1
|
Sadhu RK, Iglič A, Gov NS. A minimal cell model for lamellipodia-based cellular dynamics and migration. J Cell Sci 2023; 136:jcs260744. [PMID: 37497740 DOI: 10.1242/jcs.260744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
One ubiquitous cellular structure for performing various tasks, such as spreading and migration over external surfaces, is the sheet-like protrusion called a lamellipodium, which propels the leading edge of the cell. Despite the detailed knowledge about the many components of this cellular structure, it is not yet fully understood how these components self-organize spatiotemporally to form lamellipodia. We review here recent theoretical works where we have demonstrated that membrane-bound protein complexes that have intrinsic curvature and recruit the protrusive forces of the cytoskeleton result in a simple, yet highly robust, organizing feedback mechanism that organizes the cytoskeleton and the membrane. This self-organization mechanism accounts for the formation of flat lamellipodia at the leading edge of cells spreading over adhesive substrates, allowing for the emergence of a polarized, motile 'minimal cell' model. The same mechanism describes how lamellipodia organize to drive robust engulfment of particles during phagocytosis and explains in simple physical terms the spreading and migration of cells over fibers and other curved surfaces. This Review highlights that despite the complexity of cellular composition, there might be simple general physical principles that are utilized by the cell to drive cellular shape dynamics.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris 75005, France
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Yang D, Xiao F, Li J, Wang S, Fan X, Ni Q, Li Y, Zhang M, Yan T, Yang M, He Z. Age-related ceRNA networks in adult Drosophila ageing. Front Genet 2023; 14:1096902. [PMID: 36926584 PMCID: PMC10012872 DOI: 10.3389/fgene.2023.1096902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
As Drosophila is an extensively used genetic model system, understanding of its regulatory networks has great significance in revealing the genetic mechanisms of ageing and human diseases. Competing endogenous RNA (ceRNA)-mediated regulation is an important mechanism by which circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) regulate ageing and age-related diseases. However, extensive analyses of the multiomics (circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA) characteristics of adult Drosophila during ageing have not been reported. Here, differentially expressed circRNAs and microRNAs (miRNAs) between 7 and 42-day-old flies were screened and identified. Then, the differentially expressed mRNAs, circRNAs, miRNAs, and lncRNAs between the 7- and 42-day old flies were analysed to identify age-related circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA networks in ageing Drosophila. Several key ceRNA networks were identified, such as the dme_circ_0009500/dme_miR-289-5p/CG31064, dme_circ_0009500/dme_miR-289-5p/frizzled, dme_circ_0009500/dme_miR-985-3p/Abl, and XLOC_027736/dme_miR-985-3p/Abl XLOC_189909/dme_miR-985-3p/Abl networks. Furthermore, real-time quantitative PCR (qPCR) was used to verify the expression level of those genes. Those results suggest that the discovery of these ceRNA networks in ageing adult Drosophila provide new information for research on human ageing and age-related diseases.
Collapse
Affiliation(s)
- Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Ghaffari K, Pierce LX, Roufaeil M, Gibson I, Tae K, Sahoo S, Cantrell JR, Andersson O, Lau J, Sakaguchi TF. NCK-associated protein 1 like (nckap1l) minor splice variant regulates intrahepatic biliary network morphogenesis. PLoS Genet 2021; 17:e1009402. [PMID: 33739979 PMCID: PMC8032155 DOI: 10.1371/journal.pgen.1009402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/08/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
Impaired formation of the intrahepatic biliary network leads to cholestatic liver diseases, which are frequently associated with autoimmune disorders. Using a chemical mutagenesis strategy in zebrafish combined with computational network analysis, we screened for novel genes involved in intrahepatic biliary network formation. We positionally cloned a mutation in the nckap1l gene, which encodes a cytoplasmic adaptor protein for the WAVE regulatory complex. The mutation is located in the last exon after the stop codon of the primary splice isoform, only disrupting a previously unannotated minor splice isoform, which indicates that the minor splice isoform is responsible for the intrahepatic biliary network phenotype. CRISPR/Cas9-mediated nckap1l deletion, which disrupts both the primary and minor isoforms, showed the same defects. In the liver of nckap1l mutant larvae, WAVE regulatory complex component proteins are degraded specifically in biliary epithelial cells, which line the intrahepatic biliary network, thus disrupting the actin organization of these cells. We further show that nckap1l genetically interacts with the Cdk5 pathway in biliary epithelial cells. These data together indicate that although nckap1l was previously considered to be a hematopoietic cell lineage-specific protein, its minor splice isoform acts in biliary epithelial cells to regulate intrahepatic biliary network formation.
Collapse
Affiliation(s)
- Kimia Ghaffari
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lain X. Pierce
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Maria Roufaeil
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Isabel Gibson
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Kevin Tae
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Saswat Sahoo
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - James R. Cantrell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jasmine Lau
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Takuya F. Sakaguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
4
|
Zhu Z, Bhat KM. The Drosophila Hem/Kette/Nap1 protein regulates asymmetric division of neural precursor cells by regulating localization of Inscuteable and Numb. Mech Dev 2011; 128:483-95. [PMID: 21996673 DOI: 10.1016/j.mod.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 11/17/2022]
Abstract
The Hem/Kette/Nap1 protein is involved in many biological processes. We have recently reported that Hem is required for the normal migration of neurons in the Drosophila embryo. In this paper, we report that Hem regulates the asymmetric division of neural precursor cells. We find that a well-studied Hem/Kette mutant allele produces at least two main, but possibly more, phenotypic classes of mutant embryos, and these phenotypes correlate with variable levels of maternal wild type Hem protein in the developing embryo. While the weaker class exhibits weak axon guidance defect and the mis-migration of neurons, the stronger class causes severe axon guidance defects, mis-migration of neurons and symmetric division of ganglion mother cells (GMC) of the RP2/sib lineage. We also show that the basis for the loss of asymmetric division is due to non-localization of Inscuteable and Numb in GMC-1. A non-asymmetric Numb segregates to both daughter cells of GMC-1, which then prevents Notch signaling from specifying a sib fate. This causes both cells to adopt an RP2 fate. Furthermore, loss of function for Abelson tyrosine kinase also causes loss of asymmetric localization of Inscuteable and Numb and symmetric division of GMC-1, the loss of function for WAVE has a very weakly penetrant loss of asymmetry defect. These results define another role for Hem/Kette/Nap1 in a neural precursor cell during neurogenesis.
Collapse
Affiliation(s)
- Zengrong Zhu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch School of Medicine, Galveston, TX 77598, United States
| | | |
Collapse
|