1
|
Rahmati M, Chebli J, Kumar Banote R, Roselli S, Agholme L, Zetterberg H, Abramsson A. Fine-Tuning Amyloid Precursor Protein Expression through Nonsense-Mediated mRNA Decay. eNeuro 2024; 11:ENEURO.0034-24.2024. [PMID: 38789273 PMCID: PMC11164851 DOI: 10.1523/eneuro.0034-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Studies on genetic robustness recently revealed transcriptional adaptation (TA) as a mechanism by which an organism can compensate for genetic mutations through activation of homologous genes. Here, we discovered that genetic mutations, introducing a premature termination codon (PTC) in the amyloid precursor protein-b (appb) gene, activated TA of two other app family members, appa and amyloid precursor-like protein-2 (aplp2), in zebrafish. The observed transcriptional response of appa and aplp2 required degradation of mutant mRNA and did not depend on Appb protein level. Furthermore, TA between amyloid precursor protein (APP) family members was observed in human neuronal progenitor cells; however, compensation was only present during early neuronal differentiation and could not be detected in a more differentiated neuronal stage or adult zebrafish brain. Using knockdown and chemical inhibition, we showed that nonsense-mediated mRNA decay (NMD) is involved in degradation of mutant mRNA and that Upf1 and Upf2, key proteins in the NMD pathway, regulate the endogenous transcript levels of appa, appb, aplp1, and aplp2 In conclusion, our results suggest that the expression level of App family members is regulated by the NMD pathway and that mutations destabilizing app/APP mRNA can induce genetic compensation by other family members through TA in both zebrafish and human neuronal progenitors.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Jasmine Chebli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Sandra Roselli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Lotta Agholme
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N #BG, United Kingdom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 41, Sweden
- United Kingdom Dementia Research Institute, London W1T 7NF, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, 17 Science Park W Ave, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| |
Collapse
|
2
|
Özcan GG, Lim S, Canning T, Tirathdas L, Donnelly J, Kundu T, Rihel J. Genetic and chemical disruption of amyloid precursor protein processing impairs zebrafish sleep maintenance. iScience 2024; 27:108870. [PMID: 38318375 PMCID: PMC10839650 DOI: 10.1016/j.isci.2024.108870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Amyloid precursor protein (APP) is a brain-rich, single pass transmembrane protein that is proteolytically processed into multiple products, including amyloid-beta (Aβ), a major driver of Alzheimer disease (AD). Although both overexpression of APP and exogenously delivered Aβ lead to changes in sleep, whether APP processing plays an endogenous role in regulating sleep is unknown. Here, we demonstrate that APP processing into Aβ40 and Aβ42 is conserved in zebrafish and then describe sleep/wake phenotypes in loss-of-function appa and appb mutants. Larvae with mutations in appa had reduced waking activity, whereas larvae that lacked appb had shortened sleep bout durations at night. Treatment with the γ-secretase inhibitor DAPT also shortened night sleep bouts, whereas the BACE-1 inhibitor lanabecestat lengthened sleep bouts. Intraventricular injection of P3 also shortened night sleep bouts, suggesting that the proper balance of Appb proteolytic processing is required for normal sleep maintenance in zebrafish.
Collapse
Affiliation(s)
- Güliz Gürel Özcan
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Sumi Lim
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Thomas Canning
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Lavitasha Tirathdas
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Joshua Donnelly
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Tanushree Kundu
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
3
|
Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther 2022; 235:108122. [PMID: 35114285 DOI: 10.1016/j.pharmthera.2022.108122] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
Amyloid precursor protein (APP) is an evolutionarily conserved transmembrane protein and a well-characterized precursor protein of amyloid-beta (Aβ) peptides, which accumulate in the brains of individuals with Alzheimer's disease (AD)-related pathologies. Aβ has been extensively investigated since the amyloid hypothesis in AD was proposed. Besides Aβ, previous studies on APP and its proteolytic cleavage products have suggested their diverse pathological and physiological functions. However, their roles still have not been thoroughly understood. In this review, we extensively discuss the evolutionarily-conserved biology of APP, including its structure and processing pathway, as well as recent findings on the physiological roles of APP and its fragments in the central nervous system and peripheral nervous system. We have also elaborated upon the current status of APP-targeted therapeutic approaches for AD treatment by discussing inhibitors of several proteases participating in APP processing, including α-, β-, and γ-secretases. Finally, we have highlighted the future perspectives pertaining to further research and the potential clinical role of APP.
Collapse
Affiliation(s)
- Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Pauld Feder Laboratory on Alzheimer's Disease Research, Israel
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Vandestadt C, Vanwalleghem GC, Khabooshan MA, Douek AM, Castillo HA, Li M, Schulze K, Don E, Stamatis SA, Ratnadiwakara M, Änkö ML, Scott EK, Kaslin J. RNA-induced inflammation and migration of precursor neurons initiates neuronal circuit regeneration in zebrafish. Dev Cell 2021; 56:2364-2380.e8. [PMID: 34428400 DOI: 10.1016/j.devcel.2021.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
Tissue regeneration and functional restoration after injury are considered as stem- and progenitor-cell-driven processes. In the central nervous system, stem cell-driven repair is slow and problematic because function needs to be restored rapidly for vital tasks. In highly regenerative vertebrates, such as zebrafish, functional recovery is rapid, suggesting a capability for fast cell production and functional integration. Surprisingly, we found that migration of dormant "precursor neurons" to the injury site pioneers functional circuit regeneration after spinal cord injury and controls the subsequent stem-cell-driven repair response. Thus, the precursor neurons make do before the stem cells make new. Furthermore, RNA released from the dying or damaged cells at the site of injury acts as a signal to attract precursor neurons for repair. Taken together, our data demonstrate an unanticipated role of neuronal migration and RNA as drivers of neural repair.
Collapse
Affiliation(s)
- Celia Vandestadt
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Gilles C Vanwalleghem
- The Queensland Brain Institute, the University of Queensland, St. Lucia, QLD, Australia
| | - Mitra Amiri Khabooshan
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Alon M Douek
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Hozana Andrade Castillo
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia; Brazilian Biosciences National Laboratory, Brazilian Centre for Research in Energy and Materials, Campinas CEP 13083-100, Brazil
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia
| | - Keith Schulze
- Monash Micro Imaging, Monash University, Monash University, Clayton, VIC 3800, Australia
| | - Emily Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | | | - Madara Ratnadiwakara
- Centre for Reproductive Health and Center for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Center for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Ethan K Scott
- The Queensland Brain Institute, the University of Queensland, St. Lucia, QLD, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton VIC, 3800, Australia.
| |
Collapse
|
5
|
Wang X, Zhang JB, He KJ, Wang F, Liu CF. Advances of Zebrafish in Neurodegenerative Disease: From Models to Drug Discovery. Front Pharmacol 2021; 12:713963. [PMID: 34335276 PMCID: PMC8317260 DOI: 10.3389/fphar.2021.713963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disease (NDD), including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, are characterized by the progressive loss of neurons which leads to the decline of motor and/or cognitive function. Currently, the prevalence of NDD is rapidly increasing in the aging population. However, valid drugs or treatment for NDD are still lacking. The clinical heterogeneity and complex pathogenesis of NDD pose a great challenge for the development of disease-modifying therapies. Numerous animal models have been generated to mimic the pathological conditions of these diseases for drug discovery. Among them, zebrafish (Danio rerio) models are progressively emerging and becoming a powerful tool for in vivo study of NDD. Extensive use of zebrafish in pharmacology research or drug screening is due to the high conserved evolution and 87% homology to humans. In this review, we summarize the zebrafish models used in NDD studies, and highlight the recent findings on pharmacological targets for NDD treatment. As high-throughput platforms in zebrafish research have rapidly developed in recent years, we also discuss the application prospects of these new technologies in future NDD research.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai-Jie He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology, Suqian First Hospital, Suqian, China
| |
Collapse
|
6
|
Capriello T, Monteiro SM, Félix LM, Donizetti A, Aliperti V, Ferrandino I. Apoptosis, oxidative stress and genotoxicity in developing zebrafish after aluminium exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105872. [PMID: 34052719 DOI: 10.1016/j.aquatox.2021.105872] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Aluminium is a non-essential metal and potentially toxic to organisms whose environmental concentration increases due to pollution. In our previous studies, the behavioral changes induced by aluminium were already shown on zebrafish, a model organism widely used for ecotoxicology screening. To examine in depth the knowledge about the toxicity mechanism induced by this metal, zebrafish embryos, at 6 hpf, have been exposed to 50, 100 and 200 µM of AlCl3 for 72 h. Phenotypic alterations, apoptosis and oxidative stress responses have been assessed by evaluations of antioxidant defence and changes in metabolism at the end of treatment. The mRNA expression level of c-fos, appa and appb as marker genes of neural development and function were analyzed by qPCR for the highest used concentration. The data showed that aluminium significantly affected the development of zebrafish inducing morphological alterations and cell death. The oxidative state of larvae was altered, although the formation of reactive oxygen species and the levels of metallothioneins, and the activity of some antioxidant enzymes, decreased at the maximum concentration tested. In addition, at this concentration, the expression of the evaluated genes increased. The comprehensive information obtained gives a realistic snapshot of the aluminium toxicity and provides new information on the mechanism of action of this metal.
Collapse
Affiliation(s)
- Teresa Capriello
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Luis M Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory Animal Science (LAS), Institute for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal.
| | - Aldo Donizetti
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Vincenza Aliperti
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Ida Ferrandino
- Department of Biology, University of Naples "Federico II", Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, Portici, Italy.
| |
Collapse
|
7
|
Guo H, Zhao Z, Zhang R, Chen P, Zhang X, Cheng F, Gou X. Monocytes in the Peripheral Clearance of Amyloid-β and Alzheimer's Disease. J Alzheimers Dis 2020; 68:1391-1400. [PMID: 30958361 DOI: 10.3233/jad-181177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aging societies have high incidence rates of Alzheimer's disease (AD). AD is diagnosed at later disease stages and has a poor prognosis, and effective drugs and treatments for AD are lacking. The molecular mechanism of AD is not clear, and current research focuses primarily on amyloid-β (Aβ) deposition and tau protein hyperphosphorylation. Aβ deposition is the most frequently hypothesized initiating factor of AD, and Aβ clearance during the pathogenesis of AD may be an optional strategy to suppress AD development. Monocytes play important roles in the peripheral clearance of Aβ. Therefore, the present review summarizes our current knowledge of the potential roles of infiltrating macrophages, circulating monocytes, and Kupffer cells in the peripheral clearance of Aβ in AD.
Collapse
Affiliation(s)
- Huifang Guo
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Zhaohua Zhao
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Ruisan Zhang
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Peng Chen
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China.,Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Fan Cheng
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, China.,Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
8
|
Banote RK, Chebli J, Şatır TM, Varshney GK, Camacho R, Ledin J, Burgess SM, Abramsson A, Zetterberg H. Amyloid precursor protein-b facilitates cell adhesion during early development in zebrafish. Sci Rep 2020; 10:10127. [PMID: 32576936 PMCID: PMC7311384 DOI: 10.1038/s41598-020-66584-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/21/2020] [Indexed: 01/05/2023] Open
Abstract
Understanding the biological function of amyloid beta (Aβ) precursor protein (APP) beyond its role in Alzheimer's disease is emerging. Yet, its function during embryonic development is poorly understood. The zebrafish APP orthologue, Appb, is strongly expressed during early development but thus far has only been studied via morpholino-mediated knockdown. Zebrafish enables analysis of cellular processes in an ontogenic context, which is limited in many other vertebrates. We characterized zebrafish carrying a homozygous mutation that introduces a premature stop in exon 2 of the appb gene. We report that appb mutants are significantly smaller until 2 dpf and display perturbed enveloping layer (EVL) integrity and cell protrusions at the blastula stage. Moreover, appb mutants surviving beyond 48 hpf exhibited no behavioral defects at 6 dpf and developed into healthy and fertile adults. The expression of the app family member, appa, was also found to be altered in appb mutants. Taken together, we show that appb is involved in the initial development of zebrafish by supporting the integrity of the EVL, likely by mediating cell adhesion properties. The loss of Appb might then be compensated for by other app family members to maintain normal development.
Collapse
Affiliation(s)
- Rakesh Kumar Banote
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.,Cellectricon AB, Neongatan 4B, SE-431 53, Mölndal, Sweden
| | - Jasmine Chebli
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden
| | - Tuğçe Munise Şatır
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rafael Camacho
- Centre for Cellular Imaging, Core Facilities, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Ledin
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Alexandra Abramsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG, United Kingdom.,UK Dementia Research Institute, London, WC1N3BG, United Kingdom
| |
Collapse
|
9
|
Han E, Ho Oh K, Park S, Chan Rah Y, Park HC, Koun S, Choi J. Analysis of behavioral changes in zebrafish (Danio rerio) larvae caused by aminoglycoside-induced damage to the lateral line and muscles. Neurotoxicology 2020; 78:134-142. [PMID: 32169463 DOI: 10.1016/j.neuro.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Zebrafish behavior is influenced by the lateral line hair cells and muscles. Drug-induced behavioral changes can serve as indicators in the evaluation of drug toxicity. The aminoglycoside family of antibiotics comprise a number of agents, including neomycin (NM) and gentamicin (GM). We hypothesized that NM and GM exert different effects on zebrafish larvae through their action on the lateral line and muscle fibers, inducing different swimming behavioral patterns such as locomotor behavior and the startle response. In this study, 125 μM NM and 5, 10, 20 μM GM induced hair cell damage in the anterior and posterior lateral lines of zebrafish larvae. However, unlike GM, 125 μM NM also caused muscle damage. Locomotor behavior was decreased in the 125 μM NM-exposed group compared to the group exposed to GM. Furthermore, 125 μM NM exposure induced significantly different patterns of various indices of startle behavior compared with the GM exposure groups. Additionally, the larvae exhibited different startle responses depending on the concentration of GM. These results suggest that GM may be the drug-of-choice for analyzing behavioral changes in zebrafish caused by damage to the lateral line alone. Our study highlights the importance of confirming muscle damage in behavioral analyses using zebrafish.
Collapse
Affiliation(s)
- Eunjung Han
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea
| | - Soonil Koun
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea; Korea University Zebrafish Translational Medical Research Center, Ansan, Republic of Korea.
| |
Collapse
|
10
|
Nabinger DD, Altenhofen S, Bonan CD. Zebrafish models: Gaining insight into purinergic signaling and neurological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109770. [PMID: 31678483 DOI: 10.1016/j.pnpbp.2019.109770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/22/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022]
Abstract
Zebrafish (Danio rerio) has been considered a complementary model for biomedical studies, especially due to advantages such as external and rapid development, and genetic manipulation. There is growing interest in this model in neuroscience research since the species has morphological and physiological similarities to mammals and a complex behavioral repertoire. The purinergic signaling has been described in zebrafish, and purinoceptors and nucleotide- and nucleoside-metabolizing enzymes have already been identified in the central nervous system (CNS) of this species. The involvement of the purinergic system in several models of neurological disorders, such as Alzheimers disease, Parkinson's disease, epilepsy, schizophrenia, and autism has been investigated in zebrafish. This mini review presents several studies describing purinergic signaling in the zebrafish CNS and the action of this neurotransmitter system in models of neurological disorders using this species as a biological model. The use of pharmacological approaches at different stages of development may be a useful tool for preclinical assays and the testing of purinergic compounds as new alternatives for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Selection in Australian Thoroughbred horses acts on a locus associated with early two-year old speed. PLoS One 2020; 15:e0227212. [PMID: 32049967 PMCID: PMC7015314 DOI: 10.1371/journal.pone.0227212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Thoroughbred horse racing is a global sport with major hubs in Europe, North America, Australasia and Japan. Regional preferences for certain traits have resulted in phenotypic variation that may result from adaptation to the local racing ecosystem. Here, we test the hypothesis that genes selected for regional phenotypic variation may be identified by analysis of selection signatures in pan-genomic SNP genotype data. Comparing Australian to non-Australian Thoroughbred horses (n = 99), the most highly differentiated loci in a composite selection signals (CSS) analysis were on ECA6 (34.75–34.85 Mb), ECA14 (33.2–33.52 Mb and 35.52–36.94 Mb) and ECA16 (24.28–26.52 Mb) in regions containing candidate genes for exercise adaptations including cardiac function (ARHGAP26, HBEGF, SRA1), synapse development and locomotion (APBB3, ATXN7, CLSTN3), stress response (NR3C1) and the skeletal muscle response to exercise (ARHGAP26, NDUFA2). In a genome-wide association study for field-measured speed in two-year-olds (n = 179) SNPs contained within the single association peak (33.2–35.6 Mb) overlapped with the ECA14 CSS signals and spanned a protocadherin gene cluster. Association tests using higher density SNP genotypes across the ECA14 locus identified a SNP within the PCDHGC5 gene associated with elite racing performance (n = 922). These results indicate that there may be differential selection for racing performance under racing and management conditions that are specific to certain geographic racing regions. In Australia breeders have principally selected horses for favourable genetic variants at loci containing genes that modulate behaviour, locomotion and skeletal muscle physiology that together appear to be contributing to early two-year-old speed.
Collapse
|
12
|
Hedberg-Oldfors C, Abramsson A, Osborn DPS, Danielsson O, Fazlinezhad A, Nilipour Y, Hübbert L, Nennesmo I, Visuttijai K, Bharj J, Petropoulou E, Shoreim A, Vona B, Ahangari N, López MD, Doosti M, Banote RK, Maroofian R, Edling M, Taherpour M, Zetterberg H, Karimiani EG, Oldfors A, Jamshidi Y. Cardiomyopathy with lethal arrhythmias associated with inactivation of KLHL24. Hum Mol Genet 2020; 28:1919-1929. [PMID: 30715372 PMCID: PMC6812045 DOI: 10.1093/hmg/ddz032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, yet the genetic cause of up to 50% of cases remains unknown. Here, we show that mutations in KLHL24 cause HCM in humans. Using genome-wide linkage analysis and exome sequencing, we identified homozygous mutations in KLHL24 in two consanguineous families with HCM. Of the 11 young affected adults identified, 3 died suddenly and 1 had a cardiac transplant due to heart failure. KLHL24 is a member of the Kelch-like protein family, which acts as substrate-specific adaptors to Cullin E3 ubiquitin ligases. Endomyocardial and skeletal muscle biopsies from affected individuals of both families demonstrated characteristic alterations, including accumulation of desmin intermediate filaments. Knock-down of the zebrafish homologue klhl24a results in heart defects similar to that described for other HCM-linked genes providing additional support for KLHL24 as a HCM-associated gene. Our findings reveal a crucial role for KLHL24 in cardiac development and function.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel P S Osborn
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Olof Danielsson
- Department of Neurology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Afsoon Fazlinezhad
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laila Hübbert
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Kittichate Visuttijai
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jaipreet Bharj
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Evmorfia Petropoulou
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Azza Shoreim
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Najmeh Ahangari
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marcela Dávila López
- Bioinformatics Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Malin Edling
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mehdi Taherpour
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 1PJ, UK
| | - Ehsan Ghayoor Karimiani
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran.,Innovative Medical Research Center, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Anders Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| |
Collapse
|
13
|
Accelerated brain aging towards transcriptional inversion in a zebrafish model of the K115fs mutation of human PSEN2. PLoS One 2020; 15:e0227258. [PMID: 31978074 PMCID: PMC6980398 DOI: 10.1371/journal.pone.0227258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background The molecular changes involved in Alzheimer’s disease (AD) progression remain unclear since we cannot easily access antemortem human brains. Some non-mammalian vertebrates such as the zebrafish preserve AD-relevant transcript isoforms of the PRESENILIN genes lost from mice and rats. One example is PS2V, the alternative transcript isoform of the PSEN2 gene. PS2V is induced by hypoxia/oxidative stress and shows increased expression in late onset, sporadic AD brains. A unique, early onset familial AD mutation of PSEN2, K115fs, mimics the PS2V coding sequence suggesting that forced, early expression of PS2V-like isoforms may contribute to AD pathogenesis. Here we use zebrafish to model the K115fs mutation to investigate the effects of forced PS2V-like expression on the transcriptomes of young adult and aged adult brains. Methods We edited the zebrafish genome to model the K115fs mutation. To explore its effects at the molecular level, we analysed the brain transcriptome and proteome of young (6-month-old) and aged (24-month-old) wild type and heterozygous mutant female sibling zebrafish. Finally, we used gene co-expression network analysis (WGCNA) to compare molecular changes in the brains of these fish to human AD. Results Young heterozygous mutant fish show transcriptional changes suggesting accelerated brain aging and increased glucocorticoid signalling. These early changes precede a transcriptional ‘inversion’ that leads to glucocorticoid resistance and other likely pathological changes in aged heterozygous mutant fish. Notably, microglia-associated immune responses regulated by the ETS transcription factor family are altered in both our zebrafish mutant model and in human AD. The molecular changes we observe in aged heterozygous mutant fish occur without obvious histopathology and possibly in the absence of Aβ. Conclusions Our results suggest that forced expression of a PS2V-like isoform contributes to immune and stress responses favouring AD pathogenesis. This highlights the value of our zebrafish genetic model for exploring molecular mechanisms involved in AD pathogenesis.
Collapse
|
14
|
Gao T, Li J, Li N, Gao Y, Yu L, Zhuang S, Zhao Y, Dong X. lncrps25 play an essential role in motor neuron development through controlling the expression of olig2 in zebrafish. J Cell Physiol 2019; 235:3485-3496. [PMID: 31549395 DOI: 10.1002/jcp.29237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
lncrps25 is an intergenic long noncoding RNA (lncRNA), which is location close to rps25 (ribosomal protein S25) gene, is reported share high conserved sequence with NREP (neuronal regeneration-related protein) 3'-untranslated region. The function and mechanism of most of the lncRNA in embryo development remain largely unknown. In zebrafish, lncrps25 is widely expressed in the early embryonic stage and spinal cord during development. Morpholino (MO) knockdown of zebrafish lncrps25 exhibit locomotor behavior defects, caused by abnormal development of motor neurons. In addition, the defect of swimming ability and motor neurons could be recovery by microinject with lncrps25 RNA in lncrps25 morphants. By performing RNA sequencing and quantitative real-time polymerase chain reaction, we found that olig2 (oligodendrocyte transcription factor 2) messenger RNA (mRNA) was downregulated in lncrps25 morphants. Moreover, overexpression of olig2 mRNA in lncrps25 morphants partially rescued motor neurons development. Taken together, these results indicate that lncrps25 plays an essential role in the development of motor neurons in zebrafish.
Collapse
Affiliation(s)
- Tianheng Gao
- College of Oceanography, Hohai University, Nanjing, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Nan Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yan Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Lingling Yu
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| | - Sisi Zhuang
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.,Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yingmin Zhao
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| | - Xiaohua Dong
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang, China
| |
Collapse
|
15
|
Berger J, Berger S, Li M, Jacoby AS, Arner A, Bavi N, Stewart AG, Currie PD. In Vivo Function of the Chaperonin TRiC in α-Actin Folding during Sarcomere Assembly. Cell Rep 2019; 22:313-322. [PMID: 29320728 DOI: 10.1016/j.celrep.2017.12.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/11/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
The TCP-1 ring complex (TRiC) is a multi-subunit group II chaperonin that assists nascent or misfolded proteins to attain their native conformation in an ATP-dependent manner. Functional studies in yeast have suggested that TRiC is an essential and generalized component of the protein-folding machinery of eukaryotic cells. However, TRiC's involvement in specific cellular processes within multicellular organisms is largely unknown because little validation of TRiC function exists in animals. Our in vivo analysis reveals a surprisingly specific role of TRiC in the biogenesis of skeletal muscle α-actin during sarcomere assembly in myofibers. TRiC acts at the sarcomere's Z-disk, where it is required for efficient assembly of actin thin filaments. Binding of ATP specifically by the TRiC subunit Cct5 is required for efficient actin folding in vivo. Furthermore, mutant α-actin isoforms that result in nemaline myopathy in patients obtain their pathogenic conformation via this function of TRiC.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia.
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia; Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Arie S Jacoby
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Navid Bavi
- Department of Physiology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia.
| |
Collapse
|
16
|
Chen W, Zhang X, Li J, Huang S, Xiang S, Hu X, Liu C. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish. BMC Genomics 2018; 19:112. [PMID: 29764394 PMCID: PMC5954278 DOI: 10.1186/s12864-018-4458-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs’ function and conservation is really intriguing. Results We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. Conclusions By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human. Electronic supplementary material The online version of this article (10.1186/s12864-018-4458-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuan Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jing Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Shulan Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, China.
| | - Changning Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
17
|
Leighton PLA, Allison WT. Protein Misfolding in Prion and Prion-Like Diseases: Reconsidering a Required Role for Protein Loss-of-Function. J Alzheimers Dis 2018; 54:3-29. [PMID: 27392869 DOI: 10.3233/jad-160361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prion disease research has contributed much toward understanding other neurodegenerative diseases, including recent demonstrations that Alzheimer's disease (AD) and other neurodegenerative diseases are prion-like. Prion-like diseases involve the spread of degeneration between individuals and/or among cells or tissues via template directed misfolding, wherein misfolded protein conformers propagate disease by causing normal proteins to misfold. Here we use the premise that AD, amyotrophic lateral sclerosis, Huntington's disease, and other similar diseases are prion-like and ask: Can we apply knowledge gained from studies of these prion-like diseases to resolve debates about classical prion diseases? We focus on controversies about what role(s) protein loss-of-function might have in prion diseases because this has therapeutic implications, including for AD. We examine which loss-of-function events are recognizable in prion-like diseases by considering the normal functions of the proteins before their misfolding and aggregation. We then delineate scenarios wherein gain-of-function and/or loss-of-function would be necessary or sufficient for neurodegeneration. We consider roles of PrPC loss-of-function in prion diseases and in AD, and conclude that the conventional wisdom that prion diseases are 'toxic gain-of-function diseases' has limitations. While prion diseases certainly have required gain-of-function components, we propose that disease phenotypes are predominantly caused by deficits in the normal physiology of PrPC and its interaction partners as PrPC converts to PrPSc. In this model, gain-of-function serves mainly to spread disease, and loss-of-function directly mediates neuron dysfunction. We propose experiments and predictions to assess our conclusion. Further study on the normal physiological roles of these key proteins is warranted.
Collapse
Affiliation(s)
- Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
β-Amyloid precursor protein-b is essential for Mauthner cell development in the zebrafish in a Notch-dependent manner. Dev Biol 2016; 413:26-38. [PMID: 26994945 DOI: 10.1016/j.ydbio.2016.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
Abstract
Amyloid precursor protein (APP) is a transmembrane glycoprotein that has been the subject of intense research because of its implication in Alzheimer's disease. However, the physiological function of APP in the development and maintenance of the central nervous system remains largely unknown. We have previously shown that the APP homologue in zebrafish (Danio rerio), Appb, is required for motor neuron patterning and formation. Here we study the function of Appb during neurogenesis in the zebrafish hindbrain. Partial knockdown of Appb using antisense morpholino oligonucleotides blocked the formation of the Mauthner neurons, uni- or bilaterally, with an aberrant behavior as a consequence of this cellular change. The Appb morphants had decreased neurogenesis, increased notch signaling and notch1a expression at the expense of deltaA/D expression. The Mauthner cell development could be restored either by a general decrease in Notch signaling through γ-secretase inhibition or by a partial knock down of Notch1a. Together, this demonstrates the importance of Appb in neurogenesis and for the first time shows the essential requirement of Appb in the formation of a specific cell type, the Mauthner cell, in the hindbrain during development. Our results suggest that Appb-regulated neurogenesis is mediated through balancing the Notch1a signaling pathway and provide new insights into the development of the Mauthner cell.
Collapse
|
19
|
Bliman D, Nilsson JR, Kettunen P, Andréasson J, Grøtli M. A Caged Ret Kinase Inhibitor and its Effect on Motoneuron Development in Zebrafish Embryos. Sci Rep 2015; 5:13109. [PMID: 26300345 PMCID: PMC4547397 DOI: 10.1038/srep13109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/14/2015] [Indexed: 02/02/2023] Open
Abstract
Proto-oncogene tyrosine-protein kinase receptor RET is implicated in the development and maintenance of neurons of the central and peripheral nervous systems. Attaching activity-compromising photocleavable groups (caging) to inhibitors could allow for external spatiotemporally controlled inhibition using light, potentially providing novel information on how these kinase receptors are involved in cellular processes. Here, caged RET inhibitors were obtained from 3-substituted pyrazolopyrimidine-based compounds by attaching photolabile groups to the exocyclic amino function. The most promising compound displayed excellent inhibitory effect in cell-free, as well as live-cell assays upon decaging. Furthermore, inhibition could be efficiently activated with light in vivo in zebrafish embryos and was shown to effect motoneuron development.
Collapse
Affiliation(s)
- David Bliman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Jesper R. Nilsson
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
20
|
Paterson RW, Toombs J, Slattery CF, Schott JM, Zetterberg H. Biomarker modelling of early molecular changes in Alzheimer's disease. Mol Diagn Ther 2014; 18:213-27. [PMID: 24281842 DOI: 10.1007/s40291-013-0069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The preclinical phase of Alzheimer's disease (AD) occurs years, possibly decades, before the onset of clinical symptoms. Being able to detect the very earliest stages of AD is critical to improving understanding of AD biology, and identifying individuals at greatest risk of developing clinical symptoms with a view to treating AD pathophysiology before irreversible neurodegeneration occurs. Studies of dominantly inherited AD families and longitudinal studies of sporadic AD have contributed to knowledge of the earliest AD biomarkers. Here we appraise this evidence before reviewing novel, particularly fluid, biomarkers that may provide insights into AD pathogenesis and relate these to existing hypothetical disease models.
Collapse
Affiliation(s)
- Ross W Paterson
- Dementia Research Centre, Department of Neurodegeneration, UCL Institute of Neurology, London, UK,
| | | | | | | | | |
Collapse
|
21
|
Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer's disease research. Front Genet 2014; 5:189. [PMID: 25071820 PMCID: PMC4075077 DOI: 10.3389/fgene.2014.00189] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022] Open
Abstract
Rodent models have been extensively used to investigate the cause and mechanisms behind Alzheimer’s disease. Despite many years of intensive research using these models we still lack a detailed understanding of the molecular events that lead to neurodegeneration. Although zebrafish lack the complexity of advanced cognitive behaviors evident in rodent models they have proven to be a very informative model for the study of human diseases. In this review we give an overview of how the zebrafish has been used to study Alzheimer’s disease. Zebrafish possess genes orthologous to those mutated in familial Alzheimer’s disease and research using zebrafish has revealed unique characteristics of these genes that have been difficult to observe in rodent models. The zebrafish is becoming an increasingly popular model for the investigation of Alzheimer’s disease and will complement studies using other models to help complete our understanding of this disease.
Collapse
Affiliation(s)
- Morgan Newman
- School of Molecular and Biomedical Science, University of Adelaide SA, Australia
| | - Esmaeil Ebrahimie
- School of Molecular and Biomedical Science, University of Adelaide SA, Australia
| | - Michael Lardelli
- School of Molecular and Biomedical Science, University of Adelaide SA, Australia
| |
Collapse
|
22
|
Kalm M, Abel E, Wasling P, Nyman J, Hietala MA, Bremell D, Hagberg L, Elam M, Blennow K, Björk-Eriksson T, Zetterberg H. Neurochemical evidence of potential neurotoxicity after prophylactic cranial irradiation. Int J Radiat Oncol Biol Phys 2014; 89:607-14. [PMID: 24803034 DOI: 10.1016/j.ijrobp.2014.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/21/2014] [Accepted: 03/12/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE To examine whether cerebrospinal fluid biomarkers for neuroaxonal damage, neuroglial activation, and amyloid β-related processes could characterize the neurochemical response to cranial radiation. METHODS AND MATERIALS Before prophylactic cranial irradiation (PCI) of patients with small cell lung cancer, each patient underwent magnetic resonance imaging of the brain, lumbar puncture, and Mini-Mental State Examination of cognitive function. These examinations were repeated at approximately 3 and 12 months after radiation. RESULTS The major findings were as follows. (1) Cerebrospinal fluid markers for neuronal and neuroglial injury were elevated during the subacute phase after PCI. Neurofilament and T-tau increased 120% and 50%, respectively, after PCI (P<.05). The same was seen for the neuroglial markers YKL-40 and glial fibrillary acidic protein, which increased 144% and 106%, respectively, after PCI (P<.05). (2) The levels of secreted amyloid precursor protein-α and -β were reduced 44% and 46%, respectively, 3 months after PCI, and the levels continued to decrease as long as 1 year after treatment (P<.05). (3) Mini-Mental State Examination did not reveal any cognitive decline, indicating that a more sensitive test should be used in future studies. CONCLUSION In conclusion, we were able to detect radiation therapy-induced changes in several markers reflecting neuronal injury, inflammatory/astroglial activation, and altered amyloid precursor protein/amyloid β metabolism, despite the low number of patients and quite moderate radiation doses (20-30 Gy). These changes are hypothesis generating and could potentially be used to assess the individual risk of developing long-term symptoms of chronic encephalopathy after PCI. This has to be evaluated in large studies with extended clinical follow-up and more detailed neurocognitive assessments.
Collapse
Affiliation(s)
- Marie Kalm
- Department of Clinical Neuroscience and Rehabilitation, Insitute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Edvard Abel
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pontus Wasling
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jan Nyman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Max Albert Hietala
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Bremell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mikael Elam
- Department of Clinical Neuroscience and Rehabilitation, Insitute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Thomas Björk-Eriksson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
23
|
Soldano A, Hassan BA. Beyond pathology: APP, brain development and Alzheimer's disease. Curr Opin Neurobiol 2014; 27:61-7. [PMID: 24632309 DOI: 10.1016/j.conb.2014.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/15/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly. Research in the AD field has been mostly focused on the biology of the Aβ peptide but increasing evidence is shifting attention toward the physiological role of APP as key to understanding AD pathology. It is becoming apparent that APP plays a central role in the mechanisms that guarantee the accuracy and the robustness of brain wiring. In the present review we explore APP functions with focus on some of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Alessia Soldano
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, 3000 Leuven, Belgium
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Center for Human Genetics, University of Leuven School of Medicine, 3000 Leuven, Belgium.
| |
Collapse
|