1
|
Satoh K, Maeno A, Adachi U, Ishizaka M, Yamada K, Koita R, Nakazawa H, Oikawa S, Fujii R, Furudate H, Kawamura A. Physical constraints on the positions and dimensions of the zebrafish swim bladder by surrounding bones. J Anat 2025; 246:534-543. [PMID: 39556020 PMCID: PMC11911126 DOI: 10.1111/joa.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Precise regulation of organ size and position is crucial for optimal organ function. Since the swim bladder is primarily responsible for buoyancy in teleosts, early development and subsequent inflation of the swim bladder should be appropriately controlled with the body growth. However, the underlying mechanism remains unclear. In this study, we show that the size and position of the swim bladder are physically constrained by the surrounding bones in zebrafish. Non-invasive micro-CT scanning revealed that the anterior edge of the swim bladder is largely attached to the os suspensorium, which is an ossicle extending medioventrally from the 4th centrum. Additionally, we observed that hoxc6a mutants, which lack the os suspensorium, exhibited an anterior projection of the swim bladder beyond the 4th vertebra. During the swim bladder development, we found that the counterclockwise rotation of the os suspensorium correlates with posterior regression of the swim bladder, suggesting that the os suspensorium pushes the swim bladder posteriorly into its proper position. Furthermore, our results revealed a close association between the posterior region of the swim bladder and the pleural ribs. In hoxaa cluster mutants with additional ribs, the swim bladder expanded posteriorly, accompanied by an enlarged body cavity. Taken together, our results demonstrate the importance of the surrounding bones in the robust regulation of swim bladder size and position in zebrafish.
Collapse
Affiliation(s)
- Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Urara Adachi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Rina Koita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hidemichi Nakazawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sae Oikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Renka Fujii
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hiroyuki Furudate
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
2
|
Rochais F, Kelly RG. Fibroblast growth factor 10. Differentiation 2024; 139:100741. [PMID: 38040515 DOI: 10.1016/j.diff.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Fibroblast growth factor 10 (FGF10) is a major morphoregulatory factor that plays essential signaling roles during vertebrate multiorgan development and homeostasis. FGF10 is predominantly expressed in mesenchymal cells and signals though FGFR2b in adjacent epithelia to regulate branching morphogenesis, stem cell fate, tissue differentiation and proliferation, in addition to autocrine roles. Genetic loss of function analyses have revealed critical requirements for FGF10 signaling during limb, lung, digestive system, ectodermal, nervous system, craniofacial and cardiac development. Heterozygous FGF10 mutations have been identified in human genetic syndromes associated with craniofacial anomalies, including lacrimal and salivary gland aplasia. Elevated Fgf10 expression is associated with poor prognosis in a range of cancers. In addition to developmental and disease roles, FGF10 regulates homeostasis and repair of diverse adult tissues and has been identified as a target for regenerative medicine.
Collapse
Affiliation(s)
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
3
|
Gao Y, Yang P. The impaired swim bladder via ROS-mediated inhibition of the Wnt / Hedgehog pathway in zebrafish embryos exposed to eight toxic chemicals and binary chemical mixtures. CHEMOSPHERE 2023; 338:139593. [PMID: 37478986 DOI: 10.1016/j.chemosphere.2023.139593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
To comprehensively explore the potential toxicity of aquatic organisms exposed to chlorinated or brominated flame retardants (BFRs) and metals mixtures, it is necessary to find a common pathway to relate local toxic targeted sites or organs. A key challenge in environmental risk assessment (ERA) is how to clarify the same or different sites or organs of toxic action in a species after exposure to individual chemicals or chemical mixtures. In this study, zebrafish embryo was used to evaluate the sub-lethal toxicity (swim bladder damage) of tris(2,3-dibromo propyl) isocyanurate (TBC), chlorinated paraffins (CPs), hexabromocyclododecane (HBCD), Cu, Cd, Pb, Ag, and Zn through optical microscopy methods, and corresponding sub-lethal molecular levels (inflammation-related enzymes [deiodinase (DIO) enzymes] and transcriptional levels of key genes) in fish through quantitative real-time PCR (qRT-PCR). The tested chemicals all caused failed inflation of the swim bladder, as indicated by activity inhibition of type 2 iodothyronine deiodinase enzyme. Following embryonic exposure to respective TBC + Cu, HBCD + TBC, and Cd + Pb mixtures, as the concentration of the respective Cu, TBC, and Pb increased, the deformity of the swim bladder increased, as also indicated by activity inhibition of type 2 iodothyronine deiodinase enzyme. Additionally, eight chemicals down-regulated Wnt (wnt3, wnt9b, fzd3b, wnt1, fzd5, and fdz1) signaling pathways, which were neurotoxic responses to individual chemical treatments and Hedgehog (ihh, shh, ptc1 and ptc2) signaling pathways. Moreover, excessive ROS induced by eight chemicals effectively induced defects in the swim bladder and Wnt/Hedgehog signaling, which also be proved in respective TBC + Cu, HBCD + TBC, and Cd + Pb mixture treatments. Our results first revealed that eight chemicals caused swim bladder developmental defects via ROS-mediated inhibition of the Wnt and Hedgehog pathways, which revealed the common targeted sites or organs (swim bladders) for further studying the toxic mechanisms underlying the chemical mixtures.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan, 030024, PR China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Pengyuan Yang
- College of Grain, Jilin Business and Technology College, Jilin, 130507, PR China
| |
Collapse
|
4
|
Van Dingenen I, Vergauwen L, Haigis AC, Blackwell BR, Stacy E, Villeneuve DL, Knapen D. Deiodinase inhibition impairs the formation of the three posterior swim bladder tissue layers during early embryonic development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106632. [PMID: 37451188 PMCID: PMC10949247 DOI: 10.1016/j.aquatox.2023.106632] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Thyroid hormone system disruption (THSD) negatively affects multiple developmental processes and organs. In fish, inhibition of deiodinases, which are enzymes crucial for (in)activating thyroid hormones (THs), leads to impaired swim bladder inflation. Until now, the underlying mechanism has remained largely unknown. Therefore, the objective of this study was to identify the process during swim bladder development that is impacted by deiodinase inhibition. Zebrafish embryos were exposed to 6 mg/L iopanoic acid (IOP), a model deiodinase inhibitor, during 8 different exposure windows (0-60, 60-120, 24-48, 48-72, 72-96, 96-120, 72-120 and 0-120 h post fertilization (hpf)). Exposure windows were chosen based on the three stages of swim bladder development: budding (24-48 hpf), pre-inflation, i.e., the formation of the swim bladder tissue layers (48-72 hpf), and inflation phase (72-120 hpf). Exposures prior to 72 hpf, during either the budding or pre-inflation phase (or both), impaired swim bladder inflation, while exposure during the inflation phase did not. Based on our results, we hypothesize that DIO inhibition before 72 hpf leads to a local decrease in T3 levels in the developing swim bladder. Gene transcript analysis showed that these TH level alterations disturb both Wnt and hedgehog signaling, known to be essential for swim bladder formation, eventually resulting in impaired development of the swim bladder tissue layers. Improper development of the swim bladder impairs swim bladder inflation, leading to reduced swimming performance. This study demonstrates that deiodinase inhibition impacts processes underlying the formation of the swim bladder and not the inflation process, suggesting that these processes primarily rely on maternal rather than endogenously synthetized THs since TH measurements showed that THs were not endogenously synthetized during the sensitive period.
Collapse
Affiliation(s)
- Imke Van Dingenen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Brett R Blackwell
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Emma Stacy
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
5
|
Tao Y, Du C, Duan B, Wang W, Guo H, Feng J, Xu H, Li Y. Eugenol exposure inhibits embryonic development and swim bladder formation in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109602. [PMID: 36906247 DOI: 10.1016/j.cbpc.2023.109602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Eugenol is a natural phenolic essential oil extracted from cloves, that has analgesic and anesthetic effects and is widely used in fishery anesthesia. However, the potential safety risks of aquaculture production associated with the massive use of eugenol and its developmental toxicity during early life stages of fish have been overlooked. In this study, zebrafish (Danio rerio) embryos at 24 hours post-fertilization (hpf) were exposed to eugenol at concentrations of 0, 10, 15, 20, 25, or 30 mg/L for 96 h. Eugenol exposure delayed the hatching of zebrafish embryos, and reduced the body length and the inflation rate of the swim bladder. The accumulated number of dead zebrafish larvae in the eugenol-exposed groups was higher than that of the control group, and it was dose-dependent. Real-time quantitative polymerase chain reaction (qPCR) analysis showed that the Wnt/β-catenin signaling pathway that regulates the development of the swim bladder during the hatching and mouth-opening stages was inhibited after eugenol exposure. Specifically, the expression of wif1, a Wnt signaling pathway inhibitor, was significantly up-regulated, whereas the expression of fzd3b, fzd6, ctnnb1, and lef1 involved in the Wnt/β-catenin pathway was significantly down-regulated. These results suggest that the failure of zebrafish larvae to inflate their swim bladders as a result of eugenol exposure may be caused by the inhibition of the Wnt/β-catenin signaling pathway inhibited. In addition, the inability to catch food due to the abnormal development of the swim bladder may be the key to the death of zebrafish larvae during the mouth-opening stage.
Collapse
Affiliation(s)
- Yixi Tao
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chunying Du
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Bicheng Duan
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Wenbo Wang
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hui Guo
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jingyun Feng
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hao Xu
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Torday JS. Cybernetics as a conversation with the Cosmos. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:77-81. [PMID: 35487343 DOI: 10.1016/j.pbiomolbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Norbert Wiener was the first to functionally define cybernetics as "the study of control and communication in the animal and the machine". Herein, it is shown that as a manifestation of physiology, cybernetics can be further reduced to cell-cell signaling to maintain homeostasis, bridging Newtonian 3rd Order Cybernetics with Quantum Mechanical 4th Order Cybernetics as our 'conversation with the Cosmos' based on Quantum Entanglement, constrained by non-localization. As such, cybernetics can be scientifically tested in toto from the functional to the metaphysical, rendered physical as communication for the first time. If that is correct, then the sooner we begin operating based on Quantum Mechanical principles, the sooner we will function based on predictive algorithms.
Collapse
Affiliation(s)
- John S Torday
- Departments of Pediatrics, Obstetrics and Gynecology, Evolutionary Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
7
|
Korzh S, Winata CL, Gong Z, Korzh V. The development of zebrafish pancreas affected by deficiency of Hedgehog signaling. Gene Expr Patterns 2021; 41:119185. [PMID: 34087472 DOI: 10.1016/j.gep.2021.119185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The pancreas development depends on complex regulation of several signaling pathways, including the Hedgehog (Hh) signaling via a receptor complex component, Smoothened, which deficiency blocks the Hh signaling. Such a defect in birds and mammals results in an annular pancreas. We showed that in developing zebrafish, the mutation of Smoothened or inhibition of Hh signaling by its antagonist cyclopamine caused developmental defects of internal organs, liver, pancreas, and gut. In particular, the pancreatic primordium was duplicated. The two exocrine pancreatic primordia surround the gut. This phenomenon correlates with a significant reduction of the gut's diameter, causing the annular pancreas phenotype.
Collapse
Affiliation(s)
- Svitlana Korzh
- -Department of Biological Sciences, National University of Singapore, Singapore
| | - Cecilia L Winata
- -International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Zhiyuan Gong
- -Department of Biological Sciences, National University of Singapore, Singapore.
| | - Vladimir Korzh
- -International Institute of Molecular and Cell Biology in Warsaw, Poland; -Institute of Molecular and Cell Biology, Singapore.
| |
Collapse
|
8
|
Lu S, Hu M, Wang Z, Liu H, Kou Y, Lyu Z, Tian J. Generation and Application of the Zebrafish heg1 Mutant as a Cardiovascular Disease Model. Biomolecules 2020; 10:biom10111542. [PMID: 33198188 PMCID: PMC7696531 DOI: 10.3390/biom10111542] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of global mortality, which has caused a huge burden on the quality of human life. Therefore, experimental animal models of CVD have become essential tools for analyzing the pathogenesis, developing drug screening, and testing potential therapeutic strategies. In recent decades, zebrafish has entered the field of CVD as an important model organism. HEG1, a heart development protein with EGF like domains 1, plays important roles in the development of vertebrate cardiovascular system. Loss of HEG1 will affect the stabilization of vascular endothelial cell connection and eventually lead to dilated cardiomyopathy (DCM). Here, we generated a heg1-specific knockout zebrafish line using CRISPR/Cas9 technology. Zebrafish heg1 mutant demonstrated severe cardiovascular malformations, including atrial ventricular enlargement, heart rate slowing, venous thrombosis and slow blood flow, which were similar to human heart failure and thrombosis phenotype. In addition, the expression of zebrafish cardiac and vascular markers was abnormal in heg1 mutants. In order to apply zebrafish heg1 mutant in cardiovascular drug screening, four Traditional Chinese Medicine (TCM) herbs and three Chinese herbal monomers were used to treat heg1 mutant. The pericardial area, the distance between sinus venosus and bulbus arteriosus (SV-BA), heart rate, red blood cells (RBCs) accumulation in posterior cardinal vein (PCV), and blood circulation in the tail vein were measured to evaluate the therapeutic effects of those drugs on DCM and thrombosis. Here, a new zebrafish model of DCM and thrombosis was established, which was verified to be suitable for drug screening of cardiovascular diseases. It provided an alternative method for traditional in vitro screening, and produced potential clinical related drugs in a rapid and cost-effective way.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Tian
- Correspondence: ; Tel.: +86-29-88302339
| |
Collapse
|
9
|
Oprişoreanu AM, Smith HL, Arya S, Webster R, Zhong Z, Eaton-Hart C, Wehner D, Cardozo MJ, Becker T, Talbot K, Becker CG. Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation. Cell Rep 2020; 29:1082-1098.e10. [PMID: 31665626 DOI: 10.1016/j.celrep.2019.09.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/13/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Chondrolectin (Chodl) is needed for motor axon extension in zebrafish and is dysregulated in mouse models of spinal muscular atrophy (SMA). However, the mechanistic basis of Chodl function is not known. Here, we use Chodl-deficient zebrafish and mouse mutants to show that the absence of Chodl leads to anatomical and functional defects of the neuromuscular synapse. In zebrafish, the growth of an identified motor axon beyond an "en passant" synapse and later axon branching from synaptic points are impaired, leading to functional deficits. Mechanistically, motor-neuron-autonomous Chodl function depends on its intracellular domain and on binding muscle-derived collagen XIXa1 by its extracellular C-type lectin domain. Our data support evolutionarily conserved roles of Chodl in synaptogenesis and provide evidence for a "synapse-first" scenario of motor axon growth in zebrafish.
Collapse
Affiliation(s)
- Ana-Maria Oprişoreanu
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Hannah L Smith
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Sukrat Arya
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Richard Webster
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Zhen Zhong
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Charlotte Eaton-Hart
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Wehner
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marcos J Cardozo
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Transcriptional responses in newly-hatched Japanese medaka (Oryzias latipes) associated with developmental malformations following diluted bitumen exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100685. [DOI: 10.1016/j.cbd.2020.100685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/21/2022]
|
11
|
Wu Y, Li W, Yuan M, Liu X. The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134870. [PMID: 31726413 DOI: 10.1016/j.scitotenv.2019.134870] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/26/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Deltamethrin (DM) is a widely used insecticide and reveals neural, cardiovascular and reproductive toxicity to various aquatic organisms. It has been known that DM negatively affects motion of zebrafish (Danio rerio). However, little is known in relation to the impacts of DM on development of swim bladder, which is a key organ for motion. In the present study, zebrafish embryos were exposed to 20 and 40 µg/L DM. The changes of swim bladder morphology were observed and transcription levels of key genes were compared between DM treatments and the control. The results showed that DM treatments significantly blocked the formation of progenitor and tissue layers in swim bladder of zebrafish embryos, leading to failed inflation of swim bladder. Compared with the control, the key genes (pbx1, foxA3, mnx1, has2, anxa5b, hprt1l and elovl1a) responsible for swim bladder development also showed decreased levels in response to DM treatments, suggesting that DM might specifically affect swim bladder development. Moreover, transcription levels of genes in the Wnt (wnt5b, tcf3a, wnt1, wnt9b, fzd1, fzd3 and fzd5) and Hedgehog (ihhb, ptc1 and ptc2) signaling pathways all decreased significantly in response to DM treatments, compared with the control. Considering the importance of Wnt and Hedgehog pathways in development of swim bladder, these results suggested that DM might affect swim bladder development through inhibiting the Wnt and Hedgehog pathways. Overall, the present study reported that swim bladder might be a potential target organ of DM toxicity in zebrafish, which contributed more information to the evaluation of DM's environmental risks.
Collapse
Affiliation(s)
- Yaqin Wu
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Wenhua Li
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Mingrui Yuan
- Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Xuan Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Provincial Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
12
|
Sun H, Chen M, Wang Z, Zhao G, Liu JX. Transcriptional profiles and copper stress responses in zebrafish cox17 mutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113364. [PMID: 31662245 DOI: 10.1016/j.envpol.2019.113364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
While Cox17 functions importantly in copper metalation of cytochrome c oxidase and integral mitochondrial architecture in vertebrates, rare studies have been performed regarding the developmental and physiological characters of vertebrate cox17 mutants. In this study, normal-like developmental phenotype was observed in both cox17Δ6-/- and cox17Δ4-/- homozygous zebrafish mutants, while gene ontology term and pathway analysis of the differentially expressed genes in both mutants showed enrichment in oxidoreductase activity, ion transport, histone methylation, MICOS complex, Wnt signaling, etc. This implied the occurrence of damage to the integral function of Cox17 and change of transcriptomes in the two mutants. Further qRT-PCR and WISH assays revealed the down-regulated expression of Wnt signaling and reduced expression of swim bladder marker genes in the two mutants. Moreover, copper stimulation induced no obvious increase in reactive oxygen species (ROS) or in the expression of hemoglobin marker genes, but further reduced the expression of swim bladder marker genes in the mutants. The integral data in this study suggest that: (1) cox17 mutants cannot activate the response of oxidoreductase to copper stimulation; (2) copper depends on the integral function of Cox17 to induce developmental defects in hemoglobin rather than swim bladder and (3) Wnt signaling but not ROS might mediate copper-induced swim bladder developmental defects in fish.
Collapse
Affiliation(s)
- HaoJie Sun
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - MingYue Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - ZiYang Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Ganz J, Melancon E, Wilson C, Amores A, Batzel P, Strader M, Braasch I, Diba P, Kuhlman JA, Postlethwait JH, Eisen JS. Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Dev Biol 2019; 455:473-484. [PMID: 31394080 DOI: 10.1016/j.ydbio.2019.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Intestinal tract development is a coordinated process involving signaling among the progenitors and developing cells from all three germ layers. Development of endoderm-derived intestinal epithelium has been shown to depend on epigenetic modifications, but whether that is also the case for intestinal tract cell types from other germ layers remains unclear. We found that functional loss of a DNA methylation machinery component, ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1), leads to reduced numbers of ectoderm-derived enteric neurons and severe disruption of mesoderm-derived intestinal smooth muscle. Genetic chimeras revealed that Uhrf1 functions both cell-autonomously in enteric neuron precursors and cell-non-autonomously in surrounding intestinal cells, consistent with what is known about signaling interactions between these cell types that promote one another's development. Uhrf1 recruits the DNA methyltransferase Dnmt1 to unmethylated DNA during replication. Dnmt1 is also expressed in enteric neurons and smooth muscle progenitors. dnmt1 mutants have fewer enteric neurons and disrupted intestinal smooth muscle compared to wildtypes. Because dnmt1;uhrf1 double mutants have a similar phenotype to dnmt1 and uhrf1 single mutants, Dnmt1 and Uhrf1 must function together during enteric neuron and intestinal muscle development. This work shows that genes controlling epigenetic modifications are important to coordinate intestinal tract development, provides the first demonstration that these genes influence development of the ENS, and advances uhrf1 and dnmt1 as potential new Hirschsprung disease candidates.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Catherine Wilson
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Angel Amores
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Marie Strader
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Ingo Braasch
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Parham Diba
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Julie A Kuhlman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John H Postlethwait
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA
| | - Judith S Eisen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
14
|
Gonçalves O, Freitas R, Ferreira P, Araújo M, Zhang G, Mazan S, Cohn MJ, Castro LFC, Wilson JM. Molecular ontogeny of the stomach in the catshark Scyliorhinus canicula. Sci Rep 2019; 9:586. [PMID: 30679499 PMCID: PMC6346038 DOI: 10.1038/s41598-018-36413-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/21/2018] [Indexed: 01/27/2023] Open
Abstract
The origin of extracellular digestion in metazoans was accompanied by structural and physiological alterations of the gut. These adaptations culminated in the differentiation of a novel digestive structure in jawed vertebrates, the stomach. Specific endoderm/mesenchyme signalling is required for stomach differentiation, involving the growth and transcription factors: 1) Shh and Bmp4, required for stomach outgrowth; 2) Barx1, Sfrps and Sox2, required for gastric epithelium development and 3) Cdx1 and Cdx2, involved in intestinal versus gastric identity. Thus, modulation of endoderm/mesenchyme signalling emerges as a plausible mechanism linked to the origin of the stomach. In order to gain insight into the ancient mechanisms capable of generating this structure in jawed vertebrates, we characterised the development of the gut in the catshark Scyliorhinus canicula. As chondrichthyans, these animals retained plesiomorphic features of jawed vertebrates, including a well-differentiated stomach. We identified a clear molecular regionalization of their embryonic gut, characterised by the expression of barx1 and sox2 in the prospective stomach region and expression of cdx1 and cdx2 in the prospective intestine. Furthermore, we show that gastric gland development occurs close to hatching, accompanied by the onset of gastric proton pump activity. Our findings favour a scenario in which the developmental mechanisms involved in the origin of the stomach were present in the common ancestor of chondrichthyans and osteichthyans.
Collapse
Affiliation(s)
- Odete Gonçalves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), Univ. Porto, Porto, Portugal
| | - Renata Freitas
- I3S- Institute for Innovation and Health Research, Univ. Porto, Porto, Portugal. .,IBMC- Institute for Molecular and Cell Biology, Univ. Porto, Porto, Portugal.
| | - Patrícia Ferreira
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), Univ. Porto, Porto, Portugal
| | - Mafalda Araújo
- I3S- Institute for Innovation and Health Research, Univ. Porto, Porto, Portugal.,IBMC- Institute for Molecular and Cell Biology, Univ. Porto, Porto, Portugal
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue Univ., Lafayette, USA.,Purdue Institute for Integrative Neuroscience, Purdue Univ., Lafayette, USA.,Purdue Univ. Center for Cancer, Purdue Univ., Lafayette, USA.,Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue Univ., Lafayette, USA
| | - Sylvie Mazan
- CNRS, Sorbonne Universités, UPMC Univ. Paris, Observatoire Océanologique, Banyuls, France
| | - Martin J Cohn
- Howard Hughes Medical Institute, UF Genetics Institute, Univ. Florida, Florida, USA.,Department of Biology, UF Genetics Institute, Univ. Florida, Florida, USA.,Department of Molecular Genetics and Microbiology, UF Genetics Institute, Univ. Florida, Florida, USA
| | - L Filipe C Castro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal. .,Department of Biology, Faculty of Sciences, Univ. Porto, Porto, Portugal.
| | - Jonathan M Wilson
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal. .,Department of Biology, Wilfrid Laurier Univ., Waterloo, Canada.
| |
Collapse
|
15
|
Sribudiani Y, Chauhan RK, Alves MM, Petrova L, Brosens E, Harrison C, Wabbersen T, de Graaf BM, Rügenbrink T, Burzynski G, Brouwer RWW, van IJcken WFJ, Maas SM, de Klein A, Osinga J, Eggen BJL, Burns AJ, Brooks AS, Shepherd IT, Hofstra RMW. Identification of Variants in RET and IHH Pathway Members in a Large Family With History of Hirschsprung Disease. Gastroenterology 2018; 155:118-129.e6. [PMID: 29601828 DOI: 10.1053/j.gastro.2018.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by absence of enteric ganglia in the distal part of the gut. Variants in ret proto-oncogene (RET) have been associated with up to 50% of familial and 35% of sporadic cases. We searched for variants that affect disease risk in a large, multigenerational family with history of HSCR in a linkage region previously associated with the disease (4q31.3-q32.3) and exome wide. METHODS We performed exome sequencing analyses of a family in the Netherlands with 5 members diagnosed with HSCR and 2 members diagnosed with functional constipation. We initially focused on variants in genes located in 4q31.3-q32.3; however, we also performed an exome-wide analysis in which known HSCR or HSCR-associated gene variants predicted to be deleterious were prioritized for further analysis. Candidate genes were expressed in HEK293, COS-7, and Neuro-2a cells and analyzed by luciferase and immunoblot assays. Morpholinos were designed to target exons of candidate genes and injected into 1-cell stage zebrafish embryos. Embryos were allowed to develop and stained for enteric neurons. RESULTS Within the linkage region, we identified 1 putative splice variant in the lipopolysaccharide responsive beige-like anchor protein gene (LRBA). Functional assays could not confirm its predicted effect on messenger RNA splicing or on expression of the mab-21 like 2 gene (MAB21L2), which is embedded in LRBA. Zebrafish that developed following injection of the lrba morpholino had a shortened body axis and subtle gut morphological defects, but no significant reduction in number of enteric neurons compared with controls. Outside the linkage region, members of 1 branch of the family carried a previously unidentified RET variant or an in-frame deletion in the glial cell line derived neurotrophic factor gene (GDNF), which encodes a ligand of RET. This deletion was located 6 base pairs before the last codon. We also found variants in the Indian hedgehog gene (IHH) and its mediator, the transcription factor GLI family zinc finger 3 (GLI3). When expressed in cells, the RET-P399L variant disrupted protein glycosylation and had altered phosphorylation following activation by GDNF. The deletion in GDNF prevented secretion of its gene product, reducing RET activation, and the IHH-Q51K variant reduced expression of the transcription factor GLI1. Injection of morpholinos that target ihh reduced the number of enteric neurons to 13% ± 1.4% of control zebrafish. CONCLUSIONS In a study of a large family with history of HSCR, we identified variants in LRBA, RET, the gene encoding the RET ligand (GDNF), IHH, and a gene encoding a mediator of IHH signaling (GLI3). These variants altered functions of the gene products when expressed in cells and knockout of ihh reduced the number of enteric neurons in the zebrafish gut.
Collapse
Affiliation(s)
- Yunia Sribudiani
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rajendra K Chauhan
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lucy Petrova
- Department of Biology, Emory University, Atlanta, Georgia
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Colin Harrison
- Department of Biology, Emory University, Atlanta, Georgia
| | - Tara Wabbersen
- Department of Biology, Emory University, Atlanta, Georgia
| | - Bianca M de Graaf
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tim Rügenbrink
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Rutger W W Brouwer
- Erasmus Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan Osinga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alan J Burns
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Neural Development and Gastroenterology Units, UCL Institute of Child Health, London, UK
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Neural Development and Gastroenterology Units, UCL Institute of Child Health, London, UK.
| |
Collapse
|
16
|
Abstract
The common relationships among a great variety of biological phenomena seem enigmatic when considered solely at the level of the phenotype. The deep connections in physiology, for example, between the effects of maternal food restriction in utero and the subsequent incidence of metabolic syndrome in offspring, the effects of microgravity on cell polarity and reproduction in yeast, stress effects on jellyfish, and their endless longevity, or the relationship between nutrient abundance and the colonial form in slime molds, are not apparent by phenotypic observation. Yet all of these phenomena are ultimately determined by the Target of Rapamycin (TOR) gene and its associated signaling complexes. In the same manner, the unfolding of evolutionary physiology can be explained by a comparable application of the common principle of cell-cell signaling extending across complex developmental and phylogenetic traits. It is asserted that a critical set of physiologic and phenotypic adaptations emanated from a few crucial, ancestral receptor gene duplications that enabled the successful terrestrial transition of vertebrates from water to land. In combination, mTor and its cognate receptors and a few crucial genetic duplications provide a mechanistic common denominator across a diverse spectrum of biological responses. The proper understanding of their purpose yields a unified concept of physiology and its evolutionary development. © 2018 American Physiological Society. Compr Physiol 8:761-771, 2018.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | | |
Collapse
|
17
|
Kause F, Reutter H, Marsch F, Thiele H, Altmüller J, Ludwig M, Zhang R. Whole exome sequencing identifies a mutation in EYA1 and GLI3 in a patient with branchio‑otic syndrome and esophageal atresia: Coincidence or a digenic mode of inheritance? Mol Med Rep 2017; 17:3200-3205. [PMID: 29257230 DOI: 10.3892/mmr.2017.8196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/09/2017] [Indexed: 11/06/2022] Open
Abstract
Branchio‑otic (BO) syndrome is a clinically and genetically heterogeneous disorder that presents with variable branchial arch and otic anomalies. Dominant mutations in the human homologues of the Drosophila eyes absent (EYA1) gene, and the Drosophila sine oculis homeobox 1 and 5 (SIX1 and SIX5, respectively) genes have been causally associated with BO syndrome. Esophageal atresia (EA), with or without tracheo‑esophageal fistula (TEF), is the most common type of malformation of the upper digestive tract. To date, its causes are poorly understood. The present study investigated a family with three affected members who all presented with classic BO associated symptoms. Notably, the index patient also presented with the most common EA/TEF subtype type 3b. Whole exome sequencing (WES) was performed in the index patient, and prioritized genetic variants and their segregation in the family were analyzed by Sanger sequencing. WES demonstrated a known disease‑causing heterozygous EYA1 splice variant in the patient, as well as his sister and mother; all of whom were affected with BO syndrome. A further GLI family zinc finger 3 (GLI3) splice variant of unknown significance, inherited from the unaffected father, was also detected in the index patient. EYA1 and GLI3 are involved in the Sonic Hedgehog transcriptional network and GLI3 seems to be involved in human foregut malformations. Therefore, one may hypothesize a digenic inheritance model involving EYA1 and GLI3, where the effect of the GLI3 variant observed here only emerges in the background of the EYA1 defect.
Collapse
Affiliation(s)
- Franziska Kause
- Institute of Human Genetics, University Hospital of Bonn, D‑53127 Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University Hospital of Bonn, D‑53127 Bonn, Germany
| | - Florian Marsch
- Institute of Human Genetics, University Hospital of Bonn, D‑53127 Bonn, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, D‑50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, D‑50931 Cologne, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, D‑53127 Bonn, Germany
| | - Rong Zhang
- Institute of Human Genetics, University Hospital of Bonn, D‑53127 Bonn, Germany
| |
Collapse
|
18
|
Xu J, Zhang R, Zhang T, Zhao G, Huang Y, Wang H, Liu JX. Copper impairs zebrafish swimbladder development by down-regulating Wnt signaling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:155-164. [PMID: 28957717 DOI: 10.1016/j.aquatox.2017.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Copper nanoparticles (CuNPs) are used widely in different fields due to their attractive and effective abilities in inhibiting bacteria and fungi, but little information is available about their biological effects and potential molecular mechanisms on fish development. Here, CuNPs and copper (II) ions (Cu2+) were revealed to inhibit the specification and formation of three layers of zebrafish embryonic posterior swimbladder and impair its inflation in a stage-specific manner. CuNPs and Cu2+ were also revealed to down-regulate Wnt signaling in embryos. Furthermore, Wnt agonist 6-Bromoindirubin-3'-oxime (BIO) was found to neutralize the inhibiting effects of CuNPs or Cu2+ or both on zebrafish swimbladder development. The integrated data here provide the first evidence that both CuNPs and Cu2+ act on the specification and growth of the three layers of swimbladder and inhibit its inflation by down-regulating Wnt signaling in a stage-specific manner during embryogenesis.
Collapse
Affiliation(s)
- JiangPing Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - RuiTao Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Huang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - HuanLing Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
19
|
Genomic study of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis. Genet Med 2017; 20:745-753. [PMID: 29261186 DOI: 10.1038/gim.2017.173] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/24/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Fetal anomalies represent a poorly studied group of developmental disorders. Our objective was to assess the impact of whole-exome sequencing (WES) on the investigation of these anomalies. METHODS We performed WES in 101 fetuses or stillborns who presented prenatally with severe anomalies, including renal a/dysgenesis, VACTERL association (vertebral defects, anal atresia, cardiac defects, tracheoesophageal fistula, renal anomalies, and limb abnormalities), brain anomalies, suspected ciliopathies, multiple major malformations, and akinesia. RESULTS A molecular diagnosis was obtained in 19 cases (19%). In 13 of these cases, the diagnosis was not initially suspected by the clinicians because the phenotype was nonspecific or atypical, corresponding in some cases to the severe end of the spectrum of a known disease (e.g., MNX1-, RYR1-, or TUBB-related disorders). In addition, we identified likely pathogenic variants in genes (DSTYK, ACTB, and HIVEP2) previously associated with phenotypes that were substantially different from those found in our cases. Finally, we identified variants in novel candidate genes that were associated with perinatal lethality, including de novo mutations in GREB1L in two cases with bilateral renal agenesis, which represents a significant enrichment of such mutations in our cohort. CONCLUSION Our study opens a window on the distinctive genetic landscape associated with fetal anomalies and highlights the power-but also the challenges-of WES in prenatal diagnosis.
Collapse
|
20
|
Armstrong BE, Henner A, Stewart S, Stankunas K. Shh promotes direct interactions between epidermal cells and osteoblast progenitors to shape regenerated zebrafish bone. Development 2017; 144:1165-1176. [PMID: 28351866 DOI: 10.1242/dev.143792] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/28/2017] [Indexed: 01/08/2023]
Abstract
Zebrafish innately regenerate amputated fins by mechanisms that expand and precisely position injury-induced progenitor cells to re-form tissue of the original size and pattern. For example, cell signaling networks direct osteoblast progenitors (pObs) to rebuild thin cylindrical bony rays with a stereotypical branched morphology. Hedgehog/Smoothened (Hh/Smo) signaling has been variably proposed to stimulate overall fin regenerative outgrowth or promote ray branching. Using a photoconvertible patched2 reporter, we resolve active Hh/Smo output to a narrow distal regenerate zone comprising pObs and adjacent motile basal epidermal cells. This Hh/Smo activity is driven by epidermal Sonic hedgehog a (Shha) rather than Ob-derived Indian hedgehog a (Ihha), which nevertheless functions atypically to support bone maturation. Using BMS-833923, a uniquely effective Smo inhibitor, and high-resolution imaging, we show that Shha/Smo is functionally dedicated to ray branching during fin regeneration. Hh/Smo activation enables transiently divided clusters of Shha-expressing epidermis to escort pObs into similarly split groups. This co-movement likely depends on epidermal cellular protrusions that directly contact pObs only where an otherwise occluding basement membrane remains incompletely assembled. Progressively separated pObs pools then continue regenerating independently to collectively re-form a now branched skeletal structure.
Collapse
Affiliation(s)
- Benjamin E Armstrong
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA.,Department of Chemistry and Biochemistry, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Astra Henner
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA .,Department of Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| |
Collapse
|
21
|
Evolution of Shh endoderm enhancers during morphological transition from ventral lungs to dorsal gas bladder. Nat Commun 2017; 8:14300. [PMID: 28155855 PMCID: PMC5296767 DOI: 10.1038/ncomms14300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 11/13/2022] Open
Abstract
Shh signalling plays a crucial role for endoderm development. A Shh endoderm enhancer, MACS1, is well conserved across terrestrial animals with lungs. Here, we first show that eliminating mouse MACS1 causes severe defects in laryngeal development, indicating that MACS1-directed Shh signalling is indispensable for respiratory organogenesis. Extensive phylogenetic analyses revealed that MACS1 emerged prior to the divergence of cartilaginous and bony fishes, and even euteleost fishes have a MACS1 orthologue. Meanwhile, ray-finned fishes evolved a novel conserved non-coding sequence in the neighbouring region. Transgenic assays showed that MACS1 drives reporter expression ventrally in laryngeal epithelium. This activity has been lost in the euteleost lineage, and instead, the conserved non-coding sequence of euteleosts acquired an enhancer activity to elicit dorsal epithelial expression in the posterior pharynx and oesophagus. These results implicate that evolution of these two enhancers is relevant to the morphological transition from ventral lungs to dorsal gas bladder. Endoderm enhancer MACS1 of Sonic Hedgehog is conserved in animals with lungs. Here, the authors show that mouse without MACS1 has defective laryngeal development, and use phylogenetic analyses to show association of evolutionary lung-gas bladder transition with change of the enhancer.
Collapse
|
22
|
Abstract
Although the zebrafish was initially developed as a model system to study embryonic development, it has gained increasing attention as an advantageous system to investigate human diseases, including intestinal disorders. Zebrafish embryos develop rapidly, and their digestive system is fully functional and visible by 5days post fertilization. There is a large degree of homology between the intestine of zebrafish and higher vertebrate organisms in terms of its cellular composition and function as both a digestive and immune organ. Furthermore, molecular pathways regulating injury and immune responses are highly conserved. In this chapter, we provide an overview of studies addressing developmental and physiological processes relevant to human intestinal disease. These studies include those related to congenital disorders, host-microbiota interactions, inflammatory diseases, motility disorders, and intestinal cancer. We also highlight the utility of zebrafish to functionally validate candidate genes identified through mutational analyses and genome-wide association studies, and discuss methodologies to investigate the intestinal biology that are unique to zebrafish.
Collapse
Affiliation(s)
- X Zhao
- University of Pennsylvania, Philadelphia, PA, United States
| | - M Pack
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Williams LM, Lago BA, McArthur AG, Raphenya AR, Pray N, Saleem N, Salas S, Paulson K, Mangar RS, Liu Y, Vo AH, Shavit JA. The transcription factor, Nuclear factor, erythroid 2 (Nfe2), is a regulator of the oxidative stress response during Danio rerio development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:141-154. [PMID: 27716579 PMCID: PMC5274700 DOI: 10.1016/j.aquatox.2016.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 05/17/2023]
Abstract
Development is a complex and well-defined process characterized by rapid cell proliferation and apoptosis. At this stage in life, a developmentally young organism is more sensitive to toxicants as compared to an adult. In response to pro-oxidant exposure, members of the Cap'n'Collar (CNC) basic leucine zipper (b-ZIP) transcription factor family (including Nfe2 and Nfe2-related factors, Nrfs) activate the expression of genes whose protein products contribute to reduced toxicity. Here, we studied the role of the CNC protein, Nfe2, in the developmental response to pro-oxidant exposure in the zebrafish (Danio rerio). Following acute waterborne exposures to diquat or tert-buytlhydroperoxide (tBOOH) at one of three developmental stages, wildtype (WT) and nfe2 knockout (KO) embryos and larvae were morphologically scored and their transcriptomes sequenced. Early in development, KO animals suffered from hypochromia that was made more severe through exposure to pro-oxidants; this phenotype in the KO may be linked to decreased expression of alas2, a gene involved in heme synthesis. WT and KO eleutheroembryos and larvae were phenotypically equally affected by exposure to pro-oxidants, where tBOOH caused more pronounced phenotypes as compared to diquat. Comparing diquat and tBOOH exposed embryos relative to the WT untreated control, a greater number of genes were up-regulated in the tBOOH condition as compared to diquat (tBOOH: 304 vs diquat: 148), including those commonly found to be differentially regulated in the vertebrate oxidative stress response (OSR) (e.g. hsp70.2, txn1, and gsr). When comparing WT and KO across all treatments and times, there were 1170 genes that were differentially expressed, of which 33 are known targets of the Nrf proteins Nrf1 and Nrf2. More specifically, in animals exposed to pro-oxidants a total of 968 genes were differentially expressed between WT and KO across developmental time, representing pathways involved in coagulation, embryonic organ development, body fluid level regulation, erythrocyte differentiation, and oxidation-reduction, amongst others. The greatest number of genes that changed in expression between WT and KO occurred in animals exposed to diquat at 2h post fertilization (hpf). Across time and treatment, there were six genes (dhx40, cfap70, dnajb9b, slc35f4, spi-c, and gpr19) that were significantly up-regulated in KO compared to WT and four genes (fhad1, cyp4v7, nlrp12, and slc16a6a) that were significantly down-regulated. None of these genes have been previously identified as targets of Nfe2 or the Nrf family. These results demonstrate that the zebrafish Nfe2 may be a regulator of both primitive erythropoiesis and the OSR during development.
Collapse
Affiliation(s)
- Larissa M Williams
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Briony A Lago
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Amogelang R Raphenya
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Nicholas Pray
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA.
| | - Nabil Saleem
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Sophia Salas
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Katherine Paulson
- Biology Department, Bates College, 44 Campus Avenue, Lewiston, ME 04240, USA; The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA.
| | - Roshni S Mangar
- The MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609 USA, USA; College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609, USA.
| | - Yang Liu
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Andy H Vo
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Jordan A Shavit
- Department of Pediatrics and Communicable Diseases, University of Michigan, 8200 MSRB III 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Heanue TA, Shepherd IT, Burns AJ. Enteric nervous system development in avian and zebrafish models. Dev Biol 2016; 417:129-38. [PMID: 27235814 DOI: 10.1016/j.ydbio.2016.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.
Collapse
Affiliation(s)
| | | | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Chen H, Beasley A, Hu Y, Chen X. A Zebrafish Model for Studies on Esophageal Epithelial Biology. PLoS One 2015; 10:e0143878. [PMID: 26630178 PMCID: PMC4667901 DOI: 10.1371/journal.pone.0143878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022] Open
Abstract
Mammalian esophagus exhibits a remarkable change in epithelial structure during the transition from embryo to adult. However, the molecular mechanisms of esophageal epithelial development are not well understood. Zebrafish (Danio rerio), a common model organism for vertebrate development and gene function, has not previously been characterized as a model system for esophageal epithelial development. In this study, we characterized a piece of non-keratinized stratified squamous epithelium similar to human esophageal epithelium in the upper digestive tract of developing zebrafish. Under the microscope, this piece was detectable at 5dpf and became stratified at 7dpf. Expression of esophageal epithelial marker genes (Krt5, P63, Sox2 and Pax9) was detected by immunohistochemistry and in situ hybridization. Knockdown of P63, a gene known to be critical for esophageal epithelium, disrupted the development of this epithelium. With this model system, we found that Pax9 knockdown resulted in loss or disorganization of the squamous epithelium, as well as down-regulation of the differentiation markers Krt4 and Krt5. In summary, we characterized a region of stratified squamous epithelium in the zebrafish upper digestive tract which can be used for functional studies of candidate genes involved in esophageal epithelial biology.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, 27707, United States of America
| | - Andrea Beasley
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, 27707, United States of America
| | - Yuhui Hu
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, 27707, United States of America
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, 27707, United States of America
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| |
Collapse
|
26
|
Uribe RA, Bronner ME. Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development. Mol Biol Cell 2015; 26:3728-40. [PMID: 26354419 PMCID: PMC4626059 DOI: 10.1091/mbc.e15-02-0112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023] Open
Abstract
Loss of Meis3 leads to defects in enteric neural crest cell migration, number, and proliferation during colonization of the gut. This leads to colonic aganglionosis, in which the hindgut is devoid of neurons, identifying it as a novel candidate factor in the etiology of Hirschsprung’s disease during enteric nervous system development. During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of function results in a reduction in migration efficiency, cell number, and the mitotic activity of neural crest cells in the vicinity of the gut but has no effect on neural crest or gut specification. Later, during enteric nervous system differentiation, Meis3-depleted embryos exhibit colonic aganglionosis, a disorder in which the hindgut is devoid of neurons. Accordingly, the expression of Shh pathway components, previously shown to have a role in the etiology of Hirschsprung’s disease, was misregulated within the gut after loss of Meis3. Taken together, these findings support a model in which Meis3 is required for neural crest proliferation, migration into, and colonization of the gut such that its loss leads to severe defects in enteric nervous system development.
Collapse
Affiliation(s)
- Rosa A Uribe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
27
|
A central theory of biology. Med Hypotheses 2015; 85:49-57. [PMID: 25911556 DOI: 10.1016/j.mehy.2015.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/25/2015] [Accepted: 03/21/2015] [Indexed: 12/27/2022]
Abstract
The history of physiologic cellular-molecular interrelationships can be traced all the way back to the unicellular state by following the pathway formed by lipids ubiquitously accommodating calcium homeostasis, and its consequent adaptive effects on oxygen uptake by cells, tissues and organs. As a result, a cohesive, mechanistically integrated view of physiology can be formulated by recognizing the continuum comprising conception, development, physiologic homeostasis and death mediated by soluble growth factor signaling. Seeing such seemingly disparate processes as embryogenesis, chronic disease and dying as the gain and subsequent loss of cell-cell signaling provides a novel perspective for physiology and medicine. It is emblematic of the self-organizing, self-referential nature of life, starting from its origins. Such organizing principles obviate the pitfalls of teleologic evolution, conversely providing a way of resolving such seeming dichotomies as holism and reductionism, genotype and phenotype, emergence and contingence, proximate and ultimate causation in evolution, cells and organisms. The proposed approach is scale-free and predictive, offering a Central Theory of Biology.
Collapse
|
28
|
Alvers AL, Ryan S, Scherz PJ, Huisken J, Bagnat M. Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling. Development 2014; 141:1110-9. [PMID: 24504339 DOI: 10.1242/dev.100313] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The formation of a single lumen during tubulogenesis is crucial for the development and function of many organs. Although 3D cell culture models have identified molecular mechanisms controlling lumen formation in vitro, their function during vertebrate organogenesis is poorly understood. Using light sheet microscopy and genetic approaches we have investigated single lumen formation in the zebrafish gut. Here we show that during gut development multiple lumens open and enlarge to generate a distinct intermediate, which consists of two adjacent unfused lumens separated by basolateral contacts. We observed that these lumens arise independently from each other along the length of the gut and do not share a continuous apical surface. Resolution of this intermediate into a single, continuous lumen requires the remodeling of contacts between adjacent lumens and subsequent lumen fusion. We show that lumen resolution, but not lumen opening, is impaired in smoothened (smo) mutants, indicating that fluid-driven lumen enlargement and resolution are two distinct processes. Furthermore, we show that smo mutants exhibit perturbations in the Rab11 trafficking pathway and demonstrate that Rab11-mediated trafficking is necessary for single lumen formation. Thus, lumen resolution is a distinct genetically controlled process crucial for single, continuous lumen formation in the zebrafish gut.
Collapse
Affiliation(s)
- Ashley L Alvers
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
29
|
Williams LM, Timme-Laragy AR, Goldstone JV, McArthur AG, Stegeman JJ, Smolowitz RM, Hahn ME. Developmental expression of the Nfe2-related factor (Nrf) transcription factor family in the zebrafish, Danio rerio. PLoS One 2013; 8:e79574. [PMID: 24298298 PMCID: PMC3840143 DOI: 10.1371/journal.pone.0079574] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022] Open
Abstract
Transcription factors in the CNC-bZIP family (NFE2, NRF1, NRF2 and NRF3) regulate genes with a wide range of functions in response to both physiological and exogenous signals, including those indicating changes in cellular redox status. Given their role in helping to maintain cellular homeostasis, it is imperative to understand the expression, regulation, and function of CNC-bZIP genes during embryonic development. We explored the expression and function of six nrf genes (nfe2, nrf1a, nrf1b, nrf2a, nrf2b, and nrf3) using zebrafish embryos as a model system. Analysis by microarray and quantitative RT-PCR showed that genes in the nrf family were expressed throughout development from oocytes to larvae. The spatial expression of nrf3 suggested a role in regulating the development of the brain, brachia and pectoral fins. Knock-down by morpholino anti-sense oligonucleotides suggested that none of the genes were necessary for embryonic viability, but nfe2 was required for proper cellular organization in the pneumatic duct and subsequent swim bladder function, as well as for proper formation of the otic vesicles. nrf genes were induced by the oxidant tert-butylhydroperoxide, and some of this response was regulated through family members Nrf2a and Nrf2b. Our results provide a foundation for understanding the role of nrf genes in normal development and in regulating the response to oxidative stress in vertebrate embryos.
Collapse
Affiliation(s)
- Larissa M. Williams
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- Biology Department, Bates College, Lewiston, Maine, United States of America
| | - Alicia R. Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | | | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Roxanna M. Smolowitz
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, United States of America
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Torday JS. Evolution and Cell Physiology. 1. Cell signaling is all of biology. Am J Physiol Cell Physiol 2013; 305:C682-9. [PMID: 23885061 PMCID: PMC4073899 DOI: 10.1152/ajpcell.00197.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/20/2013] [Indexed: 12/23/2022]
Abstract
I hypothesize that the First Principles of Physiology (FPPs) were co-opted during the vertebrate transition from water to land, beginning with the acquisition of cholesterol by eukaryotes, facilitating unicellular evolution over the course of the first 4.5 billion years of the Earth's history, in service to the reduction in intracellular entropy, far from equilibrium. That mechanism was perpetuated by the advent of cholesterol in the cell membrane of unicellular eukaryotes, ultimately giving rise to the metazoan homologs of the gut, lung, kidney, skin, bone, and brain. Parathyroid hormone-related protein (PTHrP), whose cognate receptor underwent a gene duplication during the transition from fish to amphibians, facilitated gas exchange for the water-to-land transition, since PTHrP is necessary for the formation of lung alveoli: deletion of the PTHrP gene in mice causes the offspring to die within a few minutes of birth due to the absence of alveoli. Moreover, PTHrP is central to the development and homeostasis of the kidney, skin, gut, bone, and brain. Therefore, duplication of the PTHrP receptor gene is predicted to have facilitated the molecular evolution of all the necessary traits for land habitation through a common cellular and molecular motif. Subsequent duplication of the β-adrenergic receptor gene permitted blood pressure control within the lung microvasculature, allowing further evolution of the lung by increasing its surface area. I propose that such gene duplications were the result of shear stress on the microvasculature, locally generating radical oxygen species that caused DNA mutations, giving rise to duplication of the PTHrP and β-adrenergic receptor genes. I propose that one can determine the FPPs by systematically tracing the molecular homologies between the lung, skin, kidney, gut, bone, and brain across development, phylogeny, and pathophysiology as a type of "reverse evolution." By tracing such relationships back to unicellular organisms, one can use the underlying principles to predict homeostatic failure as disease, thereby also potentially forming the basis for maneuvers that can treat or even prevent such failure.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Cell Communication
- Evolution, Molecular
- Gene Duplication
- Genotype
- Humans
- Kidney/metabolism
- Kidney/physiopathology
- Lung/metabolism
- Lung/physiopathology
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/metabolism
- Phenotype
- Phylogeny
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Selection, Genetic
- Signal Transduction
Collapse
Affiliation(s)
- John S Torday
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| |
Collapse
|
31
|
Dab S, Sokhi R, Lee JC, Sessle BJ, Aubin JE, Gong SG. Characterization of esophageal defects in the Crouzon mouse model. ACTA ACUST UNITED AC 2013; 97:578-86. [PMID: 23997010 DOI: 10.1002/bdra.23172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/18/2013] [Accepted: 07/08/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND Mutations in Fibroblastic Growth Factor Receptors (FGFR) have been associated with human craniosynostotic birth defects like Crouzon syndrome. Several anecdotes and case reports have indicated higher incidence of gastrointestinal tract disorders in FGFR-associated craniosynostotic birth defects. Our objective was to characterize esophageal defects in a mouse model of human Crouzon syndrome, with a mutation in codon 290 of FGFR2. METHODS Dissected esophagi of Fgfr2(W290R) postnatal heterozygous (HET) and wild-type mice were analyzed by histological staining, immunohistochemically with cell proliferation marker, and functionally by strain gauge measures of electrically evoked contractile force. RESULTS The esophagi of HETs were noticeably smaller but with wider lumen than those of wild-type littermates. The HET esophagi showed a decrease in proliferation and an increase in expression of Sonic Hedgehog as compared to wild-type esophagi. Histological investigations revealed reduced amounts and disorganization of collagen in muscle layers. Functional analysis revealed altered contractile properties in HET with reduced peak amplitude and prolonged duration of evoked contractile force response and lower stimulation threshold. CONCLUSION The defects observed in the esophagus of the mutant may explain some of the clinical symptoms observed in humans, for example, recurrent vomiting, gastroesophageal reflux, and esophageal strictures. Taken together, our results provide evidence for the importance of Fibroblastic Growth Factor signaling in the growth and patterning of the esophagus, providing a possible scientific basis for the gastrointestinal tract clinical findings in craniosynostotic patients. Furthermore, the findings also provide a sound scientific rationale for any changes in the clinical management of gastrointestinal tract problems in patients with craniosynostotic defects.
Collapse
Affiliation(s)
- Sandeep Dab
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|