1
|
Rademaker G, Costanza B, Pyr Dit Ruys S, Peiffer R, Agirman F, Maloujahmoum N, Vertommen D, Turtoi A, Bellahcène A, Castronovo V, Peulen O. Paladin, overexpressed in colon cancer, is required for actin polymerisation and liver metastasis dissemination. Oncogenesis 2022; 11:42. [PMID: 35882839 PMCID: PMC9325978 DOI: 10.1038/s41389-022-00416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Colorectal cancer remains a public health issue and most colon cancer patients succumb to the development of metastases. Using a specific protocol of pressure-assisted interstitial fluid extrusion to recover soluble biomarkers, we identified paladin as a potential colon cancer liver metastases biomarker. Methods Using shRNA gene knockdown, we explored the biological function of paladin in colon cancer cells and investigated the phospho-proteome within colon cancer cells. We successively applied in vitro migration assays, in vivo metastasis models and co-immunoprecipitation experiments. Results We discovered that paladin is required for colon cancer cell migration and metastasis, and that paladin depletion altered the phospho-proteome within colon cancer cells. Data are available via ProteomeXchange with identifier PXD030803. Thanks to immunoprecipitation experiments, we demonstrated that paladin, was interacting with SSH1, a phosphatase involved in colon cancer metastasis. Finally, we showed that paladin depletion in cancer cells results in a less dynamic actin cytoskeleton. Conclusions Paladin is an undervalued protein in oncology. This study highlights for the first time that, paladin is participating in actin cytoskeleton remodelling and is required for efficient cancer cell migration. ![]()
Collapse
Affiliation(s)
- Gilles Rademaker
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium.,Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Brunella Costanza
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, 20139, Italy
| | - Sébastien Pyr Dit Ruys
- MassProt platform, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Didier Vertommen
- MassProt platform, de Duve Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Andrei Turtoi
- Tumor microenvironment and resistance to treatment Laboratory, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Akeila Bellahcène
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, Giga Cancer University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Roffers-Agarwal J, Lidberg KA, Gammill LS. The lysine methyltransferase SETD2 is a dynamically expressed regulator of early neural crest development. Genesis 2021; 59:e23448. [PMID: 34498354 DOI: 10.1002/dvg.23448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/11/2022]
Abstract
SETD2 is a histone H3 lysine 36 (H3K36) tri-methylase that is upregulated in response to neural crest induction. Because the H3K36 di-methylase NSD3 and cytoplasmic non-histone protein methylation are necessary for neural crest development, we investigated the expression and requirement for SETD2 in the neural crest. SetD2 is expressed throughout the chick blastoderm beginning at gastrulation. Subsequently, SetD2 mRNA becomes restricted to the neural plate, where it is strongly and dynamically expressed as neural tissue is regionalized and cell fate decisions are made. This includes expression in premigratory neural crest cells, which is downregulated prior to migration. Likely due to the early onset of its expression, SETD2 morpholino knockdown does not significantly alter premigratory Sox10 expression or neural crest migration; however, both are disrupted by a methyltransferase mutant SETD2 construct. These results suggest that SETD2 activity is essential for early neural crest development, further demonstrating that lysine methylation is an important mechanism regulating the neural crest.
Collapse
Affiliation(s)
- Julaine Roffers-Agarwal
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kevin A Lidberg
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura S Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.,Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Chen TC, Chern M, Steinwand M, Ruan D, Wang Y, Isharani A, Ronald P. Paladin, a tyrosine phosphatase-like protein, is required for XA21-mediated immunity in rice. PLANT COMMUNICATIONS 2021; 2:100215. [PMID: 34327325 PMCID: PMC8299082 DOI: 10.1016/j.xplc.2021.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
XA21 encodes a rice immune receptor that confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo). XA21-mediated immunity is triggered by recognition of a small protein called RaxX-sY (required for activation of XA21-mediated immunity X, tyrosine-sulfated) secreted by Xoo. To identify components regulating XA21-mediated immunity, we generated and screened a mutant population of fast-neutron-mutagenized rice expressing Ubi:Myc-XA21 for those susceptible to Xoo. Here, we report the characterization of one of these rice mutants, named sxi2 (suppressor of XA21-mediated immunity-2). Whole-genome sequencing revealed that sxi2 carries a deletion of the PALADIN (PALD) gene encoding a protein with three putative protein tyrosine phosphatase-like domains (PTP-A, -B, and -C). Expression of PALD in the sxi2 genetic background was sufficient to complement the susceptible phenotype, which requires the catalytic cysteine of the PTP-A active site to restore resistance. PALD co-immunoprecipitated with the full-length XA21 protein, whose levels are positively regulated by the presence of the PALD transgene. Furthermore, we foundd that sxi2 retains many hallmarks of XA21-mediated immunity, similar to the wild type. These results reveal that PALD, a previously uncharacterized class of phosphatase, functions in rice innate immunity, and suggest that the conserved cysteine in the PTP-A domain of PALD is required for its immune function.
Collapse
|
4
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
5
|
Nitzsche A, Pietilä R, Love DT, Testini C, Ninchoji T, Smith RO, Ekvärn E, Larsson J, Roche FP, Egaña I, Jauhiainen S, Berger P, Claesson‐Welsh L, Hellström M. Paladin is a phosphoinositide phosphatase regulating endosomal VEGFR2 signalling and angiogenesis. EMBO Rep 2021; 22:e50218. [PMID: 33369848 PMCID: PMC7857541 DOI: 10.15252/embr.202050218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non-plasma membrane PI(4,5)P2 , and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over-activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.
Collapse
Affiliation(s)
- Anja Nitzsche
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Université de ParisParis Cardiovascular Research CenterINSERM U970ParisFrance
| | - Riikka Pietilä
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Dominic T Love
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Chiara Testini
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Division of NephrologyDepartment of MedicineBoston Children’s HospitalBostonMAUSA
| | - Takeshi Ninchoji
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Ross O Smith
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Elisabet Ekvärn
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Cepheid ABSolnaSweden
| | - Jimmy Larsson
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Francis P Roche
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Isabel Egaña
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Suvi Jauhiainen
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Philipp Berger
- Laboratory of Nanoscale BiologyPaul‐Scherrer InstituteVilligenSwitzerland
| | - Lena Claesson‐Welsh
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Mats Hellström
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Bhattacharyya T, Sowdhamini R. Genome-Wide Search for Tyrosine Phosphatases in the Human Genome Through Computational Approaches Leads to the Discovery of Few New Domain Architectures. Evol Bioinform Online 2019; 15:1176934319840289. [PMID: 31007525 PMCID: PMC6457024 DOI: 10.1177/1176934319840289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 11/24/2022] Open
Abstract
Reversible phosphorylation maintained by protein kinases and phosphatases is an integral part of intracellular signalling, and phosphorylation on tyrosine is extensively utilised in higher eukaryotes. Tyrosine phosphatases are enzymes that not only scavenge phosphotyrosine but are also involved in wide range of signalling pathways. As a result, mutations in these enzymes have been implicated in the pathogenesis of several diseases like cancer, autoimmune disorders, and muscle-related diseases. The genes that harbour phosphatase domain also display diversity in co-existing domains suggesting the recruitment of the catalytic machinery in diverse pathways. We have examined the current draft of the human genome, using a combination of 3 sequence search methods and validations, and identified 101 genes encoding tyrosine phosphatase-containing gene products, agreeing with previous reports. Such gene products adopt 37 unique domain architectures (DAs), including few new ones and harbouring few co-existing domains that have not been reported before. This semi-automated computational approach for detection of gene products belonging to a particular superfamily can now be easily applied at whole genome level on other mammalian genomes and for other protein domains as well.
Collapse
Affiliation(s)
- Teerna Bhattacharyya
- National Centre for Biological Sciences, Tata
Institute of Fundamental Research, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata
Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
7
|
Abstract
In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented.
Collapse
|
8
|
Female mice lacking Pald1 exhibit endothelial cell apoptosis and emphysema. Sci Rep 2017; 7:15453. [PMID: 29133847 PMCID: PMC5684320 DOI: 10.1038/s41598-017-14894-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022] Open
Abstract
Paladin (Pald1, mKIAA1274 or x99384) was identified in screens for vascular-specific genes and is a putative phosphatase. Paladin has also been proposed to be involved in various biological processes such as insulin signaling, innate immunity and neural crest migration. To determine the role of paladin we have now characterized the Pald1 knock-out mouse in a broad array of behavioral, physiological and biochemical tests. Here, we show that female, but not male, Pald1 heterozygous and homozygous knock-out mice display an emphysema-like histology with increased alveolar air spaces and impaired lung function with an obstructive phenotype. In contrast to many other tissues where Pald1 is restricted to the vascular compartment, Pald1 is expressed in both the epithelial and mesenchymal compartments of the postnatal lung. However, in Pald1 knock-out females, there is a specific increase in apoptosis and proliferation of endothelial cells, but not in non-endothelial cells. This results in a transient reduction of endothelial cells in the maturing lung. Our data suggests that Pald1 is required during lung vascular development and for normal function of the developing and adult lung in a sex-specific manner. To our knowledge, this is the first report of a sex-specific effect on endothelial cell apoptosis.
Collapse
|
9
|
Chen MJ, Dixon JE, Manning G. Genomics and evolution of protein phosphatases. Sci Signal 2017; 10:10/474/eaag1796. [DOI: 10.1126/scisignal.aag1796] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Wang L, Lin S, Zhang J, Tian T, Jin L, Ren A. Fetal DNA hypermethylation in tight junction pathway is associated with neural tube defects: A genome-wide DNA methylation analysis. Epigenetics 2017; 12:157-165. [PMID: 28059605 DOI: 10.1080/15592294.2016.1277298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neural tube defects (NTDs) are a spectrum of severe congenital malformations of fusion failure of the neural tube during early embryogenesis. Evidence on aberrant DNA methylation in NTD development remains scarce, especially when exposure to environmental pollutant is taken into consideration. DNA methylation profiling was quantified using the Infinium HumanMethylation450 array in neural tissues from 10 NTD cases and 8 non-malformed controls (stage 1). Subsequent validation was performed using a Sequenom MassARRAY system in neural tissues from 20 NTD cases and 20 non-malformed controls (stage 2). Correlation analysis of differentially methylated CpG sites in fetal neural tissues and polycyclic aromatic hydrocarbons concentrations in fetal neural tissues and maternal serum was conducted. Differentially methylated CpG sites of neural tissues were further validated in fetal mice with NTDs induced by benzo(a)pyrene given to pregnant mice. Differentially hypermethylated CpG sites in neural tissues from 17 genes and 6 pathways were identified in stage 1. Subsequently, differentially hypermethylated CpG sites in neural tissues from 6 genes (BDKRB2, CTNNA1, CYFIP2, MMP7, MYH2, and TIAM2) were confirmed in stage 2. Correlation analysis showed that methylated CpG sites in CTNNA1 and MYH2 from NTD cases were positively correlated to polycyclic aromatic hydrocarbon level in fetal neural tissues and maternal serum. The correlation was confirmed in NTD-affected fetal mice that were exposed to benzo(a)pyrene in utero. In conclusion, hypermethylation of the CTNNA1 and MYH2 genes in tight junction pathway is associated with the risk for NTDs, and the DNA methylation aberration may be caused by exposure to benzo(a)pyrene.
Collapse
Affiliation(s)
- Linlin Wang
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Shanshan Lin
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Ji Zhang
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Tian Tian
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Lei Jin
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| | - Aiguo Ren
- a Institute of Reproductive and Child Health, School of Public Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China , Beijing , China
| |
Collapse
|
11
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
12
|
Duband JL, Dady A, Fleury V. Resolving time and space constraints during neural crest formation and delamination. Curr Top Dev Biol 2015; 111:27-67. [PMID: 25662257 DOI: 10.1016/bs.ctdb.2014.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A striking feature of neural crest development in vertebrates is that all the specification, delamination, migration, and differentiation steps occur consecutively in distinct areas of the embryo and at different timings of development. The significance and consequences of this partition into clearly separated events are not fully understood yet, but it ought to be related to the necessity of controlling precisely and independently each step, given the wide array of cell types and tissues derived from the neural crest and the long duration of their development spanning almost the entire embryonic life. In this chapter, using the examples of early neural crest induction and delamination, we discuss how time and space constraints influence their development and describe the molecular and cellular responses that are employed by cells to adapt. In the first example, we analyze how cell sorting and cell movements cooperate to allow nascent neural crest cells, which are initially mingled with other neurectodermal progenitors after induction, to segregate from the neural tube and ectoderm populations and settle at the apex of the neural tube prior to migration. In the second example, we examine how cadherins drive the entire process of neural crest segregation from the rest of the neurectoderm by their dual role in mediating first cell sorting and cohesion during specification and later in promoting their delamination. In the third example, we describe how the expression and activity of the transcription factors known to drive epithelium-to-mesenchyme transition (EMT) are regulated timely and spatially by the cellular machinery so that they can alternatively and successively regulate neural crest specification and delamination. In the last example, we briefly tackle the problem of how factors triggering EMT may elicit different cell responses in neural tube and neural crest progenitors.
Collapse
Affiliation(s)
- Jean-Loup Duband
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie-Paris 6, Paris, France; CNRS, Laboratoire de Biologie du Développement, Paris, France.
| | - Alwyn Dady
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie-Paris 6, Paris, France; CNRS, Laboratoire de Biologie du Développement, Paris, France
| | - Vincent Fleury
- Laboratoire Matière et Systèmes Complexes, CNRS et Université Denis-Diderot-Paris 7, Paris, France
| |
Collapse
|
13
|
Vermillion KL, Lidberg KA, Gammill LS. Expression of actin-binding proteins and requirement for actin-depolymerizing factor in chick neural crest cells. Dev Dyn 2014; 243:730-8. [PMID: 24868596 DOI: 10.1002/dvdy.24105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neural crest cells are multipotent cells that migrate extensively throughout vertebrate embryos to form diverse lineages. Cell migration requires polarized, organized actin networks that provide the driving force for motility. Actin-binding proteins that regulate neural crest cell migration are just beginning to be defined. RESULTS We recently identified a number of actin-associated factors through proteomic profiling of methylated proteins in migratory neural crest cells. Here, we report the previously undocumented expression pattern of three of these proteins in chick early neural crest development: doublecortin (DCX), tropomyosin-1 (TPM-1), and actin depolymerizing factor (ADF). All three genes are expressed with varying degrees of specificity and intensity in premigratory and migratory neural crest cells, and their resulting proteins exhibit distinct subcellular localization in migratory neural crest cells. Morpholino knock down of ADF reveals it is required for Sox10 gene expression, but minimally important during neural crest migration. CONCLUSIONS Neural crest cells express DCX, TPM-1, and ADF. ADF is necessary during neural crest specification, but largely dispensable for migration.
Collapse
|
14
|
Jacques-Fricke BT, Gammill LS. Neural crest specification and migration independently require NSD3-related lysine methyltransferase activity. Mol Biol Cell 2014; 25:4174-86. [PMID: 25318671 PMCID: PMC4263458 DOI: 10.1091/mbc.e13-12-0744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nuclear receptor–binding, SET-domain containing 3 (NSD3) is the first protein methyltransferase essential for early neural crest development. NSD3 is required for neural crest gene expression but not for H3K36 dimethylation of most neural crest genes. NSD3-related methyltransferase activity independently regulates neural crest migration. Neural crest precursors express genes that cause them to become migratory, multipotent cells, distinguishing them from adjacent stationary neural progenitors in the neurepithelium. Histone methylation spatiotemporally regulates neural crest gene expression; however, the protein methyltransferases active in neural crest precursors are unknown. Moreover, the regulation of methylation during the dynamic process of neural crest migration is unclear. Here we show that the lysine methyltransferase NSD3 is abundantly and specifically expressed in premigratory and migratory neural crest cells. NSD3 expression commences before up-regulation of neural crest genes, and NSD3 is necessary for expression of the neural plate border gene Msx1, as well as the key neural crest transcription factors Sox10, Snail2, Sox9, and FoxD3, but not gene expression generally. Nevertheless, only Sox10 histone H3 lysine 36 dimethylation requires NSD3, revealing unexpected complexity in NSD3-dependent neural crest gene regulation. In addition, by temporally limiting expression of a dominant negative to migratory stages, we identify a novel, direct requirement for NSD3-related methyltransferase activity in neural crest migration. These results identify NSD3 as the first protein methyltransferase essential for neural crest gene expression during specification and show that NSD3-related methyltransferase activity independently regulates migration.
Collapse
Affiliation(s)
- Bridget T Jacques-Fricke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Laura S Gammill
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
15
|
Das D, Zalewski JK, Mohan S, Plageman TF, VanDemark AP, Hildebrand JD. The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice. Biol Open 2014; 3:850-60. [PMID: 25171888 PMCID: PMC4163662 DOI: 10.1242/bio.20147450] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shroom3 is an actin-associated regulator of cell morphology that is required for neural tube closure, formation of the lens placode, and gut morphogenesis in mice and has been linked to chronic kidney disease and directional heart looping in humans. Numerous studies have shown that Shroom3 likely regulates these developmental processes by directly binding to Rho-kinase and facilitating the assembly of apically positioned contractile actomyosin networks. We have characterized the molecular basis for the neural tube defects caused by an ENU-induced mutation that results in an arginine-to-cysteine amino acid substitution at position 1838 of mouse Shroom3. We show that this substitution has no effect on Shroom3 expression or localization but ablates Rock binding and renders Shroom3 non-functional for the ability to regulate cell morphology. Our results indicate that Rock is the major downstream effector of Shroom3 in the process of neural tube morphogenesis. Based on sequence conservation and biochemical analysis, we predict that the Shroom-Rock interaction is highly conserved across animal evolution and represents a signaling module that is utilized in a variety of biological processes.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jenna K Zalewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Swarna Mohan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Timothy F Plageman
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
16
|
Reiterer V, Eyers PA, Farhan H. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Trends Cell Biol 2014; 24:489-505. [PMID: 24818526 DOI: 10.1016/j.tcb.2014.03.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/19/2022]
Abstract
Pseudophosphatases and pseudokinases are increasingly viewed as integral elements of signaling pathways, and there is mounting evidence that they have frequently retained the ability to interact with cellular 'substrates', and can exert important roles in different diseases. However, these pseudoenzymes have traditionally received scant attention compared to classical kinases and phosphatases. In this review we explore new findings in the emerging pseudokinase and pseudophosphatase fields, and discuss their different modes of action which include exciting new roles as scaffolds, anchors, spatial modulators, traps, and ligand-driven regulators of canonical kinases and phosphatases. Thus, it is now apparent that pseudokinases and pseudophosphatases both support and drive a panoply of signaling networks. Finally, we highlight recent evidence on their involvement in human pathologies, marking them as potential novel drug targets.
Collapse
Affiliation(s)
- Veronika Reiterer
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Hesso Farhan
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland; Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
17
|
Vermillion KL, Lidberg KA, Gammill LS. Cytoplasmic protein methylation is essential for neural crest migration. ACTA ACUST UNITED AC 2013; 204:95-109. [PMID: 24379414 PMCID: PMC3882789 DOI: 10.1083/jcb.201306071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Post-translational methylation of the non-histone, actin-binding protein EF1α1 is essential for neural crest migration. As they initiate migration in vertebrate embryos, neural crest cells are enriched for methylation cycle enzymes, including S-adenosylhomocysteine hydrolase (SAHH), the only known enzyme to hydrolyze the feedback inhibitor of trans-methylation reactions. The importance of methylation in neural crest migration is unknown. Here, we show that SAHH is required for emigration of polarized neural crest cells, indicating that methylation is essential for neural crest migration. Although nuclear histone methylation regulates neural crest gene expression, SAHH and lysine-methylated proteins are abundant in the cytoplasm of migratory neural crest cells. Proteomic profiling of cytoplasmic, lysine-methylated proteins from migratory neural crest cells identified 182 proteins, several of which are cytoskeleton related. A methylation-resistant form of one of these proteins, the actin-binding protein elongation factor 1 alpha 1 (EF1α1), blocks neural crest migration. Altogether, these data reveal a novel and essential role for post-translational nonhistone protein methylation during neural crest migration and define a previously unknown requirement for EF1α1 methylation in migration.
Collapse
Affiliation(s)
- Katie L Vermillion
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | | | | |
Collapse
|
18
|
Kharitidi D, Manteghi S, Pause A. Pseudophosphatases: methods of analysis and physiological functions. Methods 2013; 65:207-18. [PMID: 24064037 DOI: 10.1016/j.ymeth.2013.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 01/27/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are key enzymes in the regulation of cellular homeostasis and signaling pathways. Strikingly, not all PTPs bear enzymatic activity. A considerable fraction of PTPs are enzymatically inactive and are known as pseudophosphatases. Despite the lack of activity they execute pivotal roles in development, cell biology and human disease. The present review is focused on the methods used to identify pseudophosphatases, their targets, and physiological roles. We present a strategy for detailed enzymatic analysis of inactive PTPs, regulation of inactive PTP domains and identification of binding partners. Furthermore, we provide a detailed overview of human pseudophosphatases and discuss their regulation of cellular processes and functions in human pathologies.
Collapse
Affiliation(s)
- Dmitri Kharitidi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Sanaz Manteghi
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Arnim Pause
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 3655, Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
19
|
Fairchild CL, Gammill LS. Tetraspanin18 is a FoxD3-responsive antagonist of cranial neural crest epithelial-to-mesenchymal transition that maintains cadherin-6B protein. J Cell Sci 2013; 126:1464-76. [PMID: 23418345 PMCID: PMC3644144 DOI: 10.1242/jcs.120915] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2013] [Indexed: 01/06/2023] Open
Abstract
During epithelial-to-mesenchymal transition (EMT), tightly associated, polarized epithelial cells become individual mesenchymal cells capable of migrating. Here, we investigate the role of the transmembrane protein tetraspanin18 (Tspan18) in chick cranial neural crest EMT. Tspan18 mRNA is expressed in premigratory cranial neural crest cells, but is absent from actively migrating neural crest cells. Tspan18 knockdown leads to a concomitant loss of cadherin-6B (Cad6B) protein, whereas Cad6B protein persists when Tspan18 expression is extended. The temporal profile of Cad6B mRNA downregulation is unaffected in these embryos, which indicates that Tspan18 maintains Cad6B protein levels and reveals that Cad6B is regulated by post-translational mechanisms. Although downregulation of Tspan18 is necessary, it is not sufficient for neural crest migration: the timing of neural crest emigration, basal lamina breakdown and Cad7 upregulation proceed normally in Tspan18-deficient cells. This emphasizes the need for coordinated transcriptional and post-translational regulation of Cad6B during EMT and illustrates that Tspan18-antagonized remodeling of cell-cell adhesions is only one step in preparation for cranial neural crest migration. Unlike Cad6B, which is transcriptionally repressed by Snail2, Tspan18 expression is downstream of the winged-helix transcription factor FoxD3, providing a new transcriptional input into cranial neural crest EMT. Together, our data reveal post-translational regulation of Cad6B protein levels by Tspan18 that must be relieved by a FoxD3-dependent mechanism in order for cranial neural crest cells to migrate. These results offer new insight into the molecular mechanisms of cranial neural crest EMT and expand our understanding of tetraspanin function relevant to metastasis.
Collapse
Affiliation(s)
| | - Laura S. Gammill
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Wiszniak S, Lumb R, Kabbara S, Scherer M, Schwarz Q. Li-gazing at the crest: modulation of the neural crest by the ubiquitin pathway. Int J Biochem Cell Biol 2013; 45:1087-91. [PMID: 23458963 DOI: 10.1016/j.biocel.2013.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
Neural crest cells are a transient population of stem cells that give rise to a diverse range of cell types during embryonic development. Through gain-of-function and loss-of-function studies in several model organisms many key signalling pathways and cell-type specific transcription factors essential for neural crest cell development have been identified. However, the role of post-translational regulation remains largely unexplored. Here we review this cell type with a foray into the known and potential roles of the ubiquitination pathway in key signalling events during neural crest cell development.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia
| | | | | | | | | |
Collapse
|