1
|
Spikol ED, Cheng J, Macurak M, Subedi A, Halpern ME. Genetically defined nucleus incertus neurons differ in connectivity and function. eLife 2024; 12:RP89516. [PMID: 38819436 PMCID: PMC11142643 DOI: 10.7554/elife.89516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.
Collapse
Affiliation(s)
- Emma D Spikol
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Michelle Macurak
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Abhignya Subedi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
2
|
Messina A, Sovrano VA, Baratti G, Musa A, Gobbo A, Adiletta A, Sgadò P. Valproic acid exposure affects social visual lateralization and asymmetric gene expression in zebrafish larvae. Sci Rep 2024; 14:4474. [PMID: 38395997 PMCID: PMC10891151 DOI: 10.1038/s41598-024-54356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Cerebral asymmetry is critical for typical brain function and development; at the same time, altered brain lateralization seems to be associated with neuropsychiatric disorders. Zebrafish are increasingly emerging as model species to study brain lateralization, using asymmetric development of the habenula, a phylogenetically old brain structure associated with social and emotional processing, to investigate the relationship between brain asymmetry and social behavior. We exposed 5-h post-fertilization zebrafish embryos to valproic acid (VPA), a compound used to model the core signs of ASD in many vertebrate species, and assessed social interaction, visual lateralization and gene expression in the thalamus and the telencephalon. VPA-exposed zebrafish exhibit social deficits and a deconstruction of social visual laterality to the mirror. We also observe changes in the asymmetric expression of the epithalamic marker leftover and in the size of the dorsolateral part of the habenula in adult zebrafish. Our data indicate that VPA exposure neutralizes the animals' visual field bias, with a complete loss of the left-eye use bias in front of their own mirror image, and alters brain asymmetric gene expression and morphology, opening new perspectives to investigate brain lateralization and its link to atypical social cognitive development.
Collapse
Affiliation(s)
- Andrea Messina
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Valeria Anna Sovrano
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy.
| | - Greta Baratti
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Alessia Musa
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Alessandra Gobbo
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Alice Adiletta
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068, Rovereto, TN, Italy.
| |
Collapse
|
3
|
Cherng BW, Islam T, Torigoe M, Tsuboi T, Okamoto H. The Dorsal Lateral Habenula-Interpeduncular Nucleus Pathway Is Essential for Left-Right-Dependent Decision Making in Zebrafish. Cell Rep 2021; 32:108143. [PMID: 32937118 DOI: 10.1016/j.celrep.2020.108143] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 01/03/2023] Open
Abstract
How animals behave using suitable information to adapt to the environment is not well known. We address this issue by devising an automated system to let zebrafish exploit either internal (choice of left or right turn) or external (choice of cue color) navigation information to achieve operant behavior by reward reinforcement learning. The results of behavioral task with repeated rule shift indicate that zebrafish can learn operant behavior using both internal-directional and external-cued information. The learning time is reduced as rule shifts are repeated, revealing the capacity of zebrafish to adaptively retrieve the suitable rule memory after training. Zebrafish with an impairment in the neural pathway from the lateral subregion of the dorsal habenula to the interpeduncular nucleus, known to be potentiated in the winners of social conflicts, show specific defects in the application of the internal-directional rule, suggesting the dual roles of this pathway.
Collapse
Affiliation(s)
- Bor-Wei Cherng
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Tanvir Islam
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Makio Torigoe
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Takashi Tsuboi
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan; Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| |
Collapse
|
4
|
Wang GT, Pan HY, Lang WH, Yu YD, Hsieh CH, Kuan YS. Three-dimensional multi-gene expression maps reveal cell fate changes associated with laterality reversal of zebrafish habenula. J Neurosci Res 2021; 99:1632-1645. [PMID: 33638209 DOI: 10.1002/jnr.24806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/09/2022]
Abstract
The conserved bilateral habenular nuclei (HA) in vertebrate diencephalon develop into compartmentalized structures containing neurons derived from different cell lineages. Despite extensive studies demonstrated that zebrafish larval HA display distinct left-right (L-R) asymmetry in gene expression and connectivity, the spatial gene expression domains were mainly obtained from two-dimensional (2D) snapshots of colorimetric RNA in situ hybridization staining which could not properly reflect different HA neuronal lineages constructed in three-dimension (3D). Combing the tyramide-based fluorescent mRNA in situ hybridization, confocal microscopy and customized imaging processing procedures, we have created spatial distribution maps of four genes for 4-day-old zebrafish and in sibling fish whose L-R asymmetry was spontaneously reversed. 3D volumetric analyses showed that ratios of cpd2, lov, ron, and nrp1a expression in L-R reversed HA were reversed according to the parapineal positions. However, the quantitative changes of gene expression in reversed larval brains do not mirror the gene expression level in the obverse larval brains. There were a total 87.78% increase in lov+ nrp1a+ and a total 12.45% decrease in lov+ ron+ double-positive neurons when the L-R asymmetry of HA was reversed. Thus, our volumetric analyses of the 3D maps indicate that changes of HA neuronal cell fates are associated with the reversal of HA laterality. These changes likely account for the behavior changes associated with HA laterality alterations.
Collapse
Affiliation(s)
- Guo-Tzau Wang
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - He-Yen Pan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Wei-Han Lang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Yuan-Ding Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C
| | - Chang-Huain Hsieh
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - Yung-Shu Kuan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan R.O.C.,Neuroscience Program, Academia Sinica, Taipei, Taiwan R.O.C
| |
Collapse
|
5
|
Abstract
Emotion-related responses, such as fear and anxiety, are important behavioral phenomena in most animal species, as well as in humans. However, the underlying mechanisms of fear and anxiety in animals and in humans are still largely unknown, and anxiety disorders continue to represent a large unmet medical need in the human clinic. Animal models may speed up discovery of these mechanisms and may also lead to betterment of human health. Herein, we report the identification of a chemokine-like gene family, samdori (sam), and present functional characterization of sam2. We observed increased anxiety-related responses in both zebrafish and mouse knockout models. Taken together, these results support a crucial and evolutionarily conserved role of sam2 in regulating anxiety-like behavior. Emotional responses, such as fear and anxiety, are fundamentally important behavioral phenomena with strong fitness components in most animal species. Anxiety-related disorders continue to represent a major unmet medical need in our society, mostly because we still do not fully understand the mechanisms of these diseases. Animal models may speed up discovery of these mechanisms. The zebrafish is a highly promising model organism in this field. Here, we report the identification of a chemokine-like gene family, samdori (sam), and present functional characterization of one of its members, sam2. We show exclusive mRNA expression of sam2 in the CNS, predominantly in the dorsal habenula, telencephalon, and hypothalamus. We found knockout (KO) zebrafish to exhibit altered anxiety-related responses in the tank, scototaxis and shoaling assays, and increased crh mRNA expression in their hypothalamus compared with wild-type fish. To investigate generalizability of our findings to mammals, we developed a Sam2 KO mouse and compared it to wild-type littermates. Consistent with zebrafish findings, homozygous KO mice exhibited signs of elevated anxiety. We also found bath application of purified SAM2 protein to increase inhibitory postsynaptic transmission onto CRH neurons of the paraventricular nucleus. Finally, we identified a human homolog of SAM2, and were able to refine a candidate gene region encompassing SAM2, among 21 annotated genes, which is associated with intellectual disability and autism spectrum disorder in the 12q14.1 deletion syndrome. Taken together, these results suggest a crucial and evolutionarily conserved role of sam2 in regulating mechanisms associated with anxiety.
Collapse
|
6
|
Duboué ER, Halpern ME. Genetic and Transgenic Approaches to Study Zebrafish Brain Asymmetry and Lateralized Behavior. LATERALIZED BRAIN FUNCTIONS 2017. [DOI: 10.1007/978-1-4939-6725-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
7
|
Khuansuwan S, Clanton JA, Dean BJ, Patton JG, Gamse JT. A transcription factor network controls cell migration and fate decisions in the developing zebrafish pineal complex. Development 2016; 143:2641-50. [PMID: 27317804 PMCID: PMC4958332 DOI: 10.1242/dev.131680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/02/2016] [Indexed: 11/20/2022]
Abstract
The zebrafish pineal complex consists of four cell types (rod and cone photoreceptors, projection neurons and parapineal neurons) that are derived from a single pineal complex anlage. After specification, parapineal neurons migrate unilaterally away from the rest of the pineal complex whereas rods, cones and projection neurons are non-migratory. The transcription factor Tbx2b is important for both the correct number and migration of parapineal neurons. We find that two additional transcription factors, Flh and Nr2e3, negatively regulate parapineal formation. Flh induces non-migratory neuron fates and limits the extent of parapineal specification, in part by activation of Nr2e3 expression. Tbx2b is positively regulated by Flh, but opposes Flh action during specification of parapineal neurons. Loss of parapineal neuron specification in Tbx2b-deficient embryos can be partially rescued by loss of Nr2e3 or Flh function; however, parapineal migration absolutely requires Tbx2b activity. We conclude that cell specification and migration in the pineal complex are regulated by a network of at least three transcription factors. Summary: Cell fate specification and migration in the zebrafish pineal complex are regulated by a network of at least three transcription factors: Tbx2b, Flh and Nr2e3.
Collapse
Affiliation(s)
- Sataree Khuansuwan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua A Clanton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Benjamin J Dean
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua T Gamse
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
8
|
Leventea E, Hazime K, Zhao C, Malicki J. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2016; 133:179-227. [PMID: 27263414 DOI: 10.1016/bs.mcb.2016.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilia are microtubule-based protrusions on the surface of most eukaryotic cells. They are found in most, if not all, vertebrate organs. Prominent cilia form in sensory structures, the eye, the ear, and the nose, where they are crucial for the detection of environmental stimuli, such as light and odors. Cilia are also involved in developmental processes, including left-right asymmetry formation, limb morphogenesis, and the patterning of neurons in the neural tube. Some cilia, such as those found in nephric ducts, are thought to have mechanosensory roles. Zebrafish proved very useful in genetic analysis and imaging of cilia-related processes, and in the modeling of mechanisms behind human cilia abnormalities, known as ciliopathies. A number of zebrafish defects resemble those seen in human ciliopathies. Forward and reverse genetic strategies generated a wide range of cilia mutants in zebrafish, which can be studied using sophisticated genetic and imaging approaches. In this chapter, we provide a set of protocols to examine cilia morphology, motility, and cilia-related defects in a variety of organs, focusing on the embryo and early postembryonic development.
Collapse
Affiliation(s)
- E Leventea
- The University of Sheffield, Sheffield, United Kingdom
| | - K Hazime
- The University of Sheffield, Sheffield, United Kingdom
| | - C Zhao
- The University of Sheffield, Sheffield, United Kingdom; Ocean University of China, Qingdao, China
| | - J Malicki
- The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Abstract
Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.
Collapse
Affiliation(s)
- Véronique Duboc
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| | - Pascale Dufourcq
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| | - Patrick Blader
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| | - Myriam Roussigné
- Université de Toulouse, UPS, Center de Biologie du Développement (CBD), F-31062 Toulouse, France; .,CNRS, CBD UMR 5547, F-31062 Toulouse, France
| |
Collapse
|
10
|
Dean BJ, Erdogan B, Gamse JT, Wu SY. Dbx1b defines the dorsal habenular progenitor domain in the zebrafish epithalamus. Neural Dev 2014; 9:20. [PMID: 25212830 PMCID: PMC4164515 DOI: 10.1186/1749-8104-9-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/01/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The conserved habenular nuclei function as a relay system connecting the forebrain with the brain stem. They play crucial roles in various cognitive behaviors by modulating cholinergic, dopaminergic and serotonergic activities. Despite the renewed interest in this conserved forebrain region because of its importance in regulating aversion and reward behaviors, the formation of the habenular nuclei during embryogenesis is poorly understood due to their small size and deep location in the brain, as well as the lack of known markers for habenular progenitors. In zebrafish, the bilateral habenular nuclei are subdivided into dorsal and ventral compartments, are particularly large and found on the dorsal surface of the brain, which facilitates the study of their development. RESULTS Here we examine the expression of a homeodomain transcription factor, dbx1b, and its potential to serve as an early molecular marker of dorsal habenular progenitors. Detailed spatiotemporal expression profiles demonstrate that the expression domain of dbx1b correlates with the presumptive habenular region, and dbx1b-expressing cells are proliferative along the ventricle. A lineage-tracing experiment using the Cre-lox system confirms that all or almost all dorsal habenular neurons are derived from dbx1b-expressing cells. In addition, mutant analysis and pharmacological treatments demonstrate that both initiation and maintenance of dbx1b expression requires precise regulation by fibroblast growth factor (FGF) signaling. CONCLUSIONS We provide clear evidence in support of dbx1b marking the progenitor populations that give rise to the dorsal habenulae. In addition, the expression of dbx1b in the dorsal diencephalon is tightly controlled by FGF signaling.
Collapse
Affiliation(s)
| | | | | | - Shu-Yu Wu
- Department of Biological Sciences, Vanderbilt University, Box 351634 Station B, Nashville, TN 37235-1634, USA.
| |
Collapse
|
11
|
Markham NO, Doll CA, Dohn MR, Miller RK, Yu H, Coffey RJ, McCrea PD, Gamse JT, Reynolds AB. DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia. Mol Biol Cell 2014; 25:2592-603. [PMID: 25009281 PMCID: PMC4148249 DOI: 10.1091/mbc.e13-08-0492] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Isoform-specific expression of p120 affects cell motility and migration during development and tumor progression. The DIPA coiled-coil protein is a novel binding partner to the conserved isoform 1–specific head domain of p120 family members. Zebrafish data suggest that DIPA is mechanistically linked to p120 isoform–specific function in development. p120-catenin (p120) modulates adherens junction (AJ) dynamics by controlling the stability of classical cadherins. Among all p120 isoforms, p120-3A and p120-1A are the most prevalent. Both stabilize cadherins, but p120-3A is preferred in epithelia, whereas p120-1A takes precedence in neurons, fibroblasts, and macrophages. During epithelial-to-mesenchymal transition, E- to N-cadherin switching coincides with p120-3A to -1A alternative splicing. These isoforms differ by a 101–amino acid “head domain” comprising the p120-1A N-terminus. Although its exact role is unknown, the head domain likely mediates developmental and cancer-associated events linked to p120-1A expression (e.g., motility, invasion, metastasis). Here we identified delta-interacting protein A (DIPA) as the first head domain–specific binding partner and candidate mediator of isoform 1A activity. DIPA colocalizes with AJs in a p120-1A- but not 3A-dependent manner. Moreover, all DIPA family members (Ccdc85a, Ccdc85b/DIPA, and Ccdc85c) interact reciprocally with p120 family members (p120, δ-catenin, p0071, and ARVCF), suggesting significant functional overlap. During zebrafish neural tube development, both knockdown and overexpression of DIPA phenocopy N-cadherin mutations, an effect bearing functional ties to a reported mouse hydrocephalus phenotype associated with Ccdc85c. These studies identify a novel, highly conserved interaction between two protein families that may participate either individually or collectively in N-cadherin–mediated development.
Collapse
Affiliation(s)
- Nicholas O Markham
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Caleb A Doll
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Michael R Dohn
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel K Miller
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Huapeng Yu
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Robert J Coffey
- Epithelial Biology Center, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Joshua T Gamse
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Albert B Reynolds
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
12
|
deCarvalho TN, Subedi A, Rock J, Harfe BD, Thisse C, Thisse B, Halpern ME, Hong E. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish. Genesis 2014; 52:636-55. [PMID: 24753112 DOI: 10.1002/dvg.22785] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/11/2022]
Abstract
The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity, and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. Although many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions.
Collapse
Affiliation(s)
- Tagide N deCarvalho
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vacaru AM, Unlu G, Spitzner M, Mione M, Knapik EW, Sadler KC. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease. J Cell Sci 2014; 127:485-95. [PMID: 24481493 PMCID: PMC4007761 DOI: 10.1242/jcs.140194] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.
Collapse
Affiliation(s)
- Ana M. Vacaru
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Gokhan Unlu
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marie Spitzner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ela W. Knapik
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kirsten C. Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
14
|
Pavlou S, Astell K, Kasioulis I, Gakovic M, Baldock R, van Heyningen V, Coutinho P. Pleiotropic effects of Sox2 during the development of the zebrafish epithalamus. PLoS One 2014; 9:e87546. [PMID: 24498133 PMCID: PMC3909122 DOI: 10.1371/journal.pone.0087546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/26/2013] [Indexed: 12/01/2022] Open
Abstract
The zebrafish epithalamus is part of the diencephalon and encompasses three major components: the pineal, the parapineal and the habenular nuclei. Using sox2 knockdown, we show here that this key transcriptional regulator has pleiotropic effects during the development of these structures. Sox2 negatively regulates pineal neurogenesis. Also, Sox2 is identified as the unknown factor responsible for pineal photoreceptor prepatterning and performs this function independently of the BMP signaling. The correct levels of sox2 are critical for the functionally important asymmetrical positioning of the parapineal organ and for the migration of parapineal cells as a coherent structure. Deviations from this strict control result in defects associated with abnormal habenular laterality, which we have documented and quantified in sox2 morphants.
Collapse
Affiliation(s)
- Sofia Pavlou
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katy Astell
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioannis Kasioulis
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Milica Gakovic
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Baldock
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro Coutinho
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Cholinergic left-right asymmetry in the habenulo-interpeduncular pathway. Proc Natl Acad Sci U S A 2013; 110:21171-6. [PMID: 24327734 DOI: 10.1073/pnas.1319566110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The habenulo-interpeduncular pathway, a highly conserved cholinergic system, has emerged as a valuable model to study left-right asymmetry in the brain. In larval zebrafish, the bilaterally paired dorsal habenular nuclei (dHb) exhibit prominent left-right differences in their organization, gene expression, and connectivity, but their cholinergic nature was unclear. Through the discovery of a duplicated cholinergic gene locus, we now show that choline acetyltransferase and vesicular acetylcholine transporter homologs are preferentially expressed in the right dHb of larval zebrafish. Genes encoding the nicotinic acetylcholine receptor subunits α2 and β4 are transcribed in the target interpeduncular nucleus (IPN), suggesting that the asymmetrical cholinergic pathway is functional. To confirm this, we activated channelrhodopsin-2 specifically in the larval dHb and performed whole-cell patch-clamp recording of IPN neurons. The response to optogenetic or electrical stimulation of the right dHb consisted of an initial fast glutamatergic excitatory postsynaptic current followed by a slow-rising cholinergic current. In adult zebrafish, the dHb are divided into discrete cholinergic and peptidergic subnuclei that differ in size between the left and right sides of the brain. After exposing adults to nicotine, fos expression was activated in subregions of the IPN enriched for specific nicotinic acetylcholine receptor subunits. Our studies of the newly identified cholinergic gene locus resolve the neurotransmitter identity of the zebrafish habenular nuclei and reveal functional asymmetry in a major cholinergic neuromodulatory pathway of the vertebrate brain.
Collapse
|
16
|
Beretta CA, Dross N, Bankhead P, Carl M. The ventral habenulae of zebrafish develop in prosomere 2 dependent on Tcf7l2 function. Neural Dev 2013; 8:19. [PMID: 24067090 PMCID: PMC3827927 DOI: 10.1186/1749-8104-8-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
Background The conserved habenular neural circuit relays cognitive information from the forebrain into the ventral mid- and hindbrain. In zebrafish, the bilaterally formed habenulae in the dorsal diencephalon are made up of the asymmetric dorsal and symmetric ventral habenular nuclei, which are homologous to the medial and lateral nuclei respectively, in mammals. These structures have been implicated in various behaviors related to the serotonergic/dopaminergic neurotransmitter system. The dorsal habenulae develop adjacent to the medially positioned pineal complex. Their precursors differentiate into two main neuronal subpopulations which differ in size across brain hemispheres as signals from left-sided parapineal cells influence their differentiation program. Unlike the dorsal habenulae and despite their importance, the ventral habenulae have been poorly studied. It is not known which genetic programs underlie their development and why they are formed symmetrically, unlike the dorsal habenulae. A main reason for this lack of knowledge is that the vHb origin has remained elusive to date. Results To address these questions, we applied long-term 2-photon microscopy time-lapse analysis of habenular neural circuit development combined with depth color coding in a transgenic line, labeling all main components of the network. Additional laser ablations and cell tracking experiments using the photoconvertible PSmOrange system in GFP transgenic fish show that the ventral habenulae develop in prosomere 2, posterior and lateral to the dorsal habenulae in the dorsal thalamus. Mutant analysis demonstrates that the ventral habenular nuclei only develop in the presence of functional Tcf7l2, a downstream modulator of the Wnt signaling cascade. Consistently, photoconverted thalamic tcf7l2exl/exl mutant cells do not contribute to habenula formation. Conclusions We show in vivo that dorsal and ventral habenulae develop in different regions of prosomere 2. In the process of ventral habenula formation, functional tcf7l2 gene activity is required and in its absence, ventral habenular neurons do not develop. Influenced by signals from parapineal cells, dorsal habenular neurons differentiate at a time at which ventral habenular cells are still on their way towards their final destination. Thus, our finding may provide a simple explanation as to why only neuronal populations of the dorsal habenulae differ in size across brain hemispheres.
Collapse
Affiliation(s)
- Carlo A Beretta
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim 68167, Germany.
| | | | | | | |
Collapse
|