor neurons in vertebrates. Dev Biol 2018; 436:5-13. [PMID: 29391164 DOI: 10.1016/j.ydbio.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/27/2018] [Accepted: 01/28/2018] [Indexed: 02/02/2023]
Abstract
Orofacial muscles are critical for life-sustaining behaviors, such as feeding and breathing. Centuries of work by neuroanatomists and surgeons resulted in the mapping of bulbar motor neurons in the brainstem and the course of the cranial nerves that carry their axons. Despite the sophisticated understanding of the anatomy of the region, the molecular mechanisms that dictate the development and maturation of facial motor neurons remain poorly understood. This fundamental problem has been recently revisited by physiologists with novel techniques of studying the rhythmic contraction of orofacial muscles in relationship to breathing. The molecular understanding of facial motor neuron development will not only lead to the comprehension of the neural basis of facial expression but may also unlock new avenues to generate stem cell-derived replacements. This review summarizes the current understanding of molecular programs involved in facial motor neuron generation, migration, and maturation, including neural circuit assembly.
Collapse
|
9
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
10
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
11
|
|
12
|
Willaredt MA, Schlüter T, Nothwang HG. The gene regulatory networks underlying formation of the auditory hindbrain. Cell Mol Life Sci 2015; 72:519-535. [PMID: 25332098 PMCID: PMC11113740 DOI: 10.1007/s00018-014-1759-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 01/28/2023]
Abstract
Development and evolution of auditory hindbrain nuclei are two major unsolved issues in hearing research. Recent characterization of transgenic mice identified the rhombomeric origins of mammalian auditory nuclei and unraveled genes involved in their formation. Here, we provide an overview on these data by assembling them into rhombomere-specific gene regulatory networks (GRNs), as they underlie developmental and evolutionary processes. To explore evolutionary mechanisms, we compare the GRNs operating in the mammalian auditory hindbrain with data available from the inner ear and other vertebrate groups. Finally, we propose that the availability of genomic sequences from all major vertebrate taxa and novel genetic techniques for non-model organisms provide an unprecedented opportunity to investigate development and evolution of the auditory hindbrain by comparative molecular approaches. The dissection of the molecular mechanisms leading to auditory structures will also provide an important framework for auditory processing disorders, a clinical problem difficult to tackle so far. These data will, therefore, foster basic and clinical hearing research alike.
Collapse
Affiliation(s)
- Marc A Willaredt
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| | - Tina Schlüter
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Hans Gerd Nothwang
- Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
13
|
Gilmour J, Assi SA, Jaegle U, Kulu D, van de Werken H, Clarke D, Westhead DR, Philipsen S, Bonifer C. A crucial role for the ubiquitously expressed transcription factor Sp1 at early stages of hematopoietic specification. Development 2014; 141:2391-401. [PMID: 24850855 PMCID: PMC4050696 DOI: 10.1242/dev.106054] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mammalian development is regulated by the interplay of tissue-specific and ubiquitously expressed transcription factors, such as Sp1. Sp1 knockout mice die in utero with multiple phenotypic aberrations, but the underlying molecular mechanism of this differentiation failure has been elusive. Here, we have used conditional knockout mice as well as the differentiation of mouse ES cells as a model with which to address this issue. To this end, we examined differentiation potential, global gene expression patterns and Sp1 target regions in Sp1 wild-type and Sp1-deficient cells representing different stages of hematopoiesis. Sp1(-/-) cells progress through most embryonic stages of blood cell development but cannot complete terminal differentiation. This failure to fully differentiate is not seen when Sp1 is knocked out at later developmental stages. For most Sp1 target and non-target genes, gene expression is unaffected by Sp1 inactivation. However, Cdx genes and multiple Hox genes are stage-specific targets of Sp1 and are downregulated at an early stage. As a consequence, expression of genes involved in hematopoietic specification is progressively deregulated. Our work demonstrates that the early absence of active Sp1 sets a cascade in motion that culminates in a failure of terminal hematopoietic differentiation and emphasizes the role of ubiquitously expressed transcription factors for tissue-specific gene regulation. In addition, our global side-by-side analysis of the response of the transcriptional network to perturbation sheds a new light on the regulatory hierarchy of hematopoietic specification.
Collapse
Affiliation(s)
- Jane Gilmour
- School of Cancer Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Salam A Assi
- School of Cancer Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ulrike Jaegle
- Department of Cell Biology, Erasmus MC, Rotterdam 3015 CN, The Netherlands
| | - Divine Kulu
- Department of Cell Biology, Erasmus MC, Rotterdam 3015 CN, The Netherlands
| | | | - Deborah Clarke
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TS, UK
| | - David R Westhead
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam 3015 CN, The Netherlands
| | - Constanze Bonifer
- School of Cancer Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Churion K, Liu Y, Hsiao HC, Matthews KS, Bondos SE. Measuring Hox-DNA binding by electrophoretic mobility shift analysis. Methods Mol Biol 2014; 1196:211-230. [PMID: 25151166 DOI: 10.1007/978-1-4939-1242-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Understanding gene regulation by Hox transcription factors requires understanding the forces that underlie DNA binding by these proteins. Electrophoretic mobility shift analysis (EMSA) not only allows measurement of protein affinity and cooperativity but also permits visualization of differently migrating protein-DNA complexes, including complexes with different compositions or complexes with identical compositions yet assembled in different geometries. Furthermore, protein activity can be measured, allowing correction of binding constants for the percentage of protein that is properly folded and capable of binding DNA. Protocols for measuring protein activity and the equilibrium DNA-binding dissociation constant (K d) are provided. This versatile assay system can be adjusted based on specific needs to measure other parameters, including the kinetic association and dissociation constants (k a and k d) and the formation of heterologous protein-protein interactions.
Collapse
Affiliation(s)
- Kelly Churion
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843-1114, USA
| | | | | | | | | |
Collapse
|
15
|
Haraguchi R, Matsumaru D, Nakagata N, Miyagawa S, Suzuki K, Kitazawa S, Yamada G. The hedgehog signal induced modulation of bone morphogenetic protein signaling: an essential signaling relay for urinary tract morphogenesis. PLoS One 2012; 7:e42245. [PMID: 22860096 PMCID: PMC3408458 DOI: 10.1371/journal.pone.0042245] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh(-/-) displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. CONCLUSIONS/SIGNIFICANCE This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh-responsive mesenchymal Bmp signaling maintains the population of peri-cloacal mesenchyme cells, which is essential for the development of the ureter and the upper urinary tract.
Collapse
Affiliation(s)
- Ryuma Haraguchi
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Choe SK, Nakamura M, Ladam F, Etheridge L, Sagerström CG. A Gal4/UAS system for conditional transgene expression in rhombomere 4 of the zebrafish hindbrain. Dev Dyn 2012; 241:1125-32. [PMID: 22499412 DOI: 10.1002/dvdy.23794] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The zebrafish is well established as a model organism for the study of vertebrate embryogenesis, but transgenic lines enabling restricted gene expression are still lacking for many tissues. RESULTS We first generated the hoxb1a(β-globin):eGFP(um8) line that expresses eGFP in hindbrain rhombomere 4 (r4), as well as in facial motor neurons migrating caudally from r4. Second, we generated the hoxb1a(β-globin) Gal4VP16(um60) line to express the exogenous Gal4VP16 transcription factor in r4. Lastly, we prepared the UAS(β-actin):hoxa3a(um61) line where the hoxa3a gene, which is normally expressed in r5 and r6, is under control of Gal4-regulated UAS elements. Crossing the hoxb1a(β-globin):Gal4VP16(um60) line to the UAS(β-actin):hoxa3a(um61) line drives robust hoxa3a expression in r4. We find that transgenic expression of hoxa3a in r4 does not affect hoxb1a expression, but has variable effects on migration of facial motorneurons and formation of Mauthner neurons. While cases of somatic transgene silencing have been reported in zebrafish, we have not observed such silencing to date, possibly because of our efforts to minimize repetitive sequences in the transgenic constructs. CONCLUSION We have generated three transgenic lines that will be useful for future studies by permitting the labeling of r4-derived cells, as well as by enabling r4-specific expression of various transgenes.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
17
|
Yaklichkin SY, Darnell DK, Pier MV, Antin PB, Hannenhalli S. Accelerated evolution of 3'avian FOXE1 genes, and thyroid and feather specific expression of chicken FoxE1. BMC Evol Biol 2011; 11:302. [PMID: 21999483 PMCID: PMC3207924 DOI: 10.1186/1471-2148-11-302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/15/2011] [Indexed: 12/04/2022] Open
Abstract
Background The forkhead transcription factor gene E1 (FOXE1) plays an important role in regulation of thyroid development, palate formation and hair morphogenesis in mammals. However, avian FOXE1 genes have not been characterized and as such, codon evolution of FOXE1 orthologs in a broader evolutionary context of mammals and birds is not known. Results In this study we identified the avian FOXE1 gene in chicken, turkey and zebra finch, all of which consist of a single exon. Chicken and zebra finch FOXE1 are uniquely located on the sex-determining Z chromosome. In situ hybridization shows that chicken FOXE1 is specifically expressed in the developing thyroid. Its expression is initiated at the placode stage and is maintained during the stages of vesicle formation and follicle primordia. Based on this expression pattern, we propose that avian FOXE1 may be involved in regulating the evagination and morphogenesis of thyroid. Chicken FOXE1 is also expressed in growing feathers. Sequence analysis identified two microdeletions in the avian FOXE1 genes, corresponding to the loss of a transferable repression domain and an engrailed homology motif 1 (Eh1) C-terminal to the forkhead domain. The avian FOXE1 proteins exhibit a significant sequence divergence of the C-terminus compared to those of amphibian and mammalian FOXE1. The codon evolution analysis (dN/dS) of FOXE1 shows a significantly increased dN/dS ratio in the avian lineages, consistent with either a relaxed purifying selection or positive selection on a few residues in avian FOXE1 evolution. Further site specific analysis indicates that while relaxed purifying selection is likely to be a predominant cause of accelerated evolution at the 3'-region of avian FOXE1, a few residues might have evolved under positive selection. Conclusions We have identified three avian FOXE1 genes based on synteny and sequence similarity as well as characterized the expression pattern of the chicken FOXE1 gene during development. Our evolutionary analyses suggest that while a relaxed purifying selection is likely to be the dominant force driving accelerated evolution of avian FOXE1 genes, a few residues may have evolved adaptively. This study provides a basis for future genetic and comparative biochemical studies of FOXE1.
Collapse
Affiliation(s)
- Sergey Yu Yaklichkin
- Penn Center for Bioinformatics, 1424 Blockley Hall, 423 Guardian Drive, University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | | | | | | |
Collapse
|