1
|
Hasan MM, Goto S, Sekiya R, Hayashi T, Li TS, Kawabata T. Sustained induction of autophagy enhances survival during prolonged starvation in newt cells. Life Sci Alliance 2025; 8:e202402772. [PMID: 39904566 PMCID: PMC11794943 DOI: 10.26508/lsa.202402772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
Salamanders demonstrate exceptional resistance to starvation, allowing them to endure extended periods without food in their natural habitats. Although autophagy, a process involving evolutionarily conserved proteins, promotes survival during food scarcity, the specific mechanism by which it contributes to the extreme starvation resistance in newt cells remains unexplored. Our study, using the newt species Pleurodeles waltl, reveals that newt primary fibroblasts maintain constant autophagy activation during prolonged cellular starvation. Unlike normal mammalian fibroblasts, where autophagosome formation increases during acute starvation but returns to baseline levels after extended periods, newt cells maintain elevated autophagosome numbers even 4 d after autophagy initiation, surpassing levels observed in nutrient-rich conditions. Unique P. waltl mTOR orthologs show reduced lysosomal localization compared with mammalian cells in both nutrient-rich and starved states. However, newt cells exhibit dephosphorylation of mTOR substrates under starvation conditions, similar to mammalian cells. These observations suggest that newts may have evolved a distinctive system to balance seemingly conflicting factors: high regenerative capacity and autophagy-mediated survival during starvation.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Toshinori Hayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD. Cellular and molecular roles of reactive oxygen species in wound healing. Commun Biol 2024; 7:1534. [PMID: 39562800 DOI: 10.1038/s42003-024-07219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Wound healing is a highly coordinated spatiotemporal sequence of events involving several cell types and tissues. The process of wound healing requires strict regulation, and its disruption can lead to the formation of chronic wounds, which can have a significant impact on an individual's health as well as on worldwide healthcare expenditure. One essential aspect within the cellular and molecular regulation of wound healing pathogenesis is that of reactive oxygen species (ROS) and oxidative stress. Wounding significantly elevates levels of ROS, and an array of various reactive species are involved in modulating the wound healing process, such as through antimicrobial activities and signal transduction. However, as in many pathologies, ROS play an antagonistic pleiotropic role in wound healing, and can be a pathogenic factor in the formation of chronic wounds. Whilst advances in targeting ROS and oxidative stress have led to the development of novel pre-clinical therapeutic methods, due to the complex nature of ROS in wound healing, gaps in knowledge remain concerning the specific cellular and molecular functions of ROS in wound healing. In this review, we highlight current knowledge of these functions, and discuss the potential future direction of new studies, and how these pathways may be targeted in future pre-clinical studies.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Li Q, Liu Y, Wu J, Zhu Z, Fan J, Zhai L, Wang Z, Du G, Zhang L, Hu J, Ma DK, Liu JO, Huang H, Tan M, Dang Y, Jiang W. P4HA2 hydroxylates SUFU to regulate the paracrine Hedgehog signaling and promote B-cell lymphoma progression. Leukemia 2024; 38:1751-1763. [PMID: 38909089 PMCID: PMC11286522 DOI: 10.1038/s41375-024-02313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Aberrations in the Hedgehog (Hh) signaling pathway are significantly prevailed in various cancers, including B-cell lymphoma. A critical facet of Hh signal transduction involves the dynamic regulation of the suppressor of fused homolog (SUFU)-glioma-associated oncogene homolog (GLI) complex within the kinesin family member 7 (KIF7)-supported ciliary tip compartment. However, the specific post-translational modifications of SUFU-GLI complex within this context have remained largely unexplored. Our study reveals a novel regulatory mechanism involving prolyl 4-hydroxylase 2 (P4HA2), which forms a complex with KIF7 and is essential for signal transduction of Hh pathway. We demonstrate that, upon Hh pathway activation, P4HA2 relocates alongside KIF7 to the ciliary tip. Here, it hydroxylates SUFU to inhibit its function, thus amplifying the Hh signaling. Moreover, the absence of P4HA2 significantly impedes B lymphoma progression. This effect can be attributed to the suppression of Hh signaling in stromal fibroblasts, resulting in decreased growth factors essential for malignant proliferation of B lymphoma cells. Our findings highlight the role of P4HA2-mediated hydroxylation in modulating Hh signaling and propose a novel stromal-targeted therapeutic strategy for B-cell lymphoma.
Collapse
Affiliation(s)
- Quanfu Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yiyang Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jingxian Wu
- Department of pathology, College of Basic Medicine, Molecular Medicine Diagnostic and Testing Center, Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Zewen Zhu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianjun Fan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Linhui Zhai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Ziruoyu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guiping Du
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ling Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Dengke K Ma
- Department of Physiology, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Grigoryan EN, Markitantova YV. Tail and Spinal Cord Regeneration in Urodelean Amphibians. Life (Basel) 2024; 14:594. [PMID: 38792615 PMCID: PMC11122520 DOI: 10.3390/life14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Urodelean amphibians can regenerate the tail and the spinal cord (SC) and maintain this ability throughout their life. This clearly distinguishes these animals from mammals. The phenomenon of tail and SC regeneration is based on the capability of cells involved in regeneration to dedifferentiate, enter the cell cycle, and change their (or return to the pre-existing) phenotype during de novo organ formation. The second critical aspect of the successful tail and SC regeneration is the mutual molecular regulation by tissues, of which the SC and the apical wound epidermis are the leaders. Molecular regulatory systems include signaling pathways components, inflammatory factors, ECM molecules, ROS, hormones, neurotransmitters, HSPs, transcriptional and epigenetic factors, etc. The control, carried out by regulatory networks on the feedback principle, recruits the mechanisms used in embryogenesis and accompanies all stages of organ regeneration, from the moment of damage to the completion of morphogenesis and patterning of all its structures. The late regeneration stages and the effects of external factors on them have been poorly studied. A new model for addressing this issue is herein proposed. The data summarized in the review contribute to understanding a wide range of fundamentally important issues in the regenerative biology of tissues and organs in vertebrates including humans.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
5
|
Taghiyar L, Bijarchan F, Doraj M, Baghban Eslaminejad M. Regeneration of amputated mice digit tips by including Wnt signaling pathway with CHIR99021 and IWP-2 chemicals in limb organ culture system. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1251-1259. [PMID: 39229572 PMCID: PMC11366941 DOI: 10.22038/ijbms.2024.76957.16643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/14/2024] [Indexed: 09/05/2024]
Abstract
Objectives Mammals have limited limb regeneration compared to amphibians. The role of Wnt signaling pathways in limb regeneration has rarely been studied. So, this study aimed to investigate the effect of Wnt-signaling using chemicals CHIR99021 and IWP-2 on amputated mice digit tips regeneration in an in vitro organ culture system. Materials and Methods The distal phalanx of paws from C57BL/6J mouse fetuses at E14.5, E16.5, and E18.5 was amputated. Then, the hands were cultured for 7 days. Subsequently, paws were treated with 1-50 µg/ml concentration of CHIR99021 and 5-10 µg/ml concentration of IWP-2. Finally, the new tissue regrowth was assessed by histological analysis, immunohistochemistry for BC, TCF1, CAN, K14, and P63 genes, and beta-catenin and Tcf1 genes were evaluated with RT-qPCR. Results The paws of E14.5 and E16.5 days were shrinkaged and compressed after 7 days, so the paws of 18.5E that were alive were selected. As a result, newly-grown masses at digit tips were observed in 25 and 30 µl/ml concentrations of the CHR99021 group but not in the IWP2 treatment (*P<0.05; **P<0.01). qRT-PCR analysis confirmed the significant up-regulation of beta-catenin and Tcf1 genes in CHIR99021 group in comparison to the IWP-2 group (P<0.05). Moreover, Alcian-blue staining demonstrated the presence of cartilage-like tissue at regenerated mass in the CHIR group. In immunohistochemistry analysis beta-catenin, ACN, Keratin-14, and P63 protein expression were observed in digit tips in the CHIR-treated group. Conclusion By activating the Wnt signaling pathway, cartilage-like tissue formed in the blastema-like mass in the mouse's amputated digit tips.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Fatemeh Bijarchan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mahshad Doraj
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| |
Collapse
|
6
|
Garry DJ, Zhang J(J, Larson TA, Sadek HA, Garry MG. Networks that Govern Cardiomyocyte Proliferation to Facilitate Repair of the Injured Mammalian Heart. Methodist Debakey Cardiovasc J 2023; 19:16-25. [PMID: 38028968 PMCID: PMC10655759 DOI: 10.14797/mdcvj.1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiovascular diseases are the number one cause of death worldwide and in the United States (US). Cardiovascular diseases frequently progress to end-stage heart failure, and curative therapies are extremely limited. Intense interest has focused on deciphering the cascades and networks that govern cardiomyocyte proliferation and regeneration of the injured heart. For example, studies have shown that lower organisms such as the adult newt and adult zebrafish have the capacity to completely regenerate their injured heart with restoration of function. Similarly, the neonatal mouse and pig are also able to completely regenerate injured myocardium due to cardiomyocyte proliferation from preexisting cardiomyocytes. Using these animal models and transcriptome analyses, efforts have focused on the definition of factors and signaling pathways that can reactivate and induce cardiomyocyte proliferation in the adult mammalian injured heart. These studies and discoveries have the potential to define novel therapies to promote cardiomyocyte proliferation and repair of the injured, mammalian heart.
Collapse
Affiliation(s)
- Daniel J. Garry
- University of Minnesota, Minneapolis, Minnesota, US
- NorthStar Genomics, Eagan, Minnesota, US
| | | | | | | | - Mary G. Garry
- NorthStar Genomics, Eagan, Minnesota, US
- University of Minnesota, Minneapolis, MN
| |
Collapse
|
7
|
Li J, Zuo J, Lv X, Ma J, Li X, Fu S, Sun J. Hedgehog signaling is essential in the regulation of limb regeneration in the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108981. [PMID: 37543149 DOI: 10.1016/j.fsi.2023.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Tissue autotomy is a unique adaptive response to environmental stress, followed by regeneration process compensating for the loss of body parts. The crustaceans present remarkable activity of appendage autotomy and regeneration, however, the molecular mechanism is still unclear. In this study, the Eriocheir sinensis Hedgehog (EsHH) and Smoothened (EsSMO) were identified in the regenerative limbs, and the function of Hedgehog signaling pathway on limb regeneration was evaluated. At the blastema growth stage of limb regeneration, the expression of EsHH and EsSMO was up-regulated in response to limb autotomy stress, and down-regulated at blastema differentiation stage. To clarify the effect of Hedgehog pathway during limb regeneration, the regenerative efficiency was evaluated with Smoothened inhibitor cyclopamine or RNAi (ds-HH) injection. We observed that the regenerative efficiency was significantly repressed with blockage of Hedgehog pathway at both the basal growth stage and the proecdysial growth stage, which was indicated by the delay of wound healing and blastema growth, as well as a decrease in the size of newly formed limbs. In addition, gene expression and BrdU incorporation assay showed that the proliferation and myogenic differentiation of blastema cells were suppressed with either cyclopamine or ds-HH injection. Thus, these results suggest that Hedgehog signaling pathway is essential for the establishment of limb regeneration in E. sinensis through promoting the proliferation and myogenic differentiation of blastema cells.
Collapse
Affiliation(s)
- Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| | - Jinmei Zuo
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoyan Lv
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Jiahe Ma
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaohong Li
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Simiao Fu
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China
| | - Jinsheng Sun
- College of Life Science, Tianjin Normal University, Tianjin, 300387, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, PR China.
| |
Collapse
|
8
|
Abstract
The efficacy of implanted biomaterials is largely dependent on the response of the host's immune and stromal cells. Severe foreign body response (FBR) can impede the integration of the implant into the host tissue and compromise the intended mechanical and biochemical function. Many features of FBR, including late-stage fibrotic encapsulation of implants, parallel the formation of fibrotic scar tissue after tissue injury. Regenerative organisms like zebrafish and salamanders can avoid fibrosis after injury entirely, but FBR in these research organisms is rarely investigated because their immune competence is much lower than humans. The recent characterization of a regenerative mammal, the spiny mouse (Acomys), has inspired us to take a closer look at cellular regulation in regenerative organisms across the animal kingdom for insights into avoiding FBR in humans. Here, we highlight how major features of regeneration, such as blastema formation, macrophage polarization, and matrix composition, can be modulated across a range of regenerative research organisms to elucidate common features that may be harnessed to minimize FBR. Leveraging a deeper understanding of regenerative biology for biomaterial design may help to reduce FBR and improve device integration and performance.
Collapse
Affiliation(s)
- Sunaina Sapru
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Michele N Dill
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
10
|
Glotzer GL, Tardivo P, Tanaka EM. Canonical Wnt signaling and the regulation of divergent mesenchymal Fgf8 expression in axolotl limb development and regeneration. eLife 2022; 11:e79762. [PMID: 35587651 PMCID: PMC9154742 DOI: 10.7554/elife.79762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
The expression of fibroblast growth factors (Fgf) ligands in a specialized epithelial compartment, the Apical Ectodermal Ridge (AER), is a conserved feature of limb development across vertebrate species. In vertebrates, Fgf 4, 8, 9, and 17 are all expressed in the AER. An exception to this paradigm is the salamander (axolotl) developing and regenerating limb, where key Fgf ligands are expressed in the mesenchyme. The mesenchymal expression of Amex.Fgf8 in axolotl has been suggested to be critical for regeneration. To date, there is little knowledge regarding what controls Amex.Fgf8 expression in the axolotl limb mesenchyme. A large body of mouse and chick studies have defined a set of transcription factors and canonical Wnt signaling as the main regulators of epidermal Fgf8 expression in these organisms. In this study, we address the hypothesis that alterations to one or more of these components during evolution has resulted in mesenchymal Amex.Fgf8 expression in the axolotl. To sensitively quantify gene expression with spatial precision, we combined optical clearing of whole-mount axolotl limb tissue with single molecule fluorescent in situ hybridization and a semiautomated quantification pipeline. Several candidate upstream components were found expressed in the axolotl ectoderm, indicating that they are not direct regulators of Amex.Fgf8 expression. We found that Amex.Wnt3a is expressed in axolotl limb epidermis, similar to chicken and mouse. However, unlike in amniotes, Wnt target genes are activated preferentially in limb mesenchyme rather than in epidermis. Inhibition and activation of Wnt signaling results in downregulation and upregulation of mesenchymal Amex.Fgf8 expression, respectively. These results implicate a shift in tissue responsiveness to canonical Wnt signaling from epidermis to mesenchyme as one step contributing to the unique mesenchymal Amex.Fgf8 expression seen in the axolotl.
Collapse
Affiliation(s)
- Giacomo L Glotzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
| | - Pietro Tardivo
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
| |
Collapse
|
11
|
Lovely AM, Duerr TJ, Qiu Q, Galvan S, Voss SR, Monaghan JR. Wnt Signaling Coordinates the Expression of Limb Patterning Genes During Axolotl Forelimb Development and Regeneration. Front Cell Dev Biol 2022; 10:814250. [PMID: 35531102 PMCID: PMC9068880 DOI: 10.3389/fcell.2022.814250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
After amputation, axolotl salamanders can regenerate their limbs, but the degree to which limb regeneration recapitulates limb development remains unclear. One limitation in answering this question is our lack of knowledge about salamander limb development. Here, we address this question by studying expression patterns of genes important for limb patterning during axolotl salamander limb development and regeneration. We focus on the Wnt signaling pathway because it regulates multiple functions during tetrapod limb development, including limb bud initiation, outgrowth, patterning, and skeletal differentiation. We use fluorescence in situ hybridization to show the expression of Wnt ligands, Wnt receptors, and limb patterning genes in developing and regenerating limbs. Inhibition of Wnt ligand secretion permanently blocks limb bud outgrowth when treated early in limb development. Inhibiting Wnt signaling during limb outgrowth decreases the expression of critical signaling genes, including Fgf10, Fgf8, and Shh, leading to the reduced outgrowth of the limb. Patterns of gene expression are similar between developing and regenerating limbs. Inhibition of Wnt signaling during regeneration impacted patterning gene expression similarly. Overall, our findings suggest that limb development and regeneration utilize Wnt signaling similarly. It also provides new insights into the interaction of Wnt signaling with other signaling pathways during salamander limb development and regeneration.
Collapse
Affiliation(s)
| | - Timothy J. Duerr
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Qingchao Qiu
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, United States
| | | | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, United States
| | - James R. Monaghan
- Department of Biology, Northeastern University, Boston, MA, United States
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA, United States
| |
Collapse
|
12
|
Mehta AS, Deshpande P, Chimata AV, Tsonis PA, Singh A. Newt regeneration genes regulate Wingless signaling to restore patterning in Drosophila eye. iScience 2021; 24:103166. [PMID: 34746690 PMCID: PMC8551474 DOI: 10.1016/j.isci.2021.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Newts utilize their unique genes to restore missing parts by strategic regulation of conserved signaling pathways. Lack of genetic tools poses challenges to determine the function of such genes. Therefore, we used the Drosophila eye model to demonstrate the potential of 5 unique newt (Notophthalmus viridescens) gene(s), viropana1-viropana5 (vna1-vna5), which were ectopically expressed in L 2 mutant and GMR-hid, GMR-GAL4 eye. L 2 exhibits the loss of ventral half of early eye and head involution defective (hid) triggers cell-death during later eye development. Surprisingly, newt genes significantly restore missing photoreceptor cells both in L 2 and GMR>hid background by upregulating cell-proliferation and blocking cell-death, regulating evolutionarily conserved Wingless (Wg)/Wnt signaling pathway and exhibit non-cell-autonomous rescues. Further, Wg/Wnt signaling acts downstream of newt genes. Our data highlights that unique newt proteins can regulate conserved pathways to trigger a robust restoration of missing photoreceptor cells in Drosophila eye model with weak restoration capability.
Collapse
Affiliation(s)
| | | | | | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
- Premedical Program, University of Dayton, Dayton, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
13
|
Hamilton AM, Balashova OA, Borodinsky LN. Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae. eLife 2021; 10:61804. [PMID: 33955353 PMCID: PMC8137141 DOI: 10.7554/elife.61804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Inducing regeneration in injured spinal cord represents one of modern medicine’s greatest challenges. Research from a variety of model organisms indicates that Hedgehog (Hh) signaling may be a useful target to drive regeneration. However, the mechanisms of Hh signaling-mediated tissue regeneration remain unclear. Here, we examined Hh signaling during post-amputation tail regeneration in Xenopus laevis larvae. We found that while Smoothened (Smo) activity is essential for proper spinal cord and skeletal muscle regeneration, transcriptional activity of the canonical Hh effector Gli is repressed immediately following amputation, and inhibition of Gli1/2 expression or transcriptional activity has minimal effects on regeneration. In contrast, we demonstrate that protein kinase A is necessary for regeneration of both muscle and spinal cord, in concert with and independent of Smo, respectively, and that its downstream effector CREB is activated in spinal cord following amputation in a Smo-dependent manner. Our findings indicate that non-canonical mechanisms of Hh signaling are necessary for spinal cord and muscle regeneration.
Collapse
Affiliation(s)
- Andrew M Hamilton
- Department of Physiology & Membrane Biology Shriners Hospitals for Children Northern California, University of California, Sacramento, School of Medicine, Sacramento, United States
| | - Olga A Balashova
- Department of Physiology & Membrane Biology Shriners Hospitals for Children Northern California, University of California, Sacramento, School of Medicine, Sacramento, United States
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology Shriners Hospitals for Children Northern California, University of California, Sacramento, School of Medicine, Sacramento, United States
| |
Collapse
|
14
|
Zhou H, Ma Z, Wang Z, Yan S, Wang D, Shen J. Hedgehog signaling regulates regenerative patterning and growth in Harmonia axyridis leg. Cell Mol Life Sci 2021; 78:2185-2197. [PMID: 32909120 PMCID: PMC11071721 DOI: 10.1007/s00018-020-03631-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Appendage regeneration has been widely studied in many species. Compared to other animal models, Harmonia axyridis has the advantage of a short life cycle, is easily reared, has strong regeneration capacity and contains systemic RNAi, making it a model organism for research on appendage regeneration. Here, we performed transcriptome analysis, followed by gene functional assays to reveal the molecular mechanism of H. axyridis leg regenerative growth process. Signaling pathways including Decapentaplegic (Dpp), Wingless (Wg), Ds/Ft/Hippo, Notch, Egfr, and Hedgehog (Hh) were all upregulated during the leg regenerative patterning and growth. Among these, Hh and its auxiliary receptor Lrp2 were required for the proper patterning and growth of the regenerative leg. The targets of canonical Hh signaling were required for the regenerative growth which contributes to the leg length, but were not essential for the pattern formation of the regenerative leg. dpp, wg and leg developmental-related genes including rn, dac and Dll were all regulated by hh and lrp2 and may play an essential role in the regenerative patterning of the leg.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Zhongzheng Ma
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Zhiqi Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Singh BN, Sierra-Pagan JE, Gong W, Das S, Theisen JWM, Skie E, Garry MG, Garry DJ. ETV2 (Ets Variant Transcription Factor 2)- Rhoj Cascade Regulates Endothelial Progenitor Cell Migration During Embryogenesis. Arterioscler Thromb Vasc Biol 2020; 40:2875-2890. [PMID: 33115267 DOI: 10.1161/atvbaha.120.314488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Endothelial progenitors migrate early during embryogenesis to form the primary vascular plexus. The regulatory mechanisms that govern their migration are not completely defined. Here, we describe a novel role for ETV2 (Ets variant transcription factor 2) in cell migration and provide evidence for an ETV2-Rhoj network as a mechanism responsible for this process. Approach and Results: Analysis of RNAseq datasets showed robust enrichment of migratory/motility pathways following overexpression of ETV2 during mesodermal differentiation. We then analyzed ETV2 chromatin immunoprecipitation-seq and assay for transposase accessible chromatin-seq datasets, which showed enrichment of chromatin immunoprecipitation-seq peaks with increased chromatin accessibility in migratory genes following overexpression of ETV2. Migratory assays showed that overexpression of ETV2 enhanced cell migration in mouse embryonic stem cells, embryoid bodies, and mouse embryonic fibroblasts. Knockout of Etv2 led to migratory defects of Etv2-EYFP+ angioblasts to their predefined regions of developing embryos relative to wild-type controls at embryonic day (E) 8.5, supporting its role during migration. Mechanistically, we showed that ETV2 binds the promoter region of Rhoj serving as an upstream regulator of cell migration. Single-cell RNAseq analysis of Etv2-EYFP+ sorted cells revealed coexpression of Etv2 and Rhoj in endothelial progenitors at E7.75 and E8.25. Overexpression of ETV2 led to a robust increase in Rhoj in both embryoid bodies and mouse embryonic fibroblasts, whereas, its expression was abolished in the Etv2 knockout embryoid bodies. Finally, shRNA-mediated knockdown of Rhoj resulted in migration defects, which were partially rescued by overexpression of ETV2. CONCLUSIONS These results define an ETV2-Rhoj cascade, which is important for the regulation of endothelial progenitor cell migration.
Collapse
Affiliation(s)
- Bhairab N Singh
- Department of Medicine, Lillehei Heart Institute (B.N.S., J.E.S.-P., W.G., S.D., J.W.M.T., E.S., M.G.G., D.J.G.), University of Minnesota, Minneapolis
| | - Javier E Sierra-Pagan
- Department of Medicine, Lillehei Heart Institute (B.N.S., J.E.S.-P., W.G., S.D., J.W.M.T., E.S., M.G.G., D.J.G.), University of Minnesota, Minneapolis
| | - Wuming Gong
- Department of Medicine, Lillehei Heart Institute (B.N.S., J.E.S.-P., W.G., S.D., J.W.M.T., E.S., M.G.G., D.J.G.), University of Minnesota, Minneapolis
| | - Satyabrata Das
- Department of Medicine, Lillehei Heart Institute (B.N.S., J.E.S.-P., W.G., S.D., J.W.M.T., E.S., M.G.G., D.J.G.), University of Minnesota, Minneapolis
| | - Joshua W M Theisen
- Department of Medicine, Lillehei Heart Institute (B.N.S., J.E.S.-P., W.G., S.D., J.W.M.T., E.S., M.G.G., D.J.G.), University of Minnesota, Minneapolis.,Department of Pediatrics (J.W.M.T.), University of Minnesota, Minneapolis
| | - Erik Skie
- Department of Medicine, Lillehei Heart Institute (B.N.S., J.E.S.-P., W.G., S.D., J.W.M.T., E.S., M.G.G., D.J.G.), University of Minnesota, Minneapolis
| | - Mary G Garry
- Department of Medicine, Lillehei Heart Institute (B.N.S., J.E.S.-P., W.G., S.D., J.W.M.T., E.S., M.G.G., D.J.G.), University of Minnesota, Minneapolis.,Paul and Sheila Wellstone Muscular Dystrophy Center (M.G.G., D.J.G.), University of Minnesota, Minneapolis.,Stem Cell Institute (M.G.G., D.J.G.), University of Minnesota, Minneapolis
| | - Daniel J Garry
- Department of Medicine, Lillehei Heart Institute (B.N.S., J.E.S.-P., W.G., S.D., J.W.M.T., E.S., M.G.G., D.J.G.), University of Minnesota, Minneapolis.,Paul and Sheila Wellstone Muscular Dystrophy Center (M.G.G., D.J.G.), University of Minnesota, Minneapolis.,Stem Cell Institute (M.G.G., D.J.G.), University of Minnesota, Minneapolis
| |
Collapse
|
16
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
17
|
Mehta AS, Luz-Madrigal A, Li JL, Tsonis PA, Singh A. Comparative transcriptomic analysis and structure prediction of novel Newt proteins. PLoS One 2019; 14:e0220416. [PMID: 31419228 PMCID: PMC6697330 DOI: 10.1371/journal.pone.0220416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023] Open
Abstract
Notophthalmus viridescens (Red-spotted Newt) possess amazing capabilities to regenerate their organs and other tissues. Previously, using a de novo assembly of the newt transcriptome combined with proteomic validation, our group identified a novel family of five protein members expressed in adult tissues during regeneration in Notophthalmus viridescens. The presence of a putative signal peptide suggests that all these proteins are secretory in nature. Here we employed iterative threading assembly refinement (I-TASSER) server to generate three-dimensional structure of these novel Newt proteins and predicted their function. Our data suggests that these proteins could act as ion transporters, and be involved in redox reaction(s). Due to absence of transgenic approaches in N. viridescens, and conservation of genetic machinery across species, we generated transgenic Drosophila melanogaster to misexpress these genes. Expression of 2775 transcripts were compared between these five newly identified Newt genes. We found that genes involved in the developmental process, cell cycle, apoptosis, and immune response are among those that are highly enriched. To validate the RNA Seq. data, expression of six highly regulated genes were verified using real time Quantitative Polymerase Chain Reaction (RT-qPCR). These graded gene expression patterns provide insight into the function of novel protein family identified in Newt, and layout a map for future studies in the field.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Agustin Luz-Madrigal
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, United States of America
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
- The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, United States of America
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|
18
|
Darnet S, Dragalzew AC, Amaral DB, Sousa JF, Thompson AW, Cass AN, Lorena J, Pires ES, Costa CM, Sousa MP, Fröbisch NB, Oliveira G, Schneider PN, Davis MC, Braasch I, Schneider I. Deep evolutionary origin of limb and fin regeneration. Proc Natl Acad Sci U S A 2019; 116:15106-15115. [PMID: 31270239 PMCID: PMC6660751 DOI: 10.1073/pnas.1900475116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salamanders and lungfishes are the only sarcopterygians (lobe-finned vertebrates) capable of paired appendage regeneration, regardless of the amputation level. Among actinopterygians (ray-finned fishes), regeneration after amputation at the fin endoskeleton has only been demonstrated in polypterid fishes (Cladistia). Whether this ability evolved independently in sarcopterygians and actinopterygians or has a common origin remains unknown. Here we combine fin regeneration assays and comparative RNA-sequencing (RNA-seq) analysis of Polypterus and axolotl blastemas to provide support for a common origin of paired appendage regeneration in Osteichthyes (bony vertebrates). We show that, in addition to polypterids, regeneration after fin endoskeleton amputation occurs in extant representatives of 2 other nonteleost actinopterygians: the American paddlefish (Chondrostei) and the spotted gar (Holostei). Furthermore, we assessed regeneration in 4 teleost species and show that, with the exception of the blue gourami (Anabantidae), 3 species were capable of regenerating fins after endoskeleton amputation: the white convict and the oscar (Cichlidae), and the goldfish (Cyprinidae). Our comparative RNA-seq analysis of regenerating blastemas of axolotl and Polypterus reveals the activation of common genetic pathways and expression profiles, consistent with a shared genetic program of appendage regeneration. Comparison of RNA-seq data from early Polypterus blastema to single-cell RNA-seq data from axolotl limb bud and limb regeneration stages shows that Polypterus and axolotl share a regeneration-specific genetic program. Collectively, our findings support a deep evolutionary origin of paired appendage regeneration in Osteichthyes and provide an evolutionary framework for studies on the genetic basis of appendage regeneration.
Collapse
Affiliation(s)
- Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Aline C Dragalzew
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Danielson B Amaral
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Josane F Sousa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Andrew W Thompson
- Department of Integrative Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824
| | - Amanda N Cass
- Department of Biology, James Madison University, Harrisonburg, VA 22807
| | - Jamily Lorena
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
- Instituto Tecnológico Vale, 66055-090 Belém, Brazil
| | - Eder S Pires
- Instituto Tecnológico Vale, 66055-090 Belém, Brazil
| | - Carinne M Costa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Marcos P Sousa
- Laboratório de Biologia Molecular, Museu Paraense Emílio Goeldi, 66077-530 Belém, Pará, Brazil
| | - Nadia B Fröbisch
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | | | - Patricia N Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil
| | - Marcus C Davis
- Department of Biology, James Madison University, Harrisonburg, VA 22807
| | - Ingo Braasch
- Department of Integrative Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Brazil;
| |
Collapse
|
19
|
Joven A, Elewa A, Simon A. Model systems for regeneration: salamanders. Development 2019; 146:146/14/dev167700. [PMID: 31332037 DOI: 10.1242/dev.167700] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023]
Abstract
Salamanders have been hailed as champions of regeneration, exhibiting a remarkable ability to regrow tissues, organs and even whole body parts, e.g. their limbs. As such, salamanders have provided key insights into the mechanisms by which cells, tissues and organs sense and regenerate missing or damaged parts. In this Primer, we cover the evolutionary context in which salamanders emerged. We outline the varieties of mechanisms deployed during salamander regeneration, and discuss how these mechanisms are currently being explored and how they have advanced our understanding of animal regeneration. We also present arguments about why it is important to study closely related species in regeneration research.
Collapse
Affiliation(s)
- Alberto Joven
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockolm, Sweden
| | - Ahmed Elewa
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockolm, Sweden
| | - András Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockolm, Sweden
| |
Collapse
|
20
|
Singh BN, Gong W, Das S, Theisen JWM, Sierra-Pagan JE, Yannopoulos D, Skie E, Shah P, Garry MG, Garry DJ. Etv2 transcriptionally regulates Yes1 and promotes cell proliferation during embryogenesis. Sci Rep 2019; 9:9736. [PMID: 31278282 PMCID: PMC6611806 DOI: 10.1038/s41598-019-45841-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Etv2, an Ets-transcription factor, governs the specification of the earliest hemato-endothelial progenitors during embryogenesis. While the transcriptional networks during hemato-endothelial development have been well described, the mechanistic details are incompletely defined. In the present study, we described a new role for Etv2 as a regulator of cellular proliferation via Yes1 in mesodermal lineages. Analysis of an Etv2-ChIPseq dataset revealed significant enrichment of Etv2 peaks in the upstream regions of cell cycle regulatory genes relative to non-cell cycle genes. Our bulk-RNAseq analysis using the doxycycline-inducible Etv2 ES/EB system showed increased levels of cell cycle genes including E2f4 and Ccne1 as early as 6 h following Etv2 induction. Further, EdU-incorporation studies demonstrated that the induction of Etv2 resulted in a ~2.5-fold increase in cellular proliferation, supporting a proliferative role for Etv2 during differentiation. Next, we identified Yes1 as the top-ranked candidate that was expressed in Etv2-EYFP+ cells at E7.75 and E8.25 using single cell RNA-seq analysis. Doxycycline-mediated induction of Etv2 led to an increase in Yes1 transcripts in a dose-dependent fashion. In contrast, the level of Yes1 was reduced in Etv2 null embryoid bodies. Using bioinformatics algorithms, biochemical, and molecular biology techniques, we show that Etv2 binds to the promoter region of Yes1 and functions as a direct upstream transcriptional regulator of Yes1 during embryogenesis. These studies enhance our understanding of the mechanisms whereby Etv2 governs mesodermal fate decisions early during embryogenesis.
Collapse
Affiliation(s)
- Bhairab N Singh
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wuming Gong
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua W M Theisen
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Javier E Sierra-Pagan
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Demetris Yannopoulos
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erik Skie
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pruthvi Shah
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary G Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA. .,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human. Nat Commun 2018; 9:4237. [PMID: 30315164 PMCID: PMC6185975 DOI: 10.1038/s41467-018-06617-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/15/2018] [Indexed: 01/07/2023] Open
Abstract
The mammalian heart has a limited regenerative capacity and typically progresses to heart failure following injury. Here, we defined a hedgehog (HH)-Gli1-Mycn network for cardiomyocyte proliferation and heart regeneration from amphibians to mammals. Using a genome-wide screen, we verified that HH signaling was essential for heart regeneration in the injured newt. Next, pharmacological and genetic loss- and gain-of-function of HH signaling demonstrated the essential requirement for HH signaling in the neonatal, adolescent, and adult mouse heart regeneration, and in the proliferation of hiPSC-derived cardiomyocytes. Fate-mapping and molecular biological studies revealed that HH signaling, via a HH-Gli1-Mycn network, contributed to heart regeneration by inducing proliferation of pre-existing cardiomyocytes and not by de novo cardiomyogenesis. Further, Mycn mRNA transfection experiments recapitulated the effects of HH signaling and promoted adult cardiomyocyte proliferation. These studies defined an evolutionarily conserved function of HH signaling that may serve as a platform for human regenerative therapies. Due to the limited proliferation capacity of adult mammalian cardiomyocytes, the human heart has negligible regenerative capacity after injury. Here the authors show that a Hedgehog-Gli1-Mycn signaling cascade regulates cardiomyocyte proliferation and cardiac regeneration from amphibians to mammals.
Collapse
|
22
|
Romero MMG, McCathie G, Jankun P, Roehl HH. Damage-induced reactive oxygen species enable zebrafish tail regeneration by repositioning of Hedgehog expressing cells. Nat Commun 2018; 9:4010. [PMID: 30275454 PMCID: PMC6167316 DOI: 10.1038/s41467-018-06460-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
Many aquatic vertebrates have a remarkable ability to regenerate limbs and tails after amputation. Previous studies indicate that reactive oxygen species (ROS) signalling initiates regeneration, but the mechanism by which this takes place is poorly understood. Developmental signalling pathways have been shown to have proregenerative roles in many systems. However, whether these are playing roles that are specific to regeneration, or are simply recapitulating their developmental functions is unclear. Here, we analyse zebrafish larval tail regeneration and find evidence that ROS released upon wounding cause repositioning of notochord cells to the damage site. These cells secrete Hedgehog ligands that are required for regeneration. Hedgehog signalling is not required for normal tail development suggesting that it has a regeneration-specific role. Our results provide a model for how ROS initiate tail regeneration, and indicate that developmental signalling pathways can play regenerative functions that are not directly related to their developmental roles. Reactive oxygen species (ROS) are required to initiate regeneration but the mechanisms regulating its production are unclear. Here, the authors show in zebrafish larval tail regeneration that ROS is released by mobilised notochord cells enables their repositioning in the damage site, assisted by secreted Hh.
Collapse
Affiliation(s)
- Maria Montserrat Garcia Romero
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Gareth McCathie
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Philip Jankun
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Henry Hamilton Roehl
- Bateson Centre, Department of Biomedical Sciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
23
|
Singh BN, Weaver CV, Garry MG, Garry DJ. Hedgehog and Wnt Signaling Pathways Regulate Tail Regeneration. Stem Cells Dev 2018; 27:1426-1437. [PMID: 30003832 DOI: 10.1089/scd.2018.0049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Urodele amphibians have a tremendous capacity for the regeneration of appendages, including limb and tail, following injury. While studies have focused on the cellular and morphological changes during appendicular regeneration, the signaling mechanisms that govern these cytoarchitectural changes during the regenerative response are unclear. In this study, we describe the essential role of hedgehog (Hh) and Wnt signaling pathways following tail amputation in the newt. Quantitative PCR studies revealed that members of both the Hh and Wnt signaling pathways, including the following: shh, ihh, ptc-1, wnt-3a, β-catenin, axin2, frizzled (frzd)-1, and frzd-2 transcripts, were induced following injury. Continuous pharmacological-mediated inhibition of Hh signaling resulted in spike-like regenerates with no evidence of tissue patterning, whereas activation of Hh signaling enhanced the regenerative process. Pharmacological-mediated temporal inhibition experiments demonstrated that the Hh-mediated patterning of the regenerating tail occurs early during regeneration and Hh signals are continuously required for proliferation of the blastemal progenitors. BrdU incorporation and PCNA immunohistochemical studies demonstrated that Hh signaling regulates the cellular proliferation of the blastemal cells following amputation. Similarly, Wnt inhibition resulted in perturbed regeneration, whereas its activation promoted tail regeneration. Using an inhibitor-activator strategy, we demonstrated that the Wnt pathway is likely to be upstream of the Hh pathway and together these signaling pathways function in a coordinated manner to facilitate tail regeneration. Mechanistically, the Wnt signaling pathway activated the Hh signaling pathway that included ihh and ptc-1 during the tail regenerative process. Collectively, our results demonstrate the absolute requirement of signaling pathways that are essential in the regulation of tail regeneration.
Collapse
Affiliation(s)
- Bhairab N Singh
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | - Cyprian V Weaver
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | - Mary G Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | - Daniel J Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
24
|
Ricci L, Srivastava M. Wound-induced cell proliferation during animal regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e321. [PMID: 29719123 DOI: 10.1002/wdev.321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Many animal species are capable of replacing missing tissues that are lost upon injury or amputation through the process of regeneration. Although the extent of regeneration is variable across animals, that is, some animals can regenerate any missing cell type whereas some can only regenerate certain organs or tissues, regulated cell proliferation underlies the formation of new tissues in most systems. Notably, many species display an increase in proliferation within hours or days upon wounding. While different cell types proliferate in response to wounding in various animal taxa, comparative molecular data are beginning to point to shared wound-induced mechanisms that regulate cell division during regeneration. Here, we synthesize current insights about early molecular pathways of regeneration from diverse model and emerging systems by considering these species in their evolutionary contexts. Despite the great diversity of mechanisms underlying injury-induced cell proliferation across animals, and sometimes even in the same species, similar pathways for proliferation have been implicated in distantly related species (e.g., small diffusible molecules, signaling from apoptotic cells, growth factor signaling, mTOR and Hippo signaling, and Wnt and Bmp pathways). Studies that explicitly interrogate molecular and cellular regenerative mechanisms in understudied animal phyla will reveal the extent to which early pathways in the process of regeneration are conserved or independently evolved. This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
25
|
Liu L, Fu Y, Zhu F, Mu C, Li R, Song W, Shi C, Ye Y, Wang C. Transcriptomic analysis of Portunus trituberculatus reveals a critical role for WNT4 and WNT signalling in limb regeneration. Gene 2018. [PMID: 29524579 DOI: 10.1016/j.gene.2018.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The swimming crab (Portunus trituberculatus) is among the most economically important seawater crustacean species in Asia. Despite its commercial importance and being well-studied status, genomic and transcriptomic data are scarce for this crab species. In the present study, limb bud tissue was collected at different developmental stages post amputation for transcriptomic analysis. Illumina RNA-sequencing was applied to characterise the limb regeneration transcriptome and identify the most characteristic genes. A total of 289,018 transcripts were obtained by clustering and assembly of clean reads, producing 150,869 unigenes with an average length of 956 bp. Subsequent analysis revealed WNT signalling as the key pathway involved in limb regeneration, with WNT4 a key mediator. Overall, limb regeneration appears to be regulated by multiple signalling pathways, with numerous cell differentiation, muscle growth, moult, metabolism, and immune-related genes upregulated, including WNT4, LAMA, FIP2, FSTL5, TNC, HUS1, SWI5, NCGL, SLC22, PLA2, Tdc2, SMOX, GDH, and SMPD4. This is the first experimental study done on regenerating claws of P. trituberculatus. These findings expand existing sequence resources for crab species, and will likely accelerate research into regeneration and development in crustaceans, particularly functional studies on genes involved in limb regeneration.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Yuanyuan Fu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Fang Zhu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
iTRAQ-based proteomic analysis identifies proteins involved in limb regeneration of swimming crab Portunus trituberculatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:10-19. [PMID: 29482113 DOI: 10.1016/j.cbd.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 11/22/2022]
Abstract
The swimming crab (Portunus trituberculatus) has a striking capacity for limb regeneration, which has drawn the interest of many researchers. In this study, isobaric tag for relative and absolute quantitation (iTRAQ) approach was utilised to investigate protein abundance changes during limb regeneration in this species. A total of 1830 proteins were identified, of which 181 were significantly differentially expressed, with 94 upregulated and 87 downregulated. Our results highlight the complexity of limb regeneration and its regulation through cooperation of various biological processes including cytoskeletal changes, extracellular matrix (ECM) remodelling and ECM-receptor interactions, protein synthesis, signal recognition and transduction, energy production and conversion, and substance transport and metabolism. Additionally, real-time PCR confirmed that mRNA levels of differentially expressed genes were correlated with protein levels. Our results provide a basis for studying the regulatory mechanisms associated with crab limb regeneration.
Collapse
|
27
|
The blastema and epimorphic regeneration in mammals. Dev Biol 2017; 433:190-199. [PMID: 29291973 DOI: 10.1016/j.ydbio.2017.08.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 01/02/2023]
Abstract
Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration.
Collapse
|
28
|
Singh BN, Tahara N, Kawakami Y, Das S, Koyano-Nakagawa N, Gong W, Garry MG, Garry DJ. Etv2-miR-130a-Jarid2 cascade regulates vascular patterning during embryogenesis. PLoS One 2017; 12:e0189010. [PMID: 29232705 PMCID: PMC5726724 DOI: 10.1371/journal.pone.0189010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/16/2017] [Indexed: 01/06/2023] Open
Abstract
Remodeling of the primitive vasculature is necessary for the formation of a complex branched vascular architecture. However, the factors that modulate these processes are incompletely defined. Previously, we defined the role of microRNAs (miRNAs) in endothelial specification. In the present study, we further examined the Etv2-Cre mediated ablation of DicerL/L and characterized the perturbed vascular patterning in the embryo proper and yolk-sac. We mechanistically defined an important role for miR-130a, an Etv2 downstream target, in the mediation of vascular patterning and angiogenesis in vitro and in vivo. Inducible overexpression of miR-130a resulted in robust induction of vascular sprouts and angiogenesis with increased uptake of acetylated-LDL. Mechanistically, miR-130a directly regulated Jarid2 expression by binding to its 3’-UTR region. Over-expression of Jarid2 in HUVEC cells led to defective tube formation indicating its inhibitory role in angiogenesis. The knockout of miR-130a showed increased levels of Jarid2 in the ES/EB system. In addition, the levels of Jarid2 transcripts were increased in the Etv2-null embryos at E8.5. In the in vivo settings, injection of miR-130a specific morpholinos in zebrafish embryos resulted in perturbed vascular patterning with reduced levels of endothelial transcripts in the miR-130a morphants. Further, co-injection of miR-130a mimics in the miR-130a morphants rescued the vascular defects during embryogenesis. qPCR and in situ hybridization techniques demonstrated increased expression of jarid2a in the miR-130a morphants in vivo. These findings demonstrate a critical role for Etv2-miR-130a-Jarid2 in vascular patterning both in vitro and in vivo.
Collapse
Affiliation(s)
- Bhairab N. Singh
- Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States of America
| | - Naoyuki Tahara
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Satyabrata Das
- Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States of America
| | - Naoko Koyano-Nakagawa
- Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States of America
| | - Wuming Gong
- Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States of America
| | - Mary G. Garry
- Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail: (DJG); (MGG)
| | - Daniel J. Garry
- Lillehei Heart Institute Regenerative Medicine and Sciences Program, University of Minnesota, Minneapolis, MN, United States of America
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail: (DJG); (MGG)
| |
Collapse
|
29
|
Sommese L, Zullo A, Schiano C, Mancini FP, Napoli C. Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Rev Rep 2017; 13:170-191. [PMID: 28058671 DOI: 10.1007/s12015-016-9711-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.
Collapse
Affiliation(s)
- Linda Sommese
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.,CEINGE Advanced Biotechnologies, s.c.ar.l, Naples, Italy
| | | | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Claudio Napoli
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.,IRCCS Foundation SDN, Naples, Italy
| |
Collapse
|
30
|
Ding M, Wang X. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity. Oncol Lett 2017; 14:6327-6333. [PMID: 29391876 DOI: 10.3892/ol.2017.7030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.
Collapse
Affiliation(s)
- Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
31
|
Meda F, Rampon C, Dupont E, Gauron C, Mourton A, Queguiner I, Thauvin M, Volovitch M, Joliot A, Vriz S. Nerves, H 2O 2 and Shh: Three players in the game of regeneration. Semin Cell Dev Biol 2017; 80:65-73. [PMID: 28797840 DOI: 10.1016/j.semcdb.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
The tight control of reactive oxygen species (ROS) levels is required during regeneration. H2O2 in particular assumes clear signalling functions at different steps in this process. Injured nerves induce high levels of H2O2 through the activation of the Hedgehog (Shh) pathway, providing an environment that promotes cell plasticity, progenitor recruitment and blastema formation. In turn, high H2O2 levels contribute to growing axon attraction. Once re-innervation is completed, nerves subsequently downregulate H2O2 levels to their original state. A similar regulatory loop between H2O2 levels and nerves also exists during development. This suggests that redox signalling is a major actor in cell plasticity.
Collapse
Affiliation(s)
- Francesca Meda
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France.
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; PSL Research University, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Carole Gauron
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Aurélien Mourton
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France; UPMC, Paris, France
| | - Isabelle Queguiner
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; École Normale Supérieure, Institute of Biology at the Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, Paris, France; PSL Research University, Paris, France
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; PSL Research University, Paris, France.
| |
Collapse
|
32
|
Stocum DL. Mechanisms of urodele limb regeneration. REGENERATION (OXFORD, ENGLAND) 2017; 4:159-200. [PMID: 29299322 PMCID: PMC5743758 DOI: 10.1002/reg2.92] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self-organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb?
Collapse
Affiliation(s)
- David L. Stocum
- Department of BiologyIndiana University−Purdue University Indianapolis723 W. Michigan StIndianapolisIN 46202USA
| |
Collapse
|
33
|
Mirahmadi M, Nakhaei-Rad S, Matin MM, Shahriyari M, Saeinasab M, Mahmoudi Z, Haghighitalab A, Mahdavi-Shahri N, Bahrami AR. Dedifferentiation Effects of Rabbit Regenerating Tissue on Partially Differentiated Cells. Cell Reprogram 2016; 18:333-343. [PMID: 27602600 DOI: 10.1089/cell.2016.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell Stemness can be achieved by various reprogramming techniques namely, somatic cell nuclear transfer, cell fusion, cell extracts, and introduction of transcription factors from which induced pluripotent stem cells (iPSCs) are obtained. iPSCs are valuable cell sources for drug screening and human disease modeling. Alternatives to virus-based introduction of transcription factors include application of DNA-free methods and introduction of chemically defined culturing conditions. However, the possibility of tumor development is still a hurdle. By taking advantage of NTERA-2 cells, a human embryonal carcinoma cell line, we obtained partially differentiated cells and examined the dedifferentiation capacity of regenerative tissue from rabbit ears. Results indicated that treatment of partially differentiated NTERA-2 cells with the regenerating tissue-conditioned medium (CM) induced expression of key pluripotency markers as examined by real-time polymerase chain reaction, flow cytometry, and immunocytochemistry techniques. In this study, it is reported for the first time that the CM obtained from rabbit regenerating tissue contains dedifferentiation factors, taking cells back to the pluripotency. This system could be a simple and efficient way to reprogram the differentiated cells and generate iPSCs for clinical applications as this system is not accompanied by any viral vector, and reprograms the cells within 10 days of treatment. The results may convince the genomic experts to study the unknown signaling pathways involved in the dedifferentiation by regenerating tissue-CM to authenticate the reprogramming model.
Collapse
Affiliation(s)
- Mahdi Mirahmadi
- 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad , Mashhad, Iran
- 2 Stem Cell and Regenerative Research Group, Iranian Academic Center for Education , Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Saeideh Nakhaei-Rad
- 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad , Mashhad, Iran
- 3 Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University , Düsseldorf, Germany
| | - Maryam M Matin
- 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad , Mashhad, Iran
- 2 Stem Cell and Regenerative Research Group, Iranian Academic Center for Education , Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
- 4 Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad, Iran
| | - Mina Shahriyari
- 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad , Mashhad, Iran
| | - Morvarid Saeinasab
- 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad , Mashhad, Iran
| | - Zahra Mahmoudi
- 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad , Mashhad, Iran
- 4 Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad, Iran
| | - Azadeh Haghighitalab
- 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad , Mashhad, Iran
- 4 Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad, Iran
| | - Naser Mahdavi-Shahri
- 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad , Mashhad, Iran
| | - Ahmad Reza Bahrami
- 1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad , Mashhad, Iran
- 4 Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad, Iran
| |
Collapse
|
34
|
Cook AB, Seifert AW. Beryllium nitrate inhibits fibroblast migration to disrupt epimorphic regeneration. Development 2016; 143:3491-3505. [PMID: 27578793 DOI: 10.1242/dev.134882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022]
Abstract
Epimorphic regeneration proceeds with or without formation of a blastema, as observed for the limb and skin, respectively. Inhibition of epimorphic regeneration provides a means to interrogate the cellular and molecular mechanisms that regulate it. In this study, we show that exposing amputated limbs to beryllium nitrate disrupts blastema formation and causes severe patterning defects in limb regeneration. In contrast, exposing full-thickness skin wounds to beryllium only causes a delay in skin regeneration. By transplanting full-thickness skin from ubiquitous GFP-expressing axolotls to wild-type hosts, we demonstrate that beryllium inhibits fibroblast migration during limb and skin regeneration in vivo Moreover, we show that beryllium also inhibits cell migration in vitro using axolotl and human fibroblasts. Interestingly, beryllium did not act as an immunostimulatory agent as it does in Anurans and mammals, nor did it affect keratinocyte migration, proliferation or re-epithelialization, suggesting that the effect of beryllium is cell type-specific. While we did not detect an increase in cell death during regeneration in response to beryllium, it did disrupt cell proliferation in mesenchymal cells. Taken together, our data show that normal blastema organogenesis cannot occur without timely infiltration of local fibroblasts and highlights the importance of positional information to instruct pattern formation during regeneration. In contrast, non-blastemal-based skin regeneration can occur despite early inhibition of fibroblast migration and cell proliferation.
Collapse
Affiliation(s)
- Adam B Cook
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
35
|
Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice. Toxicol Appl Pharmacol 2016; 300:34-46. [PMID: 27058323 DOI: 10.1016/j.taap.2016.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30thweeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30thweek. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF.
Collapse
|
36
|
Rockel JS, Yu C, Whetstone H, Craft AM, Reilly K, Ma H, Tsushima H, Puviindran V, Al-Jazrawe M, Keller GM, Alman BA. Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis. J Clin Invest 2016; 126:1649-63. [PMID: 27018594 DOI: 10.1172/jci80205] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Both the WNT/β-catenin and hedgehog signaling pathways are important in the regulation of limb development, chondrocyte differentiation, and degeneration of articular cartilage in osteoarthritis (OA). It is not clear how these signaling pathways interact in interzone cell differentiation and synovial joint morphogenesis. Here, we determined that constitutive activation of hedgehog signaling specifically within interzone cells induces joint morphological changes by selectively inhibiting β-catenin-induced Fgf18 expression. Stabilization of β-catenin or treatment with FGF18 rescued hedgehog-induced phenotypes. Hedgehog signaling induced expression of a dominant negative isoform of TCF7L2 (dnTCF7L2) in interzone progeny, which may account for the selective regulation of β-catenin target genes observed. Knockdown of TCF7L2 isoforms in mouse chondrocytes rescued hedgehog signaling-induced Fgf18 downregulation, while overexpression of the human dnTCF7L2 orthologue (dnTCF4) in human chondrocytes promoted the expression of catabolic enzymes associated with OA. Similarly, expression of dnTCF4 in human chondrocytes positively correlated with the aggrecanase ADAMTS4. Consistent with our developmental findings, activation of β-catenin also attenuated hedgehog-induced or surgically induced articular cartilage degeneration in mouse models of OA. Thus, our results demonstrate that hedgehog inhibits selective β-catenin target gene expression to direct interzone progeny fates and articular cartilage development and disease. Moreover, agents that increase β-catenin activity have the potential to therapeutically attenuate articular cartilage degeneration as part of OA.
Collapse
|
37
|
Gurdziel K, Vogt KR, Walton KD, Schneider GK, Gumucio DL. Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun. Dev Dyn 2016; 245:614-26. [PMID: 26930384 DOI: 10.1002/dvdy.24399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Digestion is facilitated by coordinated contractions of the intestinal muscularis externa, a bilayered smooth muscle structure that is composed of inner circular muscles (ICM) and outer longitudinal muscles (OLM). We performed transcriptome analysis of intestinal mesenchyme tissue at E14.5, when the ICM, but not the OLM, is present, to investigate the transcriptional program of the ICM. RESULTS We identified 3967 genes enriched in E14.5 intestinal mesenchyme. The gene expression profiles were clustered and annotated to known muscle genes, identifying a muscle-enriched subcluster. Using publically available in situ data, 127 genes were verified as expressed in ICM. Examination of the promoter and regulatory regions for these co-expressed genes revealed enrichment for cJUN transcription factor binding sites, and cJUN protein was enriched in ICM. cJUN ChIP-seq, performed at E14.5, revealed that cJUN regulatory regions contain characteristics of muscle enhancers. Finally, we show that cJun is a target of Hedgehog (Hh), a signaling pathway known to be important in smooth muscle development, and identify a cJun genomic enhancer that is responsive to Hh. CONCLUSIONS This work provides the first transcriptional catalog for the developing ICM and suggests that cJun regulates gene expression in the ICM downstream of Hh signaling. Developmental Dynamics 245:614-626, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katherine Gurdziel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109
| | - Kyle R Vogt
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| | - Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| | - Gary K Schneider
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
38
|
Sur S, Pal D, Mandal S, Roy A, Panda CK. Tea polyphenols epigallocatechin gallete and theaflavin restrict mouse liver carcinogenesis through modulation of self-renewal Wnt and hedgehog pathways. J Nutr Biochem 2015; 27:32-42. [PMID: 26386739 DOI: 10.1016/j.jnutbio.2015.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 01/14/2023]
Abstract
The aim of this study is to evaluate chemopreventive and therapeutic efficacy of tea polyphenols epigallocatechin gallete (EGCG) and theaflavin (TF) on self-renewal Wnt and Hedgehog (Hh) pathways during CCl4/N-nitosodiethylamine-induced mouse liver carcinogenesis. For this purpose, the effect of EGCG/TF was investigated in liver lesions of different groups at pre-, continuous and post initiation stages of carcinogenesis. Comparatively increased body weights were evident due to EGCG/TF treatment than carcinogen control mice. Both EGCG and TF could restrict the development of hepatocellular carcinoma at 30th week of carcinogen application showing potential chemoprevention in continuous treated group (mild dysplasia) followed by pretreated (moderate dysplasia) and therapeutic efficacy in posttreated group (mild dysplasia). This restriction was associated with significantly reduced proliferation, increased apoptosis, decreased prevalence of hepatocyte progenitor cell (AFP) and stem cell population (CD44) irrespective of EGCG/TF treatments. The EGCG/TF could modulate the Wnt pathway by reducing β-catenin and phospho-β-catenin-Y-654 expressions along with up-regulation of sFRP1 (secreted frizzled-related protein 1) and adenomatosis polyposis coli during the restriction. In case of the Hh pathway, EGCG/TF could also reduce expressions of glioma-associated oncogene homolog 1 (Gli1) and SMO (smoothened homolog) along with up-regulation of PTCH1 (patched homolog 1). As a result, in Wnt/Hh regulatory pathways decreased expressions of β-catenin/Gli1 target genes like CyclinD1, cMyc and EGFR/phospho-EGFR-Y-1173 and up-regulation of E-cadherin were seen during the restriction. Thus, the restriction of liver carcinogenesis by EGCG/TF was due to reduction in hepatocyte progenitor cell/stem cell population along with modulation of Wnt/Hh and other regulatory pathways.
Collapse
Affiliation(s)
- Subhayan Sur
- Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal, India.
| | - Debolina Pal
- Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal, India.
| | - Syamsundar Mandal
- Department of Epidemiology and Biostatistics, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Anup Roy
- North Bengal Medical College and Hospital, West Bengal, India
| | - Chinmay Kumar Panda
- Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal, India.
| |
Collapse
|
39
|
Sur S, Pal D, Banerjee K, Mandal S, Das A, Roy A, Panda CK. Amarogentin regulates self renewal pathways to restrict liver carcinogenesis in experimental mouse model. Mol Carcinog 2015; 55:1138-49. [DOI: 10.1002/mc.22356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Subhayan Sur
- Department of Oncogene Regulation; Chittaranjan National Cancer Institute; Kolkata India
| | - Debolina Pal
- Department of Oncogene Regulation; Chittaranjan National Cancer Institute; Kolkata India
| | - Kaustav Banerjee
- Department of Oncogene Regulation; Chittaranjan National Cancer Institute; Kolkata India
| | - Suvra Mandal
- Department of Chemistry; National Research Institute for Ayurvedic Drug Development; Kolkata India
| | - Ashes Das
- Department of Chemistry; National Research Institute for Ayurvedic Drug Development; Kolkata India
| | - Anup Roy
- North Bengal Medical College and Hospital; Darjeeling West Bengal India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation; Chittaranjan National Cancer Institute; Kolkata India
| |
Collapse
|
40
|
Hedgehog Signaling during Appendage Development and Regeneration. Genes (Basel) 2015; 6:417-35. [PMID: 26110318 PMCID: PMC4488672 DOI: 10.3390/genes6020417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 12/29/2022] Open
Abstract
Regulatory networks that govern embryonic development have been well defined. While a common hypothesis supports the notion that the embryonic regulatory cascades are reexpressed following injury and tissue regeneration, the mechanistic regulatory pathways that mediate the regenerative response in higher organisms remain undefined. Relative to mammals, lower vertebrates, including zebrafish and newts, have a tremendous regenerative capacity to repair and regenerate a number of organs including: appendages, retina, heart, jaw and nervous system. Elucidation of the pathways that govern regeneration in these lower organisms may provide cues that will enhance the capacity for the regeneration of mammalian organs. Signaling pathways, such as the hedgehog pathway, have been shown to play critical functions during development and during regeneration in lower organisms. These signaling pathways have been shown to modulate multiple processes including cellular origin, positional identity and cellular maturation. The present review will focus on the cellular and molecular regulation of the hedgehog (HH) signaling pathway and its interaction with other signaling factors during appendage development and regeneration.
Collapse
|
41
|
Zhao L, Miao HC, Li WJ, Sun Y, Huang SL, Li ZY, Guo QL. LW-213 induces G2/M cell cycle arrest through AKT/GSK3β/β-catenin signaling pathway in human breast cancer cells. Mol Carcinog 2015; 55:778-92. [PMID: 25945460 DOI: 10.1002/mc.22321] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/08/2015] [Accepted: 03/16/2015] [Indexed: 01/21/2023]
Abstract
LW-213 is a derivative of Wogonin and the anticancer activities of Wogonin have been reported. To study whether LW-213 inhibits cancer cells and explore a possible mechanism, we investigate the compound in several cancer cell lines. We found LW-213 arrests G2/M cycle in breast cancer cells by suppression of Akt/Gsk3β/β-catenin signaling pathway. In compound treated cells, cell cycle-related proteins cyclin A, cyclin B1, p-CDK1, p-Cdc25C, and p-Chk2 (Thr68) were upregulated, and β-catenin nuclear translocation was inhibited. Electrophoretic mobility shift assay revealed LW-213 inhibits binding of β-catenin/LEF complex to DNA. GSK3β inhibitor LiCl and siRNA against GSK3β partially reversed G2/M arrest in breast cancer MCF-7 cells. These results suggest LW-213 triggered G2/M cell cycle arrest through suppression of β-catenin signaling. In BALB/c mice, growth of xenotransplanted MCF-7 tumor was also inhibited after treatment of LW-213. Regulation of cyclin A, cyclin B1, and β-catenin by LW-213 in vivo was the same as in vitro study. In conclusion, we found LW-213 exerts its anticancer effect on cell proliferation and cell cycle through repression of Akt/Gsk3β/β-catenin signaling pathway. LW-213 could be a potential candidate for anticancer drug development.
Collapse
Affiliation(s)
- Li Zhao
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Han-Chi Miao
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Wen-Jun Li
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Yang Sun
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Shao-Liang Huang
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Zhi-Yu Li
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Qing-Long Guo
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| |
Collapse
|
42
|
Li Q, Yang H, Zhong TP. Regeneration across metazoan phylogeny: lessons from model organisms. J Genet Genomics 2015; 42:57-70. [PMID: 25697100 DOI: 10.1016/j.jgg.2014.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 01/09/2023]
Abstract
Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology. Invertebrates like Hydra and planarians exhibit amazing feats of regeneration, in which an entire organism can be restored from minute body segments. Vertebrates like teleost fish and amphibians can also regrow large sections of the body. While this regenerative capacity is greatly attenuated in mammals, there are portions of major organs that remain regenerative. Regardless of the extent, there are common basic strategies to regeneration, including activation of adult stem cells and proliferation of differentiated cells. Here, we discuss the cellular features and molecular mechanisms that are involved in regeneration in different model organisms, including Hydra, planarians, zebrafish and newts as well as in several mammalian organs.
Collapse
Affiliation(s)
- Qiao Li
- State Key Laboratory of Genetic Engineering, Department of Genetics, Fudan University School of Life Science, Shanghai 200433, China
| | - Hao Yang
- State Key Laboratory of Genetic Engineering, Department of Genetics, Fudan University School of Life Science, Shanghai 200433, China
| | - Tao P Zhong
- State Key Laboratory of Genetic Engineering, Department of Genetics, Fudan University School of Life Science, Shanghai 200433, China; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
43
|
Geng X, Xu T, Niu Z, Zhou X, Zhao L, Xie Z, Xue D, Zhang F, Xu C. Differential proteome analysis of the cell differentiation regulated by BCC, CRH, CXCR4, GnRH, GPCR, IL1 signaling pathways in Chinese fire-bellied newt limb regeneration. Differentiation 2014; 88:85-96. [DOI: 10.1016/j.diff.2014.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/07/2014] [Accepted: 10/29/2014] [Indexed: 12/11/2022]
|
44
|
Wehner D, Cizelsky W, Vasudevaro MD, Ozhan G, Haase C, Kagermeier-Schenk B, Röder A, Dorsky RI, Moro E, Argenton F, Kühl M, Weidinger G. Wnt/β-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin. Cell Rep 2014; 6:467-81. [PMID: 24485658 DOI: 10.1016/j.celrep.2013.12.036] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 08/30/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022] Open
Abstract
Zebrafish regenerate their fins via the formation of a population of progenitor cells, the blastema. Wnt/β-catenin signaling is essential for blastemal cell proliferation and patterning of the overlying epidermis. Yet, we find that β-catenin signaling is neither active in the epidermis nor the majority of the proliferative blastemal cells. Rather, tissue-specific pathway interference indicates that Wnt signaling in the nonproliferative distal blastema is required for cell proliferation in the proximal blastema, and signaling in cells lining the osteoblasts directs osteoblast differentiation. Thus, Wnt signaling regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation indirectly via secondary signals. Gene expression profiling, chromatin immunoprecipitation, and functional rescue experiments suggest that Wnt/β-catenin signaling acts through Fgf and Bmp signaling to control epidermal patterning, whereas retinoic acid and Hedgehog signals mediate its effects on blastemal cell proliferation. We propose that Wnt signaling orchestrates fin regeneration by defining organizing centers that instruct cellular behaviors of adjacent tissues.
Collapse
Affiliation(s)
- Daniel Wehner
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wiebke Cizelsky
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Günes Ozhan
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Christa Haase
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | | | - Alexander Röder
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | | | - Michael Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
45
|
Siegel AL, Gurevich DB, Currie PD. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell. FEBS J 2013; 280:4074-88. [PMID: 23607511 DOI: 10.1111/febs.12300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Abstract
The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type.
Collapse
Affiliation(s)
- Ashley L Siegel
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|