1
|
Ducos B, Bensimon D, Scerbo P. Vertebrate Cell Differentiation, Evolution, and Diseases: The Vertebrate-Specific Developmental Potential Guardians VENTX/ NANOG and POU5/ OCT4 Enter the Stage. Cells 2022; 11:cells11152299. [PMID: 35892595 PMCID: PMC9331430 DOI: 10.3390/cells11152299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 01/02/2023] Open
Abstract
During vertebrate development, embryonic cells pass through a continuum of transitory pluripotent states that precede multi-lineage commitment and morphogenesis. Such states are referred to as “refractory/naïve” and “competent/formative” pluripotency. The molecular mechanisms maintaining refractory pluripotency or driving the transition to competent pluripotency, as well as the cues regulating multi-lineage commitment, are evolutionarily conserved. Vertebrate-specific “Developmental Potential Guardians” (vsDPGs; i.e., VENTX/NANOG, POU5/OCT4), together with MEK1 (MAP2K1), coordinate the pluripotency continuum, competence for multi-lineage commitment and morphogenesis in vivo. During neurulation, vsDPGs empower ectodermal cells of the neuro-epithelial border (NEB) with multipotency and ectomesenchyme potential through an “endogenous reprogramming” process, giving rise to the neural crest cells (NCCs). Furthermore, vsDPGs are expressed in undifferentiated-bipotent neuro-mesodermal progenitor cells (NMPs), which participate in posterior axis elongation and growth. Finally, vsDPGs are involved in carcinogenesis, whereby they confer selective advantage to cancer stem cells (CSCs) and therapeutic resistance. Intriguingly, the heterogenous distribution of vsDPGs in these cell types impact on cellular potential and features. Here, we summarize the findings about the role of vsDPGs during vertebrate development and their selective advantage in evolution. Our aim to present a holistic view regarding vsDPGs as facilitators of both cell plasticity/adaptability and morphological innovation/variation. Moreover, vsDPGs may also be at the heart of carcinogenesis by allowing malignant cells to escape from physiological constraints and surveillance mechanisms.
Collapse
Affiliation(s)
- Bertrand Ducos
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- High Throughput qPCR Core Facility, ENS, PSL, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - David Bensimon
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90094, USA
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - Pierluigi Scerbo
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| |
Collapse
|
2
|
Abstract
Purpose of Review The evolving information of the initiation, tumor cell heterogeneity, and plasticity of childhood neuroblastoma has opened up new perspectives for developing therapies based on detailed knowledge of the disease. Recent Findings The cellular origin of neuroblastoma has begun to unravel and there have been several reports on tumor cell heterogeneity based on transcriptional core regulatory circuitries that have given us important information on the biology of neuroblastoma as a developmental disease. This together with new insight of the tumor microenvironment which acts as a support for neuroblastoma growth has given us the prospect for designing better treatment approaches for patients with high-risk neuroblastoma. Here, we discuss these new discoveries and highlight some emerging therapeutic options. Summary Neuroblastoma is a disease with multiple facets. Detailed biological and molecular knowledge on neuroblastoma initiation, heterogeneity, and the communications between cells in the tumor microenvironment holds promise for better therapies.
Collapse
|
3
|
Cooper F, Tsakiridis A. Shaping axial identity during human pluripotent stem cell differentiation to neural crest cells. Biochem Soc Trans 2022; 50:499-511. [PMID: 35015077 PMCID: PMC9022984 DOI: 10.1042/bst20211152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
The neural crest (NC) is a multipotent cell population which can give rise to a vast array of derivatives including neurons and glia of the peripheral nervous system, cartilage, cardiac smooth muscle, melanocytes and sympathoadrenal cells. An attractive strategy to model human NC development and associated birth defects as well as produce clinically relevant cell populations for regenerative medicine applications involves the in vitro generation of NC from human pluripotent stem cells (hPSCs). However, in vivo, the potential of NC cells to generate distinct cell types is determined by their position along the anteroposterior (A-P) axis and, therefore the axial identity of hPSC-derived NC cells is an important aspect to consider. Recent advances in understanding the developmental origins of NC and the signalling pathways involved in its specification have aided the in vitro generation of human NC cells which are representative of various A-P positions. Here, we explore recent advances in methodologies of in vitro NC specification and axis patterning using hPSCs.
Collapse
Affiliation(s)
- Fay Cooper
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
- Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| |
Collapse
|
4
|
Otte J, Dyberg C, Pepich A, Johnsen JI. MYCN Function in Neuroblastoma Development. Front Oncol 2021; 10:624079. [PMID: 33585251 PMCID: PMC7873735 DOI: 10.3389/fonc.2020.624079] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Dysregulated expression of the transcription factor MYCN is frequently detected in nervous system tumors such as childhood neuroblastoma. Here, gene amplification of MYCN is a single oncogenic driver inducing neoplastic transformation in neural crest-derived cells. This abnormal MYCN expression is one of the strongest predictors of poor prognosis. It is present at diagnosis and is never acquired during later tumorigenesis of MYCN non-amplified neuroblastoma. This suggests that increased MYCN expression is an early event in these cancers leading to a peculiar dysregulation of cells that results in embryonal or cancer stem-like qualities, such as increased self-renewal, apoptotic resistance, and metabolic flexibility.
Collapse
Affiliation(s)
- Jörg Otte
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Adena Pepich
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Rocha M, Beiriger A, Kushkowski EE, Miyashita T, Singh N, Venkataraman V, Prince VE. From head to tail: regionalization of the neural crest. Development 2020; 147:dev193888. [PMID: 33106325 PMCID: PMC7648597 DOI: 10.1242/dev.193888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural crest is regionalized along the anteroposterior axis, as demonstrated by foundational lineage-tracing experiments that showed the restricted developmental potential of neural crest cells originating in the head. Here, we explore how recent studies of experimental embryology, genetic circuits and stem cell differentiation have shaped our understanding of the mechanisms that establish axial-specific populations of neural crest cells. Additionally, we evaluate how comparative, anatomical and genomic approaches have informed our current understanding of the evolution of the neural crest and its contribution to the vertebrate body.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Anastasia Beiriger
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Elaine E Kushkowski
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
- Canadian Museum of Nature, Ottawa, ON K1P 6P4, Canada
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Vishruth Venkataraman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Teixeira BL, Amarante-Silva D, Visoni SB, Garcez RC, Trentin AG. FGF2 Stimulates the Growth and Improves the Melanocytic Commitment of Trunk Neural Crest Cells. Cell Mol Neurobiol 2020; 40:383-393. [PMID: 31555941 PMCID: PMC11448768 DOI: 10.1007/s10571-019-00738-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/14/2019] [Indexed: 12/13/2022]
Abstract
Neural crest cells (NCCs) comprise a population of multipotent progenitors and stem cells at the origin of the peripheral nervous system (PNS) and melanocytes of skin, which are profoundly influenced by microenvironmental factors, among which is basic fibroblast growth factor 2 (FGF2). In this work, we further investigated the role of this growth factor in quail trunk NC morphogenesis and demonstrated its huge effect in NCC growth mainly by stimulating cell proliferation but also reducing cell death, despite that NCC migration from the neural tube explant was not affected. Moreover, following FGF2 treatment, reduced expression of the early NC markers Sox10 and FoxD3 and improved proliferation of HNK1-positive NCC were observed. Since these markers are involved in the regulation of glial and melanocytic fate of NC, the effect of FGF2 on NCC differentiation was investigated. Therefore, in the presence of FGF2, increased proportions of NCCs positives to the melanoblast marker Mitf as well as NCCs double stained to Mitf and BrdU were recorded. In addition, treatment with FGF2, followed by differentiation medium, resulted in increased expression of melanin and improved proportion of melanin-pigmented melanocytes without alteration in the glial marker Schwann myelin protein (SMP). Taken together, these data further reveal the important role of FGF2 in NCC proliferation, survival, and differentiation, particularly in melanocyte development. This is the first demonstration of FGF2 effects in melanocyte commitment of NC and in the proliferation of Mitf-positive melanoblasts. Elucidating the differentiation process of embryonic NCCs brings us a step closer to understanding the development of the PNS and then undertaking the search for advanced technologies to prevent, or treat, injuries caused by NC-related disorders, also known as neurocristopathies.
Collapse
Affiliation(s)
- Bianca Luise Teixeira
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis-SC, Campus Universitário,Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Diego Amarante-Silva
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis-SC, Campus Universitário,Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Silvia Beatriz Visoni
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis-SC, Campus Universitário,Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Ricardo Castilho Garcez
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis-SC, Campus Universitário,Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis-SC, Campus Universitário,Trindade, Florianópolis, SC, 88040-900, Brazil.
- National Institute of Science and Technology for Regenerative Medicine, Av. Carlos Chagas Filho, n°373, Rio De Janeiro, RJ, CEP: 21941902, Brazil.
| |
Collapse
|
7
|
Etchevers HC, Dupin E, Le Douarin NM. The diverse neural crest: from embryology to human pathology. Development 2019; 146:146/5/dev169821. [PMID: 30858200 DOI: 10.1242/dev.169821] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/07/2019] [Indexed: 01/13/2023]
Abstract
We review here some of the historical highlights in exploratory studies of the vertebrate embryonic structure known as the neural crest. The study of the molecular properties of the cells that it produces, their migratory capacities and plasticity, and the still-growing list of tissues that depend on their presence for form and function, continue to enrich our understanding of congenital malformations, paediatric cancers and evolutionary biology. Developmental biology has been key to our understanding of the neural crest, starting with the early days of experimental embryology and through to today, when increasingly powerful technologies contribute to further insight into this fascinating vertebrate cell population.
Collapse
Affiliation(s)
- Heather C Etchevers
- Aix-Marseille Université, INSERM, MMG, U1251, 27 boulevard Jean Moulin 13005 Marseille, France
| | - Elisabeth Dupin
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Nicole M Le Douarin
- Sorbonne Universités, UPMC Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
8
|
|
9
|
Kasemeier-Kulesa JC, Kulesa PM. The convergent roles of CD271/p75 in neural crest-derived melanoma plasticity. Dev Biol 2018; 444 Suppl 1:S352-S355. [PMID: 29660313 PMCID: PMC6186201 DOI: 10.1016/j.ydbio.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
The embryonic microenvironment is an important source of signals that promote multipotent cells to adopt a specific fate and direct cells along distinct migratory pathways. Yet, the ability of the embryonic microenvironment to retain multipotent progenitors or reprogram de-differentiated cells is less clear. Mistakes in cell differentiation or migration often result in developmental defects and tumorigenesis, including aggressive cancers that share many characteristics with embryonic progenitor cells. This is a striking feature of the vertebrate neural crest, a multipotent and highly migratory cell population first identified by His (1868) with the potential to metamorphose into aggressive melanoma cancer. In this perspective, we address the roles of CD271/p75 in tumor initiation, phenotype switching and reprogramming of metastatic melanoma and discuss the convergence of these roles in melanoma plasticity.
Collapse
Affiliation(s)
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
10
|
Le Douarin NM, Dupin E. The “beginnings” of the neural crest. Dev Biol 2018; 444 Suppl 1:S3-S13. [DOI: 10.1016/j.ydbio.2018.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
|
11
|
Dupin E, Calloni GW, Coelho-Aguiar JM, Le Douarin NM. The issue of the multipotency of the neural crest cells. Dev Biol 2018; 444 Suppl 1:S47-S59. [DOI: 10.1016/j.ydbio.2018.03.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
12
|
Latin American contributions to the neural crest field. Mech Dev 2018; 153:17-29. [PMID: 30081090 DOI: 10.1016/j.mod.2018.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/15/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022]
Abstract
The neural crest (NC) is one of the most fascinating structures during embryonic development. Unique to vertebrate embryos, these cells give rise to important components of the craniofacial skeleton, such as the jaws and skull, as well as melanocytes and ganglia of the peripheral nervous system. Worldwide, several groups have been studying NC development and specifically in the Latin America (LA) they have been growing in numbers since the 1990s. It is important for the world to recognize the contributions of LA researchers on the knowledge of NC development, as it can stimulate networking and improvement in the field. We developed a database of LA publications on NC development using ORCID and PUBMED as search engines. We thoroughly describe all of the contributions from LA, collected in five major topics on NC development mechanisms: i) induction and specification; ii) migration; iii) differentiation; iv) adult NC; and, v) neurocristopathies. Further analysis was done to correlate each LA country with topics and animal models, and to access collaboration between LA countries. We observed that some LA countries have made important contributions to the comprehension of NC development. Interestingly, some LA countries have a topic and an animal model as their strength; in addition, collaboration between LA countries is almost inexistent. This review will help LA NC research to be acknowledged, and to facilitate networking between students and researchers worldwide.
Collapse
|
13
|
da Costa MC, Trentin AG, Calloni GW. FGF8 and Shh promote the survival and maintenance of multipotent neural crest progenitors. Mech Dev 2018; 154:251-258. [PMID: 30075227 DOI: 10.1016/j.mod.2018.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
The developmental mechanisms that control the building of the complex head of vertebrates and particularly, facial skeletogenesis, remain poorly known. Progenitor cells derived from the embryonic neural crest (NC) are the major constituents and players of facial tissue development. Deciphering the cellular and molecular machinery that controls NC cell (NCC) differentiation into bone, cartilage, fat and other mesenchymal tissues, is thus a main issue for understanding vertebrate facial variations. In this work, we investigated the effects of fibroblast growth factor 8 (FGF8) and Sonic Hedgehog (Shh), two signaling molecules essential for craniofacial development, on the in vitro differentiation and multipotentiality of mesencephalic NCCs (MNCCs) isolated from the quail embryo. Comparison of distinct temporal treatments with FGF8 and/or Shh showed that both promoted chondrogenesis of MNCCs by increasing the amount and size of cartilage nodules. Higher rates of chondrogenesis were observed when MNCCs were treated with FGF8 during the migration phase, thus mimicking the in vivo exposure of migrating NCCs to FGF8 secreted by the isthmic brain signaling center. An in vitro cell cloning assay revealed that, after concomitant treatment with FGF8 and Shh, about 80% of NC progenitors displayed chondrogenic potential, while in untreated cultures, only 18% exhibited this potential. In addition, colony analysis showed for the first time the existence of a highly multipotent progenitor able to clonally give rise to adipocytes in addition to other cephalic NC phenotypes (i.e. glial cells, neurons, melanocytes, smooth muscle cells and chondrocytes) (GNMFCA progenitor). This progenitor was observed only when clonal cultures were treated with both FGF8 and Shh. Several other types of multipotent cells, which generated four, five or six distinct phenotypes, accounted for 55% of the progenitors in FGF8 and Shh treated cultures, versus 13,5% in the untreated ones. Together, these data reveal an essential role for both FGF8 and Shh together in maintenance of MNCC multipotentiality by favoring the development of NC progenitors endowed with a broad array of mesectodermal potentials.
Collapse
Affiliation(s)
- Meline Coelho da Costa
- Laboratório de Plasticidade e Diferenciação de Células da Crista Neural, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil; Laboratório de Células Tronco e Regeneração Tecidual, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Andréa Gonçalves Trentin
- Laboratório de Células Tronco e Regeneração Tecidual, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Giordano Wosgrau Calloni
- Laboratório de Plasticidade e Diferenciação de Células da Crista Neural, Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Rothstein M, Bhattacharya D, Simoes-Costa M. The molecular basis of neural crest axial identity. Dev Biol 2018; 444 Suppl 1:S170-S180. [PMID: 30071217 DOI: 10.1016/j.ydbio.2018.07.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The neural crest is a migratory cell population that contributes to multiple tissues and organs during vertebrate embryonic development. It is remarkable in its ability to differentiate into an array of different cell types, including melanocytes, cartilage, bone, smooth muscle, and peripheral nerves. Although neural crest cells are formed along the entire anterior-posterior axis of the developing embryo, they can be divided into distinct subpopulations based on their axial level of origin. These groups of cells, which include the cranial, vagal, trunk, and sacral neural crest, display varied migratory patterns and contribute to multiple derivatives. While these subpopulations have been shown to be mostly plastic and to differentiate according to environmental cues, differences in their intrinsic potentials have also been identified. For instance, the cranial neural crest is unique in its ability to give rise to cartilage and bone. Here, we examine the molecular features that underlie such developmental restrictions and discuss the hypothesis that distinct gene regulatory networks operate in these subpopulations. We also consider how reconstructing the phylogeny of the trunk and cranial neural crest cells impacts our understanding of vertebrate evolution.
Collapse
Affiliation(s)
- Megan Rothstein
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
The neural crest and evolution of the head/trunk interface in vertebrates. Dev Biol 2018; 444 Suppl 1:S60-S66. [PMID: 29408469 DOI: 10.1016/j.ydbio.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
The migration and distribution patterns of neural crest (NC) cells reflect the distinct embryonic environments of the head and trunk: cephalic NC cells migrate predominantly along the dorsolateral pathway to populate the craniofacial and pharyngeal regions, whereas trunk crest cells migrate along the ventrolateral pathways to form the dorsal root ganglia. These two patterns thus reflect the branchiomeric and somitomeric architecture, respectively, of the vertebrate body plan. The so-called vagal NC occupies a postotic, intermediate level between the head and trunk NC. This level of NC gives rise to both trunk- and cephalic-type (circumpharyngeal) NC cells. The anatomical pattern of the amphioxus, a basal chordate, suggests that somites and pharyngeal gills coexist along an extensive length of the body axis, indicating that the embryonic environment is similar to that of vertebrate vagal NC cells and may have been ancestral for vertebrates. The amniote-like condition in which the cephalic and trunk domains are distinctly separated would have been brought about, in part, by anteroposterior reduction of the pharyngeal domain.
Collapse
|
16
|
Fonseca BF, Couly G, Dupin E. Respective contribution of the cephalic neural crest and mesoderm to SIX1-expressing head territories in the avian embryo. BMC DEVELOPMENTAL BIOLOGY 2017; 17:13. [PMID: 29017464 PMCID: PMC5634862 DOI: 10.1186/s12861-017-0155-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Abstract
Background Vertebrate head development depends on a series of interactions between many cell populations of distinct embryological origins. Cranial mesenchymal tissues have a dual embryonic source: - the neural crest (NC), which generates most of craniofacial skeleton, dermis, pericytes, fat cells, and tenocytes; and - the mesoderm, which yields muscles, blood vessel endothelia and some posterior cranial bones. The molecular players that orchestrate co-development of cephalic NC and mesodermal cells to properly construct the head of vertebrates remain poorly understood. In this regard, Six1 gene, a vertebrate homolog of Drosophila Sine Oculis, is known to be required for development of ear, nose, tongue and cranial skeleton. However, the embryonic origin and fate of Six1-expressing cells have remained unclear. In this work, we addressed these issues in the avian embryo model by using quail-chick chimeras, cephalic NC cultures and immunostaining for SIX1. Results Our data show that, at early NC migration stages, SIX1 is expressed by mesodermal cells but excluded from the NC cells (NCC). Then, SIX1 becomes widely expressed in NCC that colonize the pre-otic mesenchyme. In contrast, in the branchial arches (BAs), SIX1 is present only in mesodermal cells that give rise to jaw muscles. At later developmental stages, the distribution of SIX1-expressing cells in mesoderm-derived tissues is consistent with a possible role of this factor in the myogenic program of all types of head muscles, including pharyngeal, extraocular and tongue muscles. In NC derivatives, SIX1 is notably expressed in perichondrium and chondrocytes of the nasal septum and in the sclera, although other facial cartilages such as Meckel’s were negative at the stages considered. Moreover, in cephalic NC cultures, chondrocytes and myofibroblasts, not the neural and melanocytic cells express SIX1. Conclusion The present results point to a dynamic tissue-specific expression of SIX1 in a variety of cephalic NC- and mesoderm-derived cell types and tissues, opening the way for further analysis of Six1 function in the coordinated development of these two cellular populations during vertebrate head formation. Electronic supplementary material The online version of this article (10.1186/s12861-017-0155-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara F Fonseca
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Gérard Couly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,Université Paris Descartes, Institut de la Bouche et du Visage de l'Enfant, Hôpital Universitaire Necker, 149, rue de Sèvres, 75015, Paris, France
| | - Elisabeth Dupin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
17
|
Agarwalla PK, Koch MJ, Mordes DA, Codd PJ, Coumans JV. Pigmented Lesions of the Nervous System and the Neural Crest: Lessons From Embryology. Neurosurgery 2016; 78:142-55. [PMID: 26355366 DOI: 10.1227/neu.0000000000001010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurosurgeons encounter a number of pigmented tumors of the central nervous system in a variety of locations, including primary central nervous system melanoma, blue nevus of the spinal cord, and melanotic schwannoma. When examined through the lens of embryology, pigmented lesions share a unifying connection: They occur in structures that are neural crest cell derivatives. Here, we review the important progress made in the embryology of neural crest cells, present 3 cases of pigmented tumors of the nervous system, and discuss these clinical entities in the context of the development of melanoblasts. Pigmented lesions of the nervous system arise along neural crest cell migration routes and from neural crest-derived precursors. Awareness of the evolutionary clues of vertebrate pigmentation by the neurosurgical and neuro-oncological community at large is valuable for identifying pathogenic or therapeutic targets and for designing future research on nervous system pigmented lesions. When encountering such a lesion, clinicians should be aware of the embryological basis to direct additional evaluation, including genetic testing, and to work with the scientific community in better understanding these lesions and their relationship to neural crest developmental biology.
Collapse
Affiliation(s)
- Pankaj K Agarwalla
- Departments of *Neurosurgery and‡Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
18
|
Abstract
What is Developmental Biology? Developmental Biology is a discipline that evolved from the collective fields of embryology, morphology, and anatomy, which firmly established that structure underpins function. In its simplest terms, Developmental Biology has come to describe how a single cell becomes a completely formed organism. However, this definition of Developmental Biology is too narrow. Developmental Biology describes the properties of individual cells; their organization into tissues, organs, and organisms; their homeostasis, regeneration, aging, and ultimately death. Developmental Biology provides a context for cellular reprogramming, stem cell biology, regeneration, tissue engineering, evolutionary development and ecology, and involves the reiterated use of the same cellular mechanisms and signaling pathways throughout the lifespan of an organism. Using neural crest cells as an example, this review explores the contribution of Developmental Biology to our understanding of development, evolution, and disease.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
19
|
Evolution of vertebrates as viewed from the crest. Nature 2015; 520:474-482. [PMID: 25903629 DOI: 10.1038/nature14436] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural-crest-specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analysis of the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives.
Collapse
|
20
|
Coelho-Aguiar JDM, Bon-Frauches AC, Gomes ALT, Veríssimo CP, Aguiar DP, Matias D, Thomasi BBDM, Gomes AS, Brito GADC, Moura-Neto V. The enteric glia: identity and functions. Glia 2015; 63:921-35. [PMID: 25703790 DOI: 10.1002/glia.22795] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023]
Abstract
Enteric glial cells were first described at the end of the 19th century, but they attracted more interest from researchers only in the last decades of the 20th. Although, they have a different embryological origin, the enteric GLIA share many characteristics with astrocytes, the main glial cell type of the central nervous system (CNS), such as in their expression of the same markers and in their functions. Here we review the construction of the enteric nervous system (ENS), with a focus on enteric glia, and also the main studies that have revealed the action of enteric glia in different aspects of gastrointestinal tract homeostasis, such as in the intestinal barrier, in communications with neurons, and in their action as progenitor cells. We also discuss recent discoveries about the roles of enteric glia in different disorders that affect the ENS, such as degenerative pathologies including Parkinson's and prion diseases, and in cases of intestinal diseases and injury.
Collapse
Affiliation(s)
- Juliana de Mattos Coelho-Aguiar
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde do Rio de Janeiro - SES/RJ, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Newbern JM. Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 2015; 111:201-31. [PMID: 25662262 DOI: 10.1016/bs.ctdb.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), generate a bewildering array of cell types during vertebrate development. An attractive model among developmental biologists, the study of NCC biology has provided a wealth of knowledge regarding the cellular and molecular mechanisms important for embryogenesis. Studies in numerous species have defined how distinct phases of NCC specification, proliferation, migration, and survival contribute to the formation of multiple functionally distinct organ systems. NCC contributions to the peripheral nervous system (PNS) are well known. Critical developmental processes have been defined that provide outstanding models for understanding how extracellular stimuli, cell-cell interactions, and transcriptional networks cooperate to direct cellular diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic implications for neurocristopathies, neuropathies, and certain forms of cancer.
Collapse
Affiliation(s)
- Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
22
|
Weber M, Apostolova G, Widera D, Mittelbronn M, Dechant G, Kaltschmidt B, Rohrer H. Alternative Generation of CNS Neural Stem Cells and PNS Derivatives from Neural Crest-Derived Peripheral Stem Cells. Stem Cells 2015; 33:574-88. [DOI: 10.1002/stem.1880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Marlen Weber
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology; Frankfurt Germany
| | - Galina Apostolova
- Innsbruck Medical University, Institute for Neuroscience; Innsbruck Austria
| | - Darius Widera
- Institute of Cell Biology, University of Bielefeld; Bielefeld Germany
| | | | - Georg Dechant
- Innsbruck Medical University, Institute for Neuroscience; Innsbruck Austria
| | - Barbara Kaltschmidt
- Institute of Cell Biology, University of Bielefeld; Bielefeld Germany
- Molecular Neurobiology; University of Bielefeld; Bielefeld Germany
| | - Hermann Rohrer
- Max-Planck-Institute for Brain Research, Research Group Developmental Neurobiology; Frankfurt Germany
| |
Collapse
|
23
|
Muñoz WA, Trainor PA. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell. Curr Top Dev Biol 2015; 111:3-26. [PMID: 25662256 DOI: 10.1016/bs.ctdb.2014.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths.
Collapse
Affiliation(s)
- William A Muñoz
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
24
|
Minamino Y, Ohnishi Y, Kakudo K, Nozaki M. Isolation and Propagation of Neural Crest Stem Cells from Mouse Embryonic Stem Cells via Cranial Neurospheres. Stem Cells Dev 2015; 24:172-81. [DOI: 10.1089/scd.2014.0152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yuki Minamino
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuichi Ohnishi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kenji Kakudo
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan
| | - Masami Nozaki
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
25
|
Musser MA, Correa H, Southard-Smith EM. Enteric neuron imbalance and proximal dysmotility in ganglionated intestine of the Sox10Dom/+ Hirschsprung mouse model. Cell Mol Gastroenterol Hepatol 2015; 1:87-101. [PMID: 25844395 PMCID: PMC4380251 DOI: 10.1016/j.jcmgh.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In Hirschsprung disease (HSCR), neural crest-derived progenitors (NCPs) fail to completely colonize the intestine so that the enteric nervous system (ENS) is absent from distal bowel. Despite removal of the aganglionic region, many HSCR patients suffer from residual intestinal dysmotility. To test the hypothesis that inappropriate lineage segregation of NCPs in proximal ganglionated regions of the bowel could contribute to such postoperative disease, we investigated neural crest (NC)-derived lineages and motility in ganglionated, postnatal intestine of the Sox10Dom/+ HSCR mouse model. METHODS Cre-mediated fate-mapping was applied to evaluate relative proportions of NC-derived cell types. Motility assays were performed to assess gastric emptying and small intestine motility while colonic inflammation was assessed by histopathology for Sox10Dom/+ mutants relative to wildtype controls. RESULTS Sox10Dom/+ mice showed regional alterations in neuron and glia proportions as well as Calretinin+ and nNOS+ neuronal subtypes. In the colon, imbalance of enteric NC derivatives correlated with the extent of aganglionosis. All Sox10Dom/+ mice exhibited reduced small intestinal transit at 4-weeks of age, and at 6-weeks, Sox10Dom/+ males had increased gastric emptying rates. Sox10Dom/+ mice surviving to 6-weeks of age had little or no colonic inflammation when compared to wildtype littermates, suggesting that these changes in GI motility are neurally mediated. CONCLUSIONS The Sox10Dom mutation disrupts the balance of NC-derived lineages and affects GI motility in the proximal, ganglionated intestine of adult animals. This is the first report identifying alterations in enteric neuronal classes in Sox10Dom/+ mutants, which suggests a previously unrecognized role for Sox10 in neuronal subtype specification.
Collapse
Affiliation(s)
- Melissa A. Musser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hernan Correa
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Dupin E, Le Douarin NM. The neural crest, a multifaceted structure of the vertebrates. ACTA ACUST UNITED AC 2014; 102:187-209. [PMID: 25219958 DOI: 10.1002/bdrc.21080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals.
Collapse
Affiliation(s)
- Elisabeth Dupin
- INSERM, U968, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France; CNRS, UMR_7210, Paris, F-75012, France
| | | |
Collapse
|