1
|
Fu J, Ni Y, Hu Y, Tang W, Fu J, Wang Y, Yu S, Xu W. Glutamine, Serine and Glycine at Increasing Concentrations Regulate Cisplatin Sensitivity in Gastric Cancer by Posttranslational Modifications of KDM4A. Mol Carcinog 2025; 64:703-715. [PMID: 39835657 DOI: 10.1002/mc.23881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Gastric cancer is a common digestive system tumor with a high resistance rate that reduces the sensitivity to chemotherapy. Nutrition therapy is an important adjuvant approach to favor the prognosis of gastric cancer. Dietary amino acids contribute greatly to gastric cancer progression by mediating tumor gene expressions, epigenetics, signal transduction, and metabolic remodeling. In the present study, 20 types of amino acids were screened and glutamine, glycine and serine were identified as the critical regulators of cisplatin (DDP) sensitivity in gastric cancer cells. Moreover, KDM4A acetylation drove the reduced chemotherapy sensitivity in gastric cancer cells by maintaining protein stability and activating DNA repair ability when the concentrations of glutamine (Gln), serine (Ser), and glycine (Gly) decreased. Conversely, Gln/Ser/Gly at increasing concentrations stimulated ubiquitination degradation of KDM4A, which in turn elevated the sensitivity of gastric cancer cells to chemotherapy. Our findings unveiled the role of amino acid nutrition in regulating chemotherapy sensitivity of gastric cancer and the underlying mechanism, thus providing a scientific basis for expanding the clinical significance of nutrition therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Junhao Fu
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuqi Ni
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuqing Hu
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wanfen Tang
- Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Jianfei Fu
- Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yue Wang
- Department of Experimental Technology, Dian Diagnostics Group Co. Ltd., Hangzhou, Zhejiang Province, China
| | - Shian Yu
- Department of General Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wenxia Xu
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| |
Collapse
|
2
|
Kendek A, Sandron A, Lambooij JP, Colmenares S, Pociunaite S, Gooijers I, de Groot L, Karpen G, Janssen A. DNA double-strand break movement in heterochromatin depends on the histone acetyltransferase dGcn5. Nucleic Acids Res 2024; 52:11753-11767. [PMID: 39258543 PMCID: PMC11514474 DOI: 10.1093/nar/gkae775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Cells employ diverse strategies to repair double-strand breaks (DSBs), a dangerous form of DNA damage that threatens genome integrity. Eukaryotic nuclei consist of different chromatin environments, each displaying distinct molecular and biophysical properties that can significantly influence the DSB-repair process. DSBs arising in the compact and silenced heterochromatin domains have been found to move to the heterochromatin periphery in mouse and Drosophila to prevent aberrant recombination events. However, it is poorly understood how chromatin components, such as histone post-translational modifications, contribute to these DSB movements within heterochromatin. Using irradiation as well as locus-specific DSB induction in Drosophila tissues and cultured cells, we find enrichment of histone H3 lysine 9 acetylation (H3K9ac) at DSBs in heterochromatin but not euchromatin. We find this increase is mediated by the histone acetyltransferase dGcn5, which rapidly localizes to heterochromatic DSBs. Moreover, we demonstrate that in the absence of dGcn5, heterochromatic DSBs display impaired recruitment of the SUMO E3 ligase Nse2/Qjt and fail to relocate to the heterochromatin periphery to complete repair. In summary, our results reveal a previously unidentified role for dGcn5 and H3K9ac in heterochromatic DSB repair and underscore the importance of differential chromatin responses at heterochromatic and euchromatic DSBs to promote safe repair.
Collapse
Affiliation(s)
- Apfrida Kendek
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Arianna Sandron
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Jan-Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Serafin U Colmenares
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Berkeley, California, USA
| | - Severina M Pociunaite
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Iris Gooijers
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Lars de Groot
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Gary H Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Berkeley, California, USA
- Division of Biological Sciences and the Environment, Lawrence Berkeley National Laboratory, CA 94720, Berkeley, California, USA
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| |
Collapse
|
3
|
Lin L, Huang Y, McIntyre J, Chang CH, Colmenares S, Lee YCG. Prevalent Fast Evolution of Genes Involved in Heterochromatin Functions. Mol Biol Evol 2024; 41:msae181. [PMID: 39189646 PMCID: PMC11408610 DOI: 10.1093/molbev/msae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements. Given the importance of these functions, it is expected that genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions, purifying selection may have maintained the proportions of intrinsically disordered regions of these proteins. Together with the observed negative associations between the evolutionary rate of these genes and the genomic abundance of transposable elements, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of transposable elements may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.
Collapse
Affiliation(s)
- Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jennifer McIntyre
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Serafin Colmenares
- Department of Cell and Molecular Biology, University of California, Berkeley, CA, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
4
|
Stefan K, Barski A. Cis-regulatory atlas of primary human CD4+ T cells. BMC Genomics 2023; 24:253. [PMID: 37170195 PMCID: PMC10173520 DOI: 10.1186/s12864-023-09288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
Cis-regulatory elements (CRE) are critical for coordinating gene expression programs that dictate cell-specific differentiation and homeostasis. Recently developed self-transcribing active regulatory region sequencing (STARR-Seq) has allowed for genome-wide annotation of functional CREs. Despite this, STARR-Seq assays are only employed in cell lines, in part, due to difficulties in delivering reporter constructs. Herein, we implemented and validated a STARR-Seq-based screen in human CD4+ T cells using a non-integrating lentiviral transduction system. Lenti-STARR-Seq is the first example of a genome-wide assay of CRE function in human primary cells, identifying thousands of functional enhancers and negative regulatory elements (NREs) in human CD4+ T cells. We find an unexpected difference in nucleosome organization between enhancers and NRE: enhancers are located between nucleosomes, whereas NRE are occupied by nucleosomes in their endogenous locations. We also describe chromatin modification, eRNA production, and transcription factor binding at both enhancers and NREs. Our findings support the idea of silencer repurposing as enhancers in alternate cell types. Collectively, these data suggest that Lenti-STARR-Seq is a successful approach for CRE screening in primary human cell types, and provides an atlas of functional CREs in human CD4+ T cells.
Collapse
Affiliation(s)
- Kurtis Stefan
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229-3026, USA
- Medical Scientist Training Program (MSTP), University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229-3026, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3026, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
The Sound of Silence: How Silenced Chromatin Orchestrates the Repair of Double-Strand Breaks. Genes (Basel) 2021; 12:genes12091415. [PMID: 34573397 PMCID: PMC8467445 DOI: 10.3390/genes12091415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The eukaryotic nucleus is continuously being exposed to endogenous and exogenous sources that cause DNA breaks, whose faithful repair requires the activity of dedicated nuclear machineries. DNA is packaged into a variety of chromatin domains, each characterized by specific molecular properties that regulate gene expression and help maintain nuclear structure. These different chromatin environments each demand a tailored response to DNA damage. Silenced chromatin domains in particular present a major challenge to the cell’s DNA repair machinery due to their specific biophysical properties and distinct, often repetitive, DNA content. To this end, we here discuss the interplay between silenced chromatin domains and DNA damage repair, specifically double-strand breaks, and how these processes help maintain genome stability.
Collapse
|
6
|
Zaghi M, Broccoli V, Sessa A. H3K36 Methylation in Neural Development and Associated Diseases. Front Genet 2020; 10:1291. [PMID: 31998360 PMCID: PMC6962298 DOI: 10.3389/fgene.2019.01291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Post-translational methylation of H3 lysine 36 (H3K36) is an important epigenetic marker that majorly contributes to the functionality of the chromatin. This mark is interpreted by the cell in several crucial biological processes including gene transcription and DNA methylation. The homeostasis of H3K36 methylation is finely regulated by different enzyme classes which, when impaired, lead to a plethora of diseases; ranging from multi-organ syndromes to cancer, to pure neurological diseases often associated with brain development. This mini-review summarizes current knowledge on these important epigenetic signals with emphasis on the molecular mechanisms that (i) regulate their abundance, (ii) are influenced by H3K36 methylation, and (iii) the associated diseases.
Collapse
Affiliation(s)
- Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Concilio Nazionale Delle Ricerche (CNR), Instituto di Neuroscienze, Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Tsurumi A, Xue S, Zhang L, Li J, Li WX. Genome-wide Kdm4 histone demethylase transcriptional regulation in Drosophila. Mol Genet Genomics 2019; 294:1107-1121. [PMID: 31020413 PMCID: PMC6813854 DOI: 10.1007/s00438-019-01561-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/03/2019] [Indexed: 12/23/2022]
Abstract
The histone lysine demethylase 4 (Kdm4/Jmjd2/Jhdm3) family is highly conserved across species and reverses di- and tri-methylation of histone H3 lysine 9 (H3K9) and lysine 36 (H3K36) at the N-terminal tail of the core histone H3 in various metazoan species including Drosophila, C.elegans, zebrafish, mice and humans. Previous studies have shown that the Kdm4 family plays a wide variety of important biological roles in different species, including development, oncogenesis and longevity by regulating transcription, DNA damage response and apoptosis. Only two functional Kdm4 family members have been identified in Drosophila, compared to five in mammals, thus providing a simple model system. Drosophila Kdm4 loss-of-function mutants do not survive past the early 2nd instar larvae stage and display a molting defect phenotype associated with deregulated ecdysone hormone receptor signaling. To further characterize and identify additional targets of Kdm4, we employed a genome-wide approach to investigate transcriptome alterations in Kdm4 mutants versus wild-type during early development. We found evidence of increased deregulated transcripts, presumably associated with a progressive accumulation of H3K9 and H3K36 methylation through development. Gene ontology analyses found significant enrichment of terms related to the ecdysteroid hormone signaling pathway important in development, as expected, and additionally previously unidentified potential targets that warrant further investigation. Since Kdm4 is highly conserved across species, our results may be applicable more widely to other organisms and our genome-wide dataset may serve as a useful resource for further studies.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Their 340, Boston, MA, 02114, USA.
- Department of Microbiology and Immunology, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115, USA.
- Shriners Hospitals for Children-Boston®, 51 Blossom St., Boston, MA, 02114, USA.
| | - Shuang Xue
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Lin Zhang
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Jinghong Li
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Willis X Li
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Janssen A, Colmenares SU, Lee T, Karpen GH. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A. Genes Dev 2018; 33:103-115. [PMID: 30578303 PMCID: PMC6317320 DOI: 10.1101/gad.317537.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) must be orchestrated properly within diverse chromatin domains in order to maintain genetic stability. Euchromatin and heterochromatin domains display major differences in histone modifications, biophysical properties, and spatiotemporal dynamics of DSB repair. However, it is unclear whether differential histone-modifying activities are required for DSB repair in these distinct domains. We showed previously that the Drosophila melanogaster KDM4A (dKDM4A) histone demethylase is required for heterochromatic DSB mobility. Here we used locus-specific DSB induction in Drosophila animal tissues and cultured cells to more deeply interrogate the impact of dKDM4A on chromatin changes, temporal progression, and pathway utilization during DSB repair. We found that dKDM4A promotes the demethylation of heterochromatin-associated histone marks at DSBs in heterochromatin but not euchromatin. Most importantly, we demonstrate that dKDM4A is required to complete DSB repair in a timely manner and regulate the relative utilization of homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways but exclusively for heterochromatic DSBs. We conclude that the temporal kinetics and pathway utilization during heterochromatic DSB repair depend on dKDM4A-dependent demethylation of heterochromatic histone marks. Thus, distinct pre-existing chromatin states require specialized epigenetic alterations to ensure proper DSB repair.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Serafin U Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Timothy Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Sen A, Gurdziel K, Liu J, Qu W, Nuga OO, Burl RB, Hüttemann M, Pique-Regi R, Ruden DM. Smooth, an hnRNP-L Homolog, Might Decrease Mitochondrial Metabolism by Post-Transcriptional Regulation of Isocitrate Dehydrogenase (Idh) and Other Metabolic Genes in the Sub-Acute Phase of Traumatic Brain Injury. Front Genet 2017; 8:175. [PMID: 29187863 PMCID: PMC5694756 DOI: 10.3389/fgene.2017.00175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/24/2017] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) can cause persistent pathological alteration of neurons. This may lead to cognitive dysfunction, depression and increased susceptibility to life threatening diseases, such as epilepsy and Alzheimer's disease. To investigate the underlying genetic and molecular basis of TBI, we subjected w1118Drosophila melanogaster to mild closed head trauma and found that mitochondrial activity is reduced in the brains of these flies 24 h after inflicting trauma. To determine the transcriptomic changes after mild TBI, we collected fly heads 24 h after inflicting trauma, and performed RNA-seq analyses. Classification of alternative splicing changes showed selective retention (RI) of long introns (>81 bps), with a mean size of ~3,000 nucleotides. Some of the genes containing RI showed a significant reduction in transcript abundance and are involved in mitochondrial metabolism such as Isocitrate dehydrogenase (Idh), which makes α-KG, a co-factor needed for both DNA and histone demethylase enzymes. The long introns are enriched in CA-rich motifs known to bind to Smooth (Sm), a heterogeneous nuclear ribonucleoprotein L (hnRNP-L) class of splicing factor, which has been shown to interact with the H3K36 histone methyltransferase, SET2, and to be involved in intron retention in human cells. H3K36me3 is a histone mark that demarcates exons in genes by interacting with the mRNA splicing machinery. Mutating sm (sm4/Df) resulted in loss of both basal and induced levels of RI in many of the same long-intron containing genes. Reducing the levels of Kdm4A, the H3K36me3 histone demethylase, also resulted in loss of basal levels of RI in many of the same long-intron containing genes. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) for H3K36me3 revealed increased levels of this histone modification in retained introns post-trauma at CA-rich motifs. Based on these results, we propose a model in which TBI temporarily decreases mitochondrial activity in the brain 24 h after inflicting trauma, which decreases α-KG levels, and increases H3K36me3 levels and intron retention of long introns by decreasing Kdm4A activity. The consequent reduction in mature mRNA levels in metabolism genes, such as Idh, further reduces α-KG levels in a negative feedback loop. We further propose that decreasing metabolism after TBI in such a manner is a protective mechanism that gives the brain time to repair cellular damage induced by TBI.
Collapse
Affiliation(s)
- Arko Sen
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States.,Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Wen Qu
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Oluwademi O Nuga
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Rayanne B Burl
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Douglas M Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States.,C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
10
|
Drosophila Histone Demethylase KDM4A Has Enzymatic and Non-enzymatic Roles in Controlling Heterochromatin Integrity. Dev Cell 2017; 42:156-169.e5. [PMID: 28743002 DOI: 10.1016/j.devcel.2017.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/21/2017] [Accepted: 06/16/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. We demonstrate that dKDM4A demethylase activity is dispensable for PEV. In contrast, dKDM4A enzymatic activity is required to relocate heterochromatic double-strand breaks outside the domain, as well as for organismal survival when DNA repair is compromised. Finally, DNA damage triggers dKDM4A-dependent changes in the levels of H3K56me3, suggesting that dKDM4A demethylates this heterochromatic mark to facilitate repair. We conclude that dKDM4A, in addition to its previously characterized role in euchromatin, utilizes both enzymatic and structural mechanisms to regulate heterochromatin organization and functions.
Collapse
|
11
|
Shalaby NA, Sayed R, Zhang Q, Scoggin S, Eliazer S, Rothenfluh A, Buszczak M. Systematic discovery of genetic modulation by Jumonji histone demethylases in Drosophila. Sci Rep 2017; 7:5240. [PMID: 28701701 PMCID: PMC5507883 DOI: 10.1038/s41598-017-05004-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
Jumonji (JmjC) domain proteins influence gene expression and chromatin organization by way of histone demethylation, which provides a means to regulate the activity of genes across the genome. JmjC proteins have been associated with many human diseases including various cancers, developmental and neurological disorders, however, the shared biology and possible common contribution to organismal development and tissue homeostasis of all JmjC proteins remains unclear. Here, we systematically tested the function of all 13 Drosophila JmjC genes. Generation of molecularly defined null mutants revealed that loss of 8 out of 13 JmjC genes modify position effect variegation (PEV) phenotypes, consistent with their ascribed role in regulating chromatin organization. However, most JmjC genes do not critically regulate development, as 10 members are viable and fertile with no obvious developmental defects. Rather, we find that different JmjC mutants specifically alter the phenotypic outcomes in various sensitized genetic backgrounds. Our data demonstrate that, rather than controlling essential gene expression programs, Drosophila JmjC proteins generally act to “fine-tune” different biological processes.
Collapse
Affiliation(s)
- Nevine A Shalaby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Institute for Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Raheel Sayed
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiao Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shane Scoggin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Susan Eliazer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Neuroscience Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Psychiatry, Molecular Medicine Program, University of Utah, Salt Lake City, Utah, 84112, USA.
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
12
|
Suzuki S, Murakami Y, Takahata S. H3K36 methylation state and associated silencing mechanisms. Transcription 2016; 8:26-31. [PMID: 27723431 DOI: 10.1080/21541264.2016.1246076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Epigenetic marks determine cell fate via numerous reader proteins. H3K36 methylation is a common epigenetic mark that is thought to be associated with the activities of the RNA polymerase 2 C-terminal domain. We discuss a novel silencing mechanism regulated by Set2-dependent H3K36 methylation that involves exosome-dependent RNA processing.
Collapse
Affiliation(s)
- Shota Suzuki
- a Department of Chemistry , Faculty of Science, Hokkaido University , Sapporo , Japan
| | - Yota Murakami
- a Department of Chemistry , Faculty of Science, Hokkaido University , Sapporo , Japan
| | - Shinya Takahata
- a Department of Chemistry , Faculty of Science, Hokkaido University , Sapporo , Japan
| |
Collapse
|
13
|
Kim TD, Shin S, Janknecht R. ETS transcription factor ERG cooperates with histone demethylase KDM4A. Oncol Rep 2016; 35:3679-88. [PMID: 27109047 PMCID: PMC4869937 DOI: 10.3892/or.2016.4747] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
ERG (ETS-related gene) is a member of the ETS (erythroblast transformation-specific) family of transcription factors. Overexpression of the ERG transcription factor is observed in half of all prostate tumors and is an underlying cause of this disease. However, the mechanisms involved in the functions of ERG are still not fully understood. In the present study, we showed that ERG can directly bind to KDM4A (also known as JMJD2A), a histone demethylase that particularly demethylates lysine 9 on histone H3. ERG and KDM4A cooperated in upregulating the promoter of Yes-associated protein 1 (YAP1), a downstream effector in the Hippo signaling pathway and crucial growth regulator. Multiple ERG binding sites within the human YAP1 gene promoter were identified and their impact on transcription was determined through mutational analysis. Furthermore, we found that ERG expression reduced histone H3 lysine 9 trimethylation at the YAP1 gene promoter, consistent with its epigenetic regulation through the ERG interaction partner, KDM4A. Finally, downregulation of YAP1 phenocopied the growth-retarding effect of ERG or KDM4A depletion in human VCaP prostate cancer cells. Collectively, these results elucidated a novel mechanism - ERG promotes prostate tumorigenesis together with KDM4A through the upregulation of YAP1. A corollary is that KDM4A as well as YAP1 inhibitors may prove beneficial for the therapy of ERG-overexpressing prostate tumors.
Collapse
Affiliation(s)
- Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. Aging Dis 2016; 7:180-200. [PMID: 27114850 PMCID: PMC4809609 DOI: 10.14336/ad.2015.0929] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in pathological processes emphasizing that long-term stress-related insults can impair the maintenance of chromatin landscape and provoke cellular senescence and tissue fibrosis associated with aging and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Kuopio University Hospital, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Kok K, Ay A, Li LM, Arnosti DN. Genome-wide errant targeting by Hairy. eLife 2015; 4. [PMID: 26305409 PMCID: PMC4547095 DOI: 10.7554/elife.06394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
Metazoan transcriptional repressors regulate chromatin through diverse histone modifications. Contributions of individual factors to the chromatin landscape in development is difficult to establish, as global surveys reflect multiple changes in regulators. Therefore, we studied the conserved Hairy/Enhancer of Split family repressor Hairy, analyzing histone marks and gene expression in Drosophila embryos. This long-range repressor mediates histone acetylation and methylation in large blocks, with highly context-specific effects on target genes. Most strikingly, Hairy exhibits biochemical activity on many loci that are uncoupled to changes in gene expression. Rather than representing inert binding sites, as suggested for many eukaryotic factors, many regions are targeted errantly by Hairy to modify the chromatin landscape. Our findings emphasize that identification of active cis-regulatory elements must extend beyond the survey of prototypical chromatin marks. We speculate that this errant activity may provide a path for creation of new regulatory elements, facilitating the evolution of novel transcriptional circuits.
Collapse
Affiliation(s)
- Kurtulus Kok
- Genetics Program, Michigan State University, East Lansing, United States
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, United States
| | - Li M Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David N Arnosti
- Genetics Program, Michigan State University, East Lansing, United States
| |
Collapse
|
16
|
Guerra-Calderas L, González-Barrios R, Herrera LA, Cantú de León D, Soto-Reyes E. The role of the histone demethylase KDM4A in cancer. Cancer Genet 2014; 208:215-24. [PMID: 25633974 DOI: 10.1016/j.cancergen.2014.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
Histone posttranslational modifications are important components of epigenetic regulation. One extensively studied modification is the methylation of lysine residues. These modifications were thought to be irreversible. However, several proteins with histone lysine demethylase functions have been discovered and characterized. Among these proteins, KDM4A is the first histone lysine demethylase shown to demethylate trimethylated residues. This enzyme plays an important role in gene expression, cellular differentiation, and animal development. Recently, it has also been shown to be involved in cancer. In this review, we focus on describing the structure, mechanisms, and function of KDM4A. We primarily discuss the role of KDM4A in cancer development and the importance of KDM4A as a potential therapeutic target.
Collapse
Affiliation(s)
- Lissania Guerra-Calderas
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - David Cantú de León
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
17
|
A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev 2014; 133:36-53. [PMID: 25016215 DOI: 10.1016/j.mod.2014.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
Abstract
Post-translational modification of histones plays essential roles in the transcriptional regulation of genes in eukaryotes. Methylation on basic residues of histones is regulated by histone methyltransferases and histone demethylases, and misregulation of these enzymes has been linked to a range of diseases such as cancer. Histone lysine demethylase 2 (KDM2) family proteins have been shown to either promote or suppress tumorigenesis in different human malignancies. However, the roles and regulation of KDM2 in development are poorly understood, and the exact roles of KDM2 in regulating demethylation remain controversial. Since KDM2 proteins are highly conserved in multicellular animals, we analyzed the KDM2 ortholog in Drosophila. We have observed that dKDM2 is a nuclear protein and its level fluctuates during fly development. We generated three deficiency lines that disrupt the dKdm2 locus, and together with 10 transposon insertion lines within the dKdm2 locus, we characterized the developmental defects of these alleles. The alleles of dKdm2 define three phenotypic classes, and the intragenic complementation observed among these alleles and our subsequent analyses suggest that dKDM2 is not required for viability. In addition, loss of dKDM2 appears to have rather weak effects on histone H3 lysine 36 and 4 methylation (H3K36me and H3K4me) in the third instar wandering larvae, and we observed no effect on methylation of H3K9me2, H3K27me2 and H3K27me3 in dKdm2 mutants. Taken together, these genetic, molecular and biochemical analyses suggest that dKDM2 is not required for viability of flies, indicating that dKdm2 is likely redundant with other histone lysine demethylases in regulating normal development in Drosophila.
Collapse
|
18
|
The histone demethylase activity of Rph1 is not essential for its role in the transcriptional response to nutrient signaling. PLoS One 2014; 9:e95078. [PMID: 24999627 PMCID: PMC4085034 DOI: 10.1371/journal.pone.0095078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/21/2014] [Indexed: 12/22/2022] Open
Abstract
Rph1 and Gis1 are two related yeast zinc finger proteins that function as downstream effectors in the Ras/PKA, TOR and Sch9 nutrient signaling pathways. Both proteins also contain JmjC histone demethylase domains, but only Rph1 is known to be an active enzyme, demethylating lysine 36 of histone H3. We have studied to what extent the demethylase activity of Rph1 contributes to its role in nutrient signaling by performing gene expression microarray experiments on a yeast strain containing a catalytically inactive allele of RPH1. We find that the enzymatic activity of Rph1 is not essential for its role in growth phase dependent gene regulation. However, the ability of Rph1 to both activate and repress transcription is partially impaired in the active site mutant, indicating that the demethylase activity may enhance its function in vivo. Consistent with this, we find that the Rph1 mutation and a deletion of the histone H3 methylase Set2 affect the same target genes in opposite directions. Genes that are differentially expressed in the Rph1 mutant are also enriched for binding of Rpd3, a downstream effector in silencing, to their promoters. The expression of some subtelomeric genes and genes involved in sporulation and meiosis are also affected by the mutation, suggesting a role for Rph1-dependent demethylation in regulating these genes. A small set of genes are more strongly affected by the active site mutation, indicating a more pronounced role for the demethylase activity in their regulation by Rph1.
Collapse
|
19
|
The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development. Mol Cell Biol 2014; 34:1031-45. [PMID: 24396064 DOI: 10.1128/mcb.00864-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The histone demethylase JMJD2C, also known as KDM4C/GASC1, has activity against methylated H3K9 and H3K36 and is amplified and/or overexpressed in human cancers. By the generation of Jmjd2c knockout mice, we demonstrate that loss of Jmjd2c is compatible with cellular proliferation, embryonic stem cell (ESC) self-renewal, and embryonic development. Moreover, we report that JMJD2C localizes to H3K4me3-positive transcription start sites in both primary cells and in the human carcinoma KYSE150 cell line containing an amplification of the JMJD2C locus. Binding is dependent on the double Tudor domain of JMJD2C, which recognizes H3K4me3 but not H4K20me2/me3 in vitro, showing a binding specificity different from that of the double Tudor domains of JMJD2A and JMJD2B. Depletion of JMJD2C in KYSE150 cells has a modest effect on H3K9me3 and H3K36me3 levels but impairs proliferation and leads to deregulated expression of a subset of target genes involved in cell cycle progression. Taking these findings together, we show that JMJD2C is targeted to H3K4me3-positive transcription start sites, where it can contribute to transcriptional regulation, and report that the putative oncogene JMJD2C generally is not required for cellular proliferation or embryonic development.
Collapse
|
20
|
Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling. Sci Rep 2013; 3:2894. [PMID: 24100631 PMCID: PMC3792421 DOI: 10.1038/srep02894] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
The dynamic regulation of chromatin structure by histone post-translational modification is an essential regulatory mechanism that controls global gene transcription. The Kdm4 family of H3K9me2,3 and H3K36me2,3 dual specific histone demethylases has been implicated in development and tumorigenesis. Here we show that DrosophilaKdm4A and Kdm4B are together essential for mediating ecdysteroid hormone signaling during larval development. Loss of Kdm4 genes leads to globally elevated levels of the heterochromatin marker H3K9me2,3 and impedes transcriptional activation of ecdysone response genes, resulting in developmental arrest. We further show that Kdm4A interacts with the Ecdysone Receptor (EcR) and colocalizes with EcR at its target gene promoter. Our studies suggest that Kdm4A may function as a transcriptional co-activator by removing the repressive histone mark H3K9me2,3 from cognate promoters.
Collapse
|
21
|
Liang CY, Wang LC, Lo WS. Dissociation of the H3K36 demethylase Rph1 from chromatin mediates derepression of environmental stress-response genes under genotoxic stress in Saccharomyces cerevisiae. Mol Biol Cell 2013; 24:3251-62. [PMID: 23985319 PMCID: PMC3806659 DOI: 10.1091/mbc.e12-11-0820] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The H3K36 demethylase Rph1 is a transcriptional repressor for stress-responsive genes in yeast. Rph1-mediated transcriptional repression is relieved by phosphorylation of Rph1, reduced Rph1 level, and dissociation of Rph1 from chromatin with genotoxic stress. Rph1 may function as a regulatory node in different stress-signaling pathways. Cells respond to environmental signals by altering gene expression through transcription factors. Rph1 is a histone demethylase containing a Jumonji C (JmjC) domain and belongs to the C2H2 zinc-finger protein family. Here we investigate the regulatory network of Rph1 in yeast by expression microarray analysis. More than 75% of Rph1-regulated genes showed increased expression in the rph1-deletion mutant, suggesting that Rph1 is mainly a transcriptional repressor. The binding motif 5′-CCCCTWA-3′, which resembles the stress response element, is overrepresented in the promoters of Rph1-repressed genes. A significant proportion of Rph1-regulated genes respond to DNA damage and environmental stress. Rph1 is a labile protein, and Rad53 negatively modulates Rph1 protein level. We find that the JmjN domain is important in maintaining protein stability and the repressive effect of Rph1. Rph1 is directly associated with the promoter region of targeted genes and dissociated from chromatin before transcriptional derepression on DNA damage and oxidative stress. Of interest, the master stress-activated regulator Msn2 also regulates a subset of Rph1-repressed genes under oxidative stress. Our findings confirm the regulatory role of Rph1 as a transcriptional repressor and reveal that Rph1 might be a regulatory node connecting different signaling pathways responding to environmental stresses.
Collapse
Affiliation(s)
- Chung-Yi Liang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | |
Collapse
|
22
|
Abstract
Lysine methylation is one of the most prominent histone posttranslational modifications that regulate chromatin structure. Changes in histone lysine methylation status have been observed during cancer formation, which is thought to be a consequence of the dysregulation of histone lysine methyltransferases or the opposing demethylases. KDM4/JMJD2 proteins are demethylases that target histone H3 on lysines 9 and 36 and histone H1.4 on lysine 26. This protein family consists of three ~130-kDa proteins (KDM4A-C) and KDM4D/JMJD2D, which is half the size, lacks the double PHD and Tudor domains that are epigenome readers and present in the other KDM4 proteins, and has a different substrate specificity. Various studies have shown that KDM4A/JMJD2A, KDM4B/JMJD2B, and/or KDM4C/JMJD2C are overexpressed in breast, colorectal, lung, prostate, and other tumors and are required for efficient cancer cell growth. In part, this may be due to their ability to modulate transcription factors such as the androgen and estrogen receptor. Thus, KDM4 proteins present themselves as novel potential drug targets. Accordingly, multiple attempts are under way to develop KDM4 inhibitors, which could complement the existing arsenal of epigenetic drugs that are currently limited to DNA methyltransferases and histone deacetylases.
Collapse
Affiliation(s)
- William L Berry
- Department of Cell Biology and Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|