1
|
Majeed M, Liao CP, Hobert O. Nervous system-wide analysis of all C. elegans cadherins reveals neuron-specific functions across multiple anatomical scales. SCIENCE ADVANCES 2025; 11:eads2852. [PMID: 39983000 PMCID: PMC11844738 DOI: 10.1126/sciadv.ads2852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Differential expression of cell adhesion proteins is a hallmark of cell-type diversity across the animal kingdom. Gene family-wide characterization of their organismal expression and function is, however, lacking. Using genome-engineered reporter alleles, we established an atlas of expression of the entire set of 12 cadherin gene family members in the nematode Caenorhabditis elegans, revealing differential expression across neuronal classes, a dichotomy between broadly and narrowly expressed cadherins, and several context-dependent temporal transitions in expression across development. Engineered mutant null alleles of cadherins were analyzed for defects in morphology, behavior, neuronal soma positions, neurite neighborhood topology and fasciculation, and localization of synapses in many parts of the nervous system. This analysis revealed a restricted pattern of neuronal differentiation defects at discrete subsets of anatomical scales, including a novel role of cadherins in experience-dependent electrical synapse formation. In total, our analysis results in previously little explored perspectives on cadherin deployment and function.
Collapse
Affiliation(s)
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Liu X, Zhang Z, Hu B, Chen K, Yu Y, Xiang H, Tan A. Single-cell transcriptomes provide insights into expansion of glial cells in Bombyx mori. INSECT SCIENCE 2024; 31:1041-1054. [PMID: 37984500 DOI: 10.1111/1744-7917.13294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
The diversity of cell types in the brain and how these change during different developmental stages, remains largely unknown. The life cycle of insects is short and goes through 4 distinct stages including embryonic, larval, pupal, and adult stages. During postembryonic life, the larval brain transforms into a mature adult version after metamorphosis. The silkworm, Bombyx mori, is a lepidopteran model insect. Here, we characterized the brain cell repertoire of larval and adult B. mori by obtaining 50 708 single-cell transcriptomes. Seventeen and 12 cell clusters from larval and adult brains were assigned based on marker genes, respectively. Identified cell types include Kenyon cells, optic lobe cells, monoaminergic neurons, surface glia, and astrocyte glia. We further assessed the cell type compositions of larval and adult brains. We found that the transition from larva to adult resulted in great expansion of glial cells. The glial cell accounted for 49.8% of adult midbrain cells. Compared to flies and ants, the mushroom body kenyon cell is insufficient in B. mori, which accounts for 5.4% and 3.6% in larval and adult brains, respectively. Analysis of neuropeptide expression showed that the abundance and specificity of expression varied among individual neuropeptides. Intriguingly, we found that ion transport peptide was specifically expressed in glial cells of larval and adult brains. The cell atlas dataset provides an important resource to explore cell diversity, neural circuits and genetic profiles.
Collapse
Affiliation(s)
- Xiaojing Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| | - Hui Xiang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
3
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
4
|
Mamon L, Yakimova A, Kopytova D, Golubkova E. The RNA-Binding Protein SBR (Dm NXF1) Is Required for the Constitution of Medulla Boundaries in Drosophila melanogaster Optic Lobes. Cells 2021; 10:1144. [PMID: 34068524 PMCID: PMC8151460 DOI: 10.3390/cells10051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Drosophila melanogaster sbr (small bristles) is an orthologue of the Nxf1 (nuclear export factor 1) genes in different Opisthokonta. The known function of Nxf1 genes is the export of various mRNAs from the nucleus to the cytoplasm. The cytoplasmic localization of the SBR protein indicates that the nuclear export function is not the only function of this gene in Drosophila. RNA-binding protein SBR enriches the nucleus and cytoplasm of specific neurons and glial cells. In sbr12 mutant males, the disturbance of medulla boundaries correlates with the defects of photoreceptor axons pathfinding, axon bundle individualization, and developmental neurodegeneration. RNA-binding protein SBR participates in processes allowing axons to reach and identify their targets.
Collapse
Affiliation(s)
- Ludmila Mamon
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia; or
| | - Anna Yakimova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4, 249036 Obninsk, Russia;
| | - Daria Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov St. 34/5, 119334 Moscow, Russia;
| | - Elena Golubkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia; or
| |
Collapse
|
5
|
Fang C, Bian G, Ren P, Xiang J, Song J, Yu C, Zhang Q, Liu L, Chen K, Liu F, Zhang K, Wu C, Sun R, Hu D, Ju G, Wang J. S1P transporter SPNS2 regulates proper postnatal retinal morphogenesis. FASEB J 2018; 32:3597-3613. [DOI: 10.1096/fj.201701116r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Fang
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Ganlan Bian
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Pan Ren
- Department of Plastic SurgeryTangdu HospitalXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jie Xiang
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jun Song
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Caiyong Yu
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Qian Zhang
- Department of NeurologyHainan Branch of Chinese People's Liberation Army General HospitalSanyaChina
| | - Ling Liu
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Kun Chen
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Fangfang Liu
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Kun Zhang
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chunfeng Wu
- BIOS LaboratoryBIOS Bioscience and Technology Limited CompanyGuangzhouChina
| | - Ruixia Sun
- BIOS LaboratoryBIOS Bioscience and Technology Limited CompanyGuangzhouChina
| | - Dan Hu
- Department of OphthalmologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Gong Ju
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jian Wang
- BIOS LaboratoryBIOS Bioscience and Technology Limited CompanyGuangzhouChina
- Institutes for Life Sciences and School of MedicineSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
6
|
Enriquez J, Rio LQ, Blazeski R, Bellemin S, Godement P, Mason C, Mann RS. Differing Strategies Despite Shared Lineages of Motor Neurons and Glia to Achieve Robust Development of an Adult Neuropil in Drosophila. Neuron 2018; 97:538-554.e5. [PMID: 29395908 PMCID: PMC5941948 DOI: 10.1016/j.neuron.2018.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 11/15/2022]
Abstract
In vertebrates and invertebrates, neurons and glia are generated in a stereotyped manner from neural stem cells, but the purpose of invariant lineages is not understood. We show that two stem cells that produce leg motor neurons in Drosophila also generate neuropil glia, which wrap and send processes into the neuropil where motor neuron dendrites arborize. The development of the neuropil glia and leg motor neurons is highly coordinated. However, although motor neurons have a stereotyped birth order and transcription factor code, the number and individual morphologies of the glia born from these lineages are highly plastic, yet the final structure they contribute to is highly stereotyped. We suggest that the shared lineages of these two cell types facilitate the assembly of complex neural circuits and that the two birth order strategies-hardwired for motor neurons and flexible for glia-are important for robust nervous system development, homeostasis, and evolution.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Laura Quintana Rio
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Richard Blazeski
- Departments of Pathology and Cell Biology, Neuroscience and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Stephanie Bellemin
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Pierre Godement
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Richard S Mann
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
7
|
Ugur B, Bao H, Stawarski M, Duraine LR, Zuo Z, Lin YQ, Neely GG, Macleod GT, Chapman ER, Bellen HJ. The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission. Cell Rep 2017; 21:3794-3806. [PMID: 29281828 PMCID: PMC5747319 DOI: 10.1016/j.celrep.2017.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022] Open
Abstract
Neurotransmission is a tightly regulated Ca2+-dependent process. Upon Ca2+ influx, Synaptotagmin1 (Syt1) promotes fusion of synaptic vesicles (SVs) with the plasma membrane. This requires regulation at multiple levels, but the role of metabolites in SV release is unclear. Here, we uncover a role for isocitrate dehydrogenase 3a (idh3a), a Krebs cycle enzyme, in neurotransmission. Loss of idh3a leads to a reduction of the metabolite, alpha-ketoglutarate (αKG), causing defects in synaptic transmission similar to the loss of syt1. Supplementing idh3a flies with αKG suppresses these defects through an ATP or neurotransmitter-independent mechanism. Indeed, αKG, but not glutamate, enhances Syt1-dependent fusion in a reconstitution assay. αKG promotes interaction between the C2-domains of Syt1 and phospholipids. The data reveal conserved metabolic regulation of synaptic transmission via αKG. Our studies provide a synaptic role for αKG, a metabolite that has been proposed as a treatment for aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Huan Bao
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53705, USA
| | - Michal Stawarski
- Department of Biological Sciences and Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Lita R Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Qi Lin
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - G Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory T Macleod
- Department of Biological Sciences and Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53705, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Matsuda M, Rand K, Palardy G, Shimizu N, Ikeda H, Dalle Nogare D, Itoh M, Chitnis AB. Epb41l5 competes with Delta as a substrate for Mib1 to coordinate specification and differentiation of neurons. Development 2016; 143:3085-96. [PMID: 27510968 DOI: 10.1242/dev.138743] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/26/2016] [Indexed: 01/04/2023]
Abstract
We identified Erythrocyte membrane protein band 4.1-like 5 (Epb41l5) as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. Although loss of Epb41l5 does not significantly alter the pattern of neural progenitor cells (NPCs) specified as neurons at the neural plate stage, it delays their delamination and differentiation after neurulation when NPCs normally acquire organized apical junctional complexes (AJCs) in the zebrafish hindbrain. Delays in differentiation are reduced by knocking down N-cadherin, a manipulation expected to help destabilize adherens junctions (AJs). This suggested that delays in neuronal differentiation in epb41l5-deficient embryos are related to a previously described role for Epb41l5 in facilitating disassembly of cadherin-dependent AJCs. Mib1 ubiquitylates Epb41l5 to promote its degradation. DeltaD can compete with Epb41l5 to reduce Mib1-dependent Epb41l5 degradation. In this context, increasing the number of NPCs specified to become neurons, i.e. cells expressing high levels of DeltaD, stabilizes Epb41l5 in the embryo. Together, these observations suggest that relatively high levels of Delta stabilize Epb41l5 in NPCs specified as neurons. This, we suggest, helps coordinate NPC specification with Epb41l5-dependent delamination and differentiation as neurons.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell Biology and Molecular Medicine, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kinneret Rand
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Greg Palardy
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nobuyuki Shimizu
- Department of Cell Biology and Molecular Medicine, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Hiromi Ikeda
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Motoyuki Itoh
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA Department of Pharmacology, Chiba University, Chiba 260-8675, Japan
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Miyamoto Y, Sakane F, Hashimoto K. N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development. Cell Adh Migr 2015; 9:183-92. [PMID: 25869655 DOI: 10.1080/19336918.2015.1005466] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This review addresses our current understanding of the regulatory mechanism by which N-cadherin, a classical cadherin, affects neural progenitor cells (NPCs) during development. N-cadherin is responsible for the integrity of adherens junctions (AJs), which develop in the sub-apical region of NPCs in the neural tube and brain cortex. The apical domain, which contains the sub-apical region, is involved in the switching from symmetric proliferative division to asymmetric neurogenic division of NPCs. In addition, N-cadherin-based AJ is deeply involved in the apico-basal polarity of NPCs and the regulation of Wnt-β-catenin, hedgehog (Hh), and Notch signaling. In this review, we discuss the roles of N-cadherin in the maintenance, proliferation, and differentiation of NPCs through components of AJ, β-catenin and αE-catenin.
Collapse
Key Words
- AJ, adherens junction
- EC, extracellular
- Fox, forkhead box
- Frz, frizzled
- GFAP, glial fibrillary acidic protein
- GSK3β, glycogen synthase kinase 3β
- Hes, hairly/enhancer of split
- Hh, hedgehog
- IP, intermediate progenitor
- KO, knockout
- LEF, lymphocyte enhancer factor
- N-cadherin
- NPC, neural progenitor cell
- Par, partition defective complex protein
- Ptc, Pached
- Smo, smoothened
- Sox2, sry (sex determining region Y)-box containing gene 2
- TA cell, transient amplifying cell; ZO-1, Zonula Occludens-1.
- TCF, T-cell factor
- aPKC, atypical protein kinase C
- adherens junction
- apico-basal polarity
- iPSC, induced pluripotent stem cell
- neural progenitor cells
- ngn2, neurogenin 2
- shRNA, short hairpin RNA
- β-catenin
Collapse
Affiliation(s)
- Yasunori Miyamoto
- a The Graduate School of Humanities and Sciences; Ochanomizu University ; Tokyo , Japan
| | | | | |
Collapse
|
10
|
Kumar A, Gupta T, Berzsenyi S, Giangrande A. N-cadherin negatively regulates collective Drosophila glial migration via actin cytoskeleton remodeling. J Cell Sci 2015; 128:900-12. [DOI: 10.1242/jcs.157974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell migration is an essential and highly regulated process. During development, glia and neurons migrate over long distances, in most cases collectively, to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence the real challenge is to analyze it in the whole organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage dependent manner by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.
Collapse
|
11
|
Schwabe T, Borycz JA, Meinertzhagen IA, Clandinin TR. Differential adhesion determines the organization of synaptic fascicles in the Drosophila visual system. Curr Biol 2014; 24:1304-1313. [PMID: 24881879 PMCID: PMC4500537 DOI: 10.1016/j.cub.2014.04.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/20/2014] [Accepted: 04/24/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neuronal circuits in worms, flies, and mammals are organized so as to minimize wiring length for a functional number of synaptic connections, a phenomenon called wiring optimization. However, the molecular mechanisms that establish optimal wiring during development are unknown. We addressed this question by studying the role of N-cadherin in the development of optimally wired neurite fascicles in the peripheral visual system of Drosophila. RESULTS Photoreceptor axons surround the dendrites of their postsynaptic targets, called lamina cells, within a concentric fascicle called a cartridge. N-cadherin is expressed at higher levels in lamina cells than in photoreceptors, and all genetic manipulations that invert these relative differences displace lamina cells to the periphery and relocate photoreceptor axon terminals into the center. CONCLUSIONS Differential expression of a single cadherin is both necessary and sufficient to determine cartridge structure because it positions the most-adhesive elements that make the most synapses at the core and the less-adhesive elements that make fewer synapses at the periphery. These results suggest a general model by which differential adhesion can be utilized to determine the relative positions of axons and dendrites to establish optimal wiring.
Collapse
Affiliation(s)
- Tina Schwabe
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Jolanta A Borycz
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|