1
|
Wei J, Dai J, Shi X, Zhao R, Fu G, Li R, Xia C, Zhang L, Zhou T, Wang H, Shi Y. Cadmium disrupts spermatogenic cell cycle via piRNA-DQ717867/p53 pathway. Reprod Toxicol 2024; 125:108554. [PMID: 38331007 DOI: 10.1016/j.reprotox.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Cadmium (Cd) is a harmful environmental pollutant that disrupts public health, including respiratory, digestive, and reproductive systems. In this study, male rats were exposed to CdCl2 at a dose of 3 mg/kg by oral for 28 days to investigate the impact on spermatogenesis. Testis tissue samples were collected after sacrifice, and piRNA expression levels were measured using piRNA microarray and qPCR. PiRNAs, specialized molecules involved in spermatogenesis, were examined. CdCl2 exposure led to disrupted piRNA expression, particularly in piRNA-DQ759395 in rats. This piRNA was found to have a binding site with p53, and a similar piRNA-DQ717867 was discovered in mice. In GC-2spd cells, CdCl2 exposure increased piRNA-DQ717867 expression, which resulted in cell cycle arrest and abnormal expression of cell cycle-related proteins. The activation of p53-related pathways and disruptions in cell cycle regulation were also observed. Antagomir-717867 transfections and PFT-a pretreatment in GC-2spd cells supported the involvement of piRNA-DQ717867 in regulating cell cycle-related proteins. This study suggests that Cd exposure induces abnormal expression of piRNA-DQ759395 in rat testis and that piRNA-DQ717867 may regulate p53, causing cell cycle abnormalities in GC-2spd cells. These findings help understand the mechanisms of male reproductive toxicity caused by Cd exposure and emphasize the role of piRNAs in cell cycle regulation and male reproductive health.
Collapse
Affiliation(s)
- Jiaoyang Wei
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Juan Dai
- Wuhan centers for Disease Prevention and Control, China
| | - Xiaofan Shi
- Qinghai centers for Disease Prevention and Control, China
| | - Ruixue Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | | | - Rui Li
- Central China Normal University, China
| | - Chao Xia
- Ezhou centers for Disease Prevention and Control, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Huaiji Wang
- Wuhan centers for Disease Prevention and Control, China.
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| |
Collapse
|
2
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
3
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Mukherjee P, Bhattacharjee S, Mandal DP. PIWI-interacting RNA (piRNA): a narrative review of its biogenesis, function, and emerging role in lung cancer. ASIAN BIOMED 2022; 16:3-14. [PMID: 37551397 PMCID: PMC10321162 DOI: 10.2478/abm-2022-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer remains elusive in many aspects, especially in its causes and control. After protein profiling, genetic screening, and mutation studies, scientists now have turned their attention to epigenetic modulation. This new arena has brought to light the world of noncoding RNA (ncRNA). Although very complicated and often confusing, ncRNA domains are now among the most attractive molecular markers for epigenetic control of cancer. Long ncRNA and microRNA (miRNA) have been studied best among the noncoding genome and huge data have accumulated regarding their inhibitory and promoting effects in cancer. Another sector of ncRNAs is the world of PIWI-interacting RNAs (piRNAs). Initially discovered with the asymmetric division of germline stem cells in the Drosophila ovary, piRNAs have a unique capability to associate with mammalian proteins analogous to P-element induced wimpy testis (PIWI) in Drosophila and are capable of silencing transposons. After a brief introduction to its discovery timelines, the present narrative review covers the biogenesis, function, and role of piRNAs in lung cancer. The effects on lung cancer are highlighted under sections of cell proliferation, stemness maintenance, metastasis, and overall survival, and the review concludes with a discussion of recent discoveries of another class of small ncRNAs, the piRNA-like RNAs (piR-Ls).
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| |
Collapse
|
5
|
Gonzalez LE, Tang X, Lin H. Maternal Piwi regulates primordial germ cell development to ensure the fertility of female progeny in Drosophila. Genetics 2021; 219:iyab091. [PMID: 34142134 PMCID: PMC8757300 DOI: 10.1093/genetics/iyab091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
In many animals, germline development is initiated by proteins and RNAs that are expressed maternally. PIWI proteins and their associated small noncoding PIWI-interacting RNAs (piRNAs), which guide PIWI to target RNAs by base-pairing, are among the maternal components deposited into the germline of the Drosophila early embryo. Piwi has been extensively studied in the adult ovary and testis, where it is required for transposon suppression, germline stem cell self-renewal, and fertility. Consequently, loss of Piwi in the adult ovary using piwi-null alleles or knockdown from early oogenesis results in complete sterility, limiting investigation into possible embryonic functions of maternal Piwi. In this study, we show that the maternal Piwi protein persists in the embryonic germline through gonad coalescence, suggesting that maternal Piwi can regulate germline development beyond early embryogenesis. Using a maternal knockdown strategy, we find that maternal Piwi is required for the fertility and normal gonad morphology of female, but not male, progeny. Following maternal piwi knockdown, transposons were mildly derepressed in the early embryo but were fully repressed in the ovaries of adult progeny. Furthermore, the maternal piRNA pool was diminished, reducing the capacity of the PIWI/piRNA complex to target zygotic genes during embryogenesis. Examination of embryonic germ cell proliferation and ovarian gene expression showed that the germline of female progeny was partially masculinized by maternal piwi knockdown. Our study reveals a novel role for maternal Piwi in the germline development of female progeny and suggests that the PIWI/piRNA pathway is involved in germline sex determination in Drosophila.
Collapse
Affiliation(s)
- Lauren E Gonzalez
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06519, USA
| | - Xiongzhuo Tang
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
6
|
Fabry MH, Falconio FA, Joud F, Lythgoe EK, Czech B, Hannon GJ. Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis. eLife 2021; 10:e68573. [PMID: 34236313 PMCID: PMC8352587 DOI: 10.7554/elife.68573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. In Drosophila, piRNAs are intergenerationally inherited through the maternal lineage, and this has demonstrated importance in the specification of piRNA source loci and in silencing of I- and P-elements in the germ cells of daughters. Maternally inherited Piwi protein enters somatic nuclei in early embryos prior to zygotic genome activation and persists therein for roughly half of the time required to complete embryonic development. To investigate the role of the piRNA pathway in the embryonic soma, we created a conditionally unstable Piwi protein. This enabled maternally deposited Piwi to be cleared from newly laid embryos within 30 min and well ahead of the activation of zygotic transcription. Examination of RNA and protein profiles over time, and correlation with patterns of H3K9me3 deposition, suggests a role for maternally deposited Piwi in attenuating zygotic transposon expression in somatic cells of the developing embryo. In particular, robust deposition of piRNAs targeting roo, an element whose expression is mainly restricted to embryonic development, results in the deposition of transient heterochromatic marks at active roo insertions. We hypothesize that roo, an extremely successful mobile element, may have adopted a lifestyle of expression in the embryonic soma to evade silencing in germ cells.
Collapse
Affiliation(s)
- Martin H Fabry
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Federica A Falconio
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Fadwa Joud
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Emily K Lythgoe
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Benjamin Czech
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Gregory J Hannon
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
7
|
Palacios V, Kimble GC, Tootle TL, Buszczak M. Importin-9 regulates chromosome segregation and packaging in Drosophila germ cells. J Cell Sci 2021; 134:237786. [PMID: 33632744 DOI: 10.1242/jcs.258391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Germ cells undergo distinct nuclear processes as they differentiate into gametes. Although these events must be coordinated to ensure proper maturation, the stage-specific transport of proteins in and out of germ cell nuclei remains incompletely understood. Our efforts to genetically characterize Drosophila genes that exhibit enriched expression in germ cells led to the finding that loss of the highly conserved Importin β/karyopherin family member Importin-9 (Ipo9, herein referring to Ranbp9) results in female and male sterility. Immunofluorescence and fluorescent in situ hybridization revealed that Ipo9KO mutants display chromosome condensation and segregation defects during meiosis. In addition, Ipo9KO mutant males form abnormally structured sperm and fail to properly exchange histones for protamines. Ipo9 physically interacts with proteasome proteins, and Ipo9 mutant males exhibit disruption of the nuclear localization of several proteasome components. Thus, Ipo9 coordinates the nuclear import of functionally related factors necessary for the completion of gametogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Victor Palacios
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Garrett C Kimble
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tina L Tootle
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Huang X, Wong G. An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegener 2021; 10:9. [PMID: 33685517 PMCID: PMC7938595 DOI: 10.1186/s40035-021-00233-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding transcripts that are highly conserved across species and regulate gene expression through pre- and post-transcriptional processes. piRNAs were originally discovered in germline cells and protect against transposable element expression to promote and maintain genome stability. In the recent decade, emerging roles of piRNAs have been revealed, including the roles in sterility, tumorigenesis, metabolic homeostasis, neurodevelopment, and neurodegenerative diseases. In this review, we summarize piRNA biogenesis in C. elegans, Drosophila, and mice, and further elaborate upon how piRNAs mitigate the harmful effects of transposons. Lastly, the most recent findings on piRNA participation in neurological diseases are highlighted. We speculate on the mechanisms of piRNA action in the development and progression of neurodegenerative diseases. Understanding the roles of piRNAs in neurological diseases may facilitate their applications in diagnostic and therapeutic practice.
Collapse
Affiliation(s)
- Xiaobing Huang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China.
| |
Collapse
|
9
|
Subhramanyam CS, Cao Q, Wang C, Heng ZSL, Zhou Z, Hu Q. Role of PIWI-like 4 in modulating neuronal differentiation from human embryonal carcinoma cells. RNA Biol 2020; 17:1613-1624. [PMID: 32372724 DOI: 10.1080/15476286.2020.1757896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PIWI homologs constitute a subclass of the Argonaute family. Traditionally, they have been shown to associate with a specific class of small RNAs, piRNAs, to suppress transposable elements and protect genomic integrity in germ cells. Recent studies imply that PIWI proteins may also exert important biological functions in somatic contexts, including the brain. However, their exact role in neural development remains unknown. Hence we investigated whether PIWI proteins are involved in neuronal differentiation. By using an established cell model for studying neurogenesis, NTera2/D1 (NT2) cells, we found that a particular PIWI homolog, PIWIL4 was increasingly upregulated throughout the course of all-trans retinoic acid (RA)-mediated neuronal differentiation. During this process, PIWIL4 knockdown led to partial recovery of embryonic stem cell markers, while suppressing RA-induced expression of neuronal markers. Consistently, PIWIL4 overexpression further elevated their expression levels. Furthermore, co-immunoprecipitation revealed an RA-induced interaction between PIWIL4 and the H3K27me3 demethylase UTX. Chromatin immunoprecipitation showed that this interaction could be essential for the removal of H3K27me3 from the promoters of RA-inducible genes. By a similar mechanism, PIWIL4 knockdown also suppressed the expression of PTN and NLGN3, two important neuronal factors secreted to regulate glioma activity. We further noted that the conditioned medium collected from PIWIL4-silenced NT2 cells significantly reduced the proliferation of glioma cells. Thus, our data suggest a novel somatic role of PIWIL4 in modulating the expression of neuronal genes that can be further characterized to promote neuronal differentiation and to modulate the activity of glioma cells.
Collapse
Affiliation(s)
| | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zhihong Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
10
|
Roy R, Pattnaik S, Sivagurunathan S, Chidambaram S. Small ncRNA binding protein, PIWI: A potential molecular bridge between blood brain barrier and neuropathological conditions. Med Hypotheses 2020; 138:109609. [DOI: 10.1016/j.mehy.2020.109609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022]
|
11
|
Ramat A, Garcia-Silva MR, Jahan C, Naït-Saïdi R, Dufourt J, Garret C, Chartier A, Cremaschi J, Patel V, Decourcelle M, Bastide A, Juge F, Simonelig M. The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm. Cell Res 2020; 30:421-435. [PMID: 32132673 PMCID: PMC7196074 DOI: 10.1038/s41422-020-0294-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) and PIWI proteins are essential in germ cells to repress transposons and regulate mRNAs. In Drosophila, piRNAs bound to the PIWI protein Aubergine (Aub) are transferred maternally to the embryo and regulate maternal mRNA stability through two opposite roles. They target mRNAs by incomplete base pairing, leading to their destabilization in the soma and stabilization in the germ plasm. Here, we report a function of Aub in translation. Aub is required for translational activation of nanos mRNA, a key determinant of the germ plasm. Aub physically interacts with the poly(A)-binding protein (PABP) and the translation initiation factor eIF3. Polysome gradient profiling reveals the role of Aub at the initiation step of translation. In the germ plasm, PABP and eIF3d assemble in foci that surround Aub-containing germ granules, and Aub acts with eIF3d to promote nanos translation. These results identify translational activation as a new mode of mRNA regulation by Aub, highlighting the versatility of PIWI proteins in mRNA regulation.
Collapse
Affiliation(s)
- Anne Ramat
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Maria-Rosa Garcia-Silva
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Camille Jahan
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Rima Naït-Saïdi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Jérémy Dufourt
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Julie Cremaschi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Vipul Patel
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | | | | | - François Juge
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
12
|
Bhargava V, Goldstein CD, Russell L, Xu L, Ahmed M, Li W, Casey A, Servage K, Kollipara R, Picciarelli Z, Kittler R, Yatsenko A, Carmell M, Orth K, Amatruda JF, Yanowitz JL, Buszczak M. GCNA Preserves Genome Integrity and Fertility Across Species. Dev Cell 2019; 52:38-52.e10. [PMID: 31839537 DOI: 10.1016/j.devcel.2019.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
The propagation of species depends on the ability of germ cells to protect their genome from numerous exogenous and endogenous threats. While these cells employ ubiquitous repair pathways, specialized mechanisms that ensure high-fidelity replication, chromosome segregation, and repair of germ cell genomes remain incompletely understood. We identified Germ Cell Nuclear Acidic Peptidase (GCNA) as a conserved regulator of genome stability in flies, worms, zebrafish, and human germ cell tumors. GCNA contains an acidic intrinsically disordered region (IDR) and a protease-like SprT domain. In addition to chromosomal instability and replication stress, Gcna mutants accumulate DNA-protein crosslinks (DPCs). GCNA acts in parallel with the SprT domain protein Spartan. Structural analysis reveals that while the SprT domain is needed to limit DNA damage, the IDR imparts significant function. This work shows that GCNA protects germ cells from various sources of damage, providing insights into conserved mechanisms that promote genome integrity across generations.
Collapse
Affiliation(s)
- Varsha Bhargava
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Courtney D Goldstein
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Logan Russell
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Murtaza Ahmed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Li
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA; Tsinghua University MD Program, School of Medicine, Tsinghua University, Haidian District, Beijing 100084, PR China
| | - Amanda Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, 6000 Harry Hines Boulevard NA5.120F, Dallas, TX 75235, USA
| | - Rahul Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary Picciarelli
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Ralf Kittler
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexander Yatsenko
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Michelle Carmell
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, 6000 Harry Hines Boulevard NA5.120F, Dallas, TX 75235, USA
| | - James F Amatruda
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA.
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Huang S, Ichikawa Y, Igarashi Y, Yoshitake K, Kinoshita S, Omori F, Maeyama K, Nagai K, Watabe S, Asakawa S. Piwi-interacting RNA (piRNA) expression patterns in pearl oyster (Pinctada fucata) somatic tissues. Sci Rep 2019; 9:247. [PMID: 30670741 PMCID: PMC6342924 DOI: 10.1038/s41598-018-36726-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) belong to a recently discovered class of small non-coding RNAs whose best-understood function is repressing transposable element activity. Most piRNA studies have been conducted on model organisms and little is known about piRNA expression and function in mollusks. We performed high-throughput sequencing of small RNAs extracted from the mantle, adductor muscle, gill, and ovary tissues of the pearl oyster, Pinctada fucata. RNA species with sequences of approximately 30 nt were widely expressed in all tissues. Uridine at the 5' terminal and protection from β-elimination at the 3' terminal suggested that these were putative piRNAs. A total of 18.0 million putative piRNAs were assigned to 2.8 million unique piRNAs, and 35,848 piRNA clusters were identified. Mapping to the reference genome showed that 25% of the unique piRNAs mapped to multiple tandem loci on the scaffold. Expression patterns of the piRNA clusters were similar within the somatic tissues, but differed significantly between the somatic and gonadal tissues. These findings suggest that in pearl oysters piRNAs have important and novel functions beyond those in the germ line.
Collapse
Affiliation(s)
- Songqian Huang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuki Ichikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoji Igarashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Fumito Omori
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie, 516-8581, Japan
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie, 516-8581, Japan
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie, 517-0403, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0313, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
14
|
Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J, Suziedelis K. Non-Coding RNAs in Glioma. Cancers (Basel) 2018; 11:cancers11010017. [PMID: 30583549 PMCID: PMC6356972 DOI: 10.3390/cancers11010017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most aggressive brain tumor of the central nervous system. The ability of glioma cells to migrate, rapidly diffuse and invade normal adjacent tissue, their sustained proliferation, and heterogeneity contribute to an overall survival of approximately 15 months for most patients with high grade glioma. Numerous studies indicate that non-coding RNA species have critical functions across biological processes that regulate glioma initiation and progression. Recently, new data emerged, which shows that the cross-regulation between long non-coding RNAs and small non-coding RNAs contribute to phenotypic diversity of glioblastoma subclasses. In this paper, we review data of long non-coding RNA expression, which was evaluated in human glioma tissue samples during a five-year period. Thus, this review summarizes the following: (I) the role of non-coding RNAs in glioblastoma pathogenesis, (II) the potential application of non-coding RNA species in glioma-grading, (III) crosstalk between lncRNAs and miRNAs (IV) future perspectives of non-coding RNAs as biomarkers for glioma.
Collapse
Affiliation(s)
- Ryte Rynkeviciene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Julija Simiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| | - Egle Strainiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10122 Vilnius, Lithuania.
| | - Vaidotas Stankevicius
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Jurgita Usinskiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Edita Miseikyte Kaubriene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Faculty of Medicine, Vilnius University, M.K. Cˇiurlionio 21, LT-03101 Vilnius, Lithuania.
| | - Ingrida Meskinyte
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
- Energy and Biotechnology Engineering Institute, Aleksandro Stulginskio University, Studentų g. 11, LT-53361 Akademija, Lithuania.
| | - Kestutis Suziedelis
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
15
|
Hao Y, Yu S, Luo F, Jin LH. Jumu is required for circulating hemocyte differentiation and phagocytosis in Drosophila. Cell Commun Signal 2018; 16:95. [PMID: 30518379 PMCID: PMC6280549 DOI: 10.1186/s12964-018-0305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Background The regulatory mechanisms of hematopoiesis and cellular immunity show a high degree of similarity between insects and mammals, and Drosophila has become a good model for investigating cellular immune responses. Jumeau (Jumu) is a member of the winged-helix/forkhead (FKH) transcription factor family and is required for Drosophila development. Adult jumu mutant flies show defective hemocyte phagocytosis and a weaker defense capability against pathogen infection. Here, we further investigated the role of jumu in the regulation of larval hemocyte development and phagocytosis. Methods In vivo phagocytosis assays, immunohistochemistry, Real-time quantitative PCR and immunoblotting were performed to investigate the effect of Jumu on hemocyte phagocytosis. 5-Bromo-2-deoxyUridine (BrdU) labeling, phospho-histone H3 (PH3) and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were performed to analyze the proliferation and apoptosis of hemocyte; immunohistochemistry and Mosaic analysis with a repressible cell marker (MARCM) clone analysis were performed to investigate the role of Jumu in the activation of Toll pathway. Results Jumu indirectly controls hemocyte phagocytosis by regulating the expression of NimC1 and cytoskeleton reorganization. The loss of jumu also causes abnormal proliferation and differentiation in circulating hemocytes. Our results suggest that a severe deficiency of jumu leads to the generation of enlarged multinucleate hemocytes by affecting the normal cell mitosis process and induces numerous lamellocytes by activating the Toll pathway. Conclusions Jumu regulates circulating hemocyte differentiation and phagocytosis in Drosophila. Our findings provide new insight into the mechanistic roles of cytoskeleton regulatory proteins in phagocytosis and establish a basis for further analyses of the regulatory mechanism of the mammalian ortholog of Jumu in mammalian innate immunity. Electronic supplementary material The online version of this article (10.1186/s12964-018-0305-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yangguang Hao
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.,Department of Translational medicine research center, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| |
Collapse
|
16
|
van den Beek M, da Silva B, Pouch J, Ali Chaouche MEA, Carré C, Antoniewski C. Dual-layer transposon repression in heads of Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2018; 24:1749-1760. [PMID: 30217866 PMCID: PMC6239173 DOI: 10.1261/rna.067173.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 05/11/2023]
Abstract
piRNA-mediated repression of transposable elements (TE) in the germline limits the accumulation of mutations caused by their transposition. It is not clear whether the piRNA pathway plays a role in adult, nongonadal tissues in Drosophila melanogaster. To address this question, we analyzed the small RNA content of adult Drosophila melanogaster heads. We found that the varying amount of piRNA-sized, ping-pong positive molecules in heads correlates with contamination by gonadal tissue during RNA extraction, suggesting that most of the piRNAs detected in heads originate from gonads. We next sequenced the heads of wild-type and piwi mutants to address whether piwi loss of function would affect the low amount of piRNA-sized, ping-pong negative molecules that are still detected in heads hand-checked to avoid gonadal contamination. We find that loss of piwi does not significantly affect these 24-28 nt RNAs. Instead, we observe increased siRNA levels against the majority of Drosophila TE families. To determine the effect of this siRNA level change on transposon expression, we sequenced the transcriptome of wild-type, piwi, dicer-2 and piwi, dicer-2 double-mutant heads. We find that RNA expression levels of the majority of TE in piwi or dicer-2 mutants remain unchanged and that TE transcripts increase only in piwi, dicer-2 double-mutants. These results lead us to suggest a dual-layer model for TE repression in adult somatic tissues. Piwi-mediated gene silencing established during embryogenesis constitutes the first layer of TE repression whereas Dicer-2-dependent siRNA-mediated silencing provides a backup mechanism to repress TEs that escape silencing by Piwi.
Collapse
Affiliation(s)
- Marius van den Beek
- Drosophila Genetics and Epigenetics; Sorbonne Université, CNRS, Biologie du développement - Institut de Biologie Paris Seine, 75005 Paris, France
| | - Bruno da Silva
- Drosophila Genetics and Epigenetics; Sorbonne Université, CNRS, Biologie du développement - Institut de Biologie Paris Seine, 75005 Paris, France
| | - Juliette Pouch
- Genomic facility, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mohammed El Amine Ali Chaouche
- Genomic facility, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Clément Carré
- Drosophila Genetics and Epigenetics; Sorbonne Université, CNRS, Biologie du développement - Institut de Biologie Paris Seine, 75005 Paris, France
| | - Christophe Antoniewski
- Drosophila Genetics and Epigenetics; Sorbonne Université, CNRS, Biologie du développement - Institut de Biologie Paris Seine, 75005 Paris, France
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, 75005 Paris, France
| |
Collapse
|
17
|
Durdevic Z, Pillai RS, Ephrussi A. Transposon silencing in the Drosophila female germline is essential for genome stability in progeny embryos. Life Sci Alliance 2018; 1:e201800179. [PMID: 30456388 PMCID: PMC6238532 DOI: 10.26508/lsa.201800179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
The Piwi-interacting RNA pathway functions in transposon control in the germline of metazoans. The conserved RNA helicase Vasa is an essential Piwi-interacting RNA pathway component, but has additional important developmental functions. Here, we address the importance of Vasa-dependent transposon control in the Drosophila female germline and early embryos. We find that transient loss of vasa expression during early oogenesis leads to transposon up-regulation in supporting nurse cells of the fly egg-chamber. We show that elevated transposon levels have dramatic consequences, as de-repressed transposons accumulate in the oocyte where they cause DNA damage. We find that suppression of Chk2-mediated DNA damage signaling in vasa mutant females restores oogenesis and egg production. Damaged DNA and up-regulated transposons are transmitted from the mother to the embryos, which sustain severe nuclear defects and arrest development. Our findings reveal that the Vasa-dependent protection against selfish genetic elements in the nuage of nurse cell is essential to prevent DNA damage-induced arrest of embryonic development.
Collapse
Affiliation(s)
- Zeljko Durdevic
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ramesh S Pillai
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
18
|
Maternal Proteins That Are Phosphoregulated upon Egg Activation Include Crucial Factors for Oogenesis, Egg Activation and Embryogenesis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:3005-3018. [PMID: 30012668 PMCID: PMC6118307 DOI: 10.1534/g3.118.200578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Egg activation is essential for the successful transition from a mature oocyte to a developmentally competent egg. It consists of a series of events including the resumption and completion of meiosis, initiation of translation of some maternal mRNAs and destruction of others, and changes to the vitelline envelope. This major change of cell state is accompanied by large scale alteration in the oocyte’s phosphoproteome. We hypothesize that the cohort of proteins that are subject to phosphoregulation during egg activation are functionally important for processes before, during, or soon after this transition, potentially uniquely or as proteins carrying out essential cellular functions like those they do in other (somatic) cells. In this study, we used germline-specific RNAi to examine the function of 189 maternal proteins that are phosphoregulated during egg activation in Drosophila melanogaster. We identified 53 genes whose knockdown reduced or abolished egg production and caused a range of defects in ovarian morphology, as well as 51 genes whose knockdown led to significant impairment or abolishment of the egg hatchability. We observed different stages of developmental arrest in the embryos and various defects in spindle morphology and aberrant centrosome activities in the early arrested embryos. Our results, validated by the detection of multiple genes with previously-documented maternal effect phenotypes among the proteins we tested, revealed 15 genes with newly discovered roles in egg activation and early embryogenesis in Drosophila. Given that protein phosphoregulation is a conserved characteristic of this developmental transition, we suggest that the phosphoregulated proteins may provide a rich pool of candidates for the identification of important players in the egg-to-embryo transition.
Collapse
|
19
|
PIWI family emerging as a decisive factor of cell fate: An overview. Eur J Cell Biol 2017; 96:746-757. [DOI: 10.1016/j.ejcb.2017.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
|
20
|
Henaoui IS, Jacovetti C, Guerra Mollet I, Guay C, Sobel J, Eliasson L, Regazzi R. PIWI-interacting RNAs as novel regulators of pancreatic beta cell function. Diabetologia 2017; 60:1977-1986. [PMID: 28711973 DOI: 10.1007/s00125-017-4368-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS P-element induced Wimpy testis (PIWI)-interacting RNAs (piRNAs) are small non-coding RNAs that interact with PIWI proteins and guide them to silence transposable elements. They are abundantly expressed in germline cells and play key roles in spermatogenesis. There is mounting evidence that piRNAs are also present in somatic cells, where they may accomplish additional regulatory tasks. The aim of this study was to identify the piRNAs expressed in pancreatic islets and to determine whether they are involved in the control of beta cell activities. METHODS piRNA profiling of rat pancreatic islets was performed by microarray analysis. The functions of piRNAs were investigated by silencing the two main Piwi genes or by modulating the level of selected piRNAs in islet cells. RESULTS We detected about 18,000 piRNAs in rat pancreatic islets, many of which were differentially expressed throughout islet postnatal development. Moreover, we identified changes in the level of several piRNAs in the islets of Goto-Kakizaki rats, a well-established animal model of type 2 diabetes. Silencing of Piwil2 or Piwil4 genes in adult rat islets caused a reduction in the level of several piRNAs and resulted in defective insulin secretion and increased resistance of the cells to cytokine-induced cell death. Furthermore, overexpression in the islets of control animals of two piRNAs that are upregulated in diabetic rats led to a selective defect in glucose-induced insulin release. CONCLUSIONS/INTERPRETATION Our results provide evidence for a role of PIWI proteins and their associated piRNAs in the control of beta cell functions, and suggest a possible involvement in the development of type 2 diabetes. DATA AVAILABILITY Data have been deposited in Gene Expression Omnibus repository under the accession number GSE93792. Data can be accessed via the following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ojklueugdzehpkv&acc=GSE93792.
Collapse
Affiliation(s)
- Imène Sarah Henaoui
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Cécile Jacovetti
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Inês Guerra Mollet
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Jonathan Sobel
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Lena Eliasson
- Department of Clinical Sciences-Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS, Malmö, Sweden
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
21
|
Despic V, Dejung M, Gu M, Krishnan J, Zhang J, Herzel L, Straube K, Gerstein MB, Butter F, Neugebauer KM. Dynamic RNA-protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Res 2017; 27:1184-1194. [PMID: 28381614 PMCID: PMC5495070 DOI: 10.1101/gr.215954.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/24/2017] [Indexed: 12/21/2022]
Abstract
During the maternal-to-zygotic transition (MZT), transcriptionally silent embryos rely on post-transcriptional regulation of maternal mRNAs until zygotic genome activation (ZGA). RNA-binding proteins (RBPs) are important regulators of post-transcriptional RNA processing events, yet their identities and functions during developmental transitions in vertebrates remain largely unexplored. Using mRNA interactome capture, we identified 227 RBPs in zebrafish embryos before and during ZGA, hereby named the zebrafish MZT mRNA-bound proteome. This protein constellation consists of many conserved RBPs, some of which are potential stage-specific mRNA interactors that likely reflect the dynamics of RNA-protein interactions during MZT. The enrichment of numerous splicing factors like hnRNP proteins before ZGA was surprising, because maternal mRNAs were found to be fully spliced. To address potentially unique roles of these RBPs in embryogenesis, we focused on Hnrnpa1. iCLIP and subsequent mRNA reporter assays revealed a function for Hnrnpa1 in the regulation of poly(A) tail length and translation of maternal mRNAs through sequence-specific association with 3' UTRs before ZGA. Comparison of iCLIP data from two developmental stages revealed that Hnrnpa1 dissociates from maternal mRNAs at ZGA and instead regulates the nuclear processing of pri-mir-430 transcripts, which we validated experimentally. The shift from cytoplasmic to nuclear RNA targets was accompanied by a dramatic translocation of Hnrnpa1 and other pre-mRNA splicing factors to the nucleus in a transcription-dependent manner. Thus, our study identifies global changes in RNA-protein interactions during vertebrate MZT and shows that Hnrnpa1 RNA-binding activities are spatially and temporally coordinated to regulate RNA metabolism during early development.
Collapse
Affiliation(s)
- Vladimir Despic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Mario Dejung
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Mengting Gu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Jayanth Krishnan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Jing Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Falk Butter
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
22
|
Casas-Vila N, Bluhm A, Sayols S, Dinges N, Dejung M, Altenhein T, Kappei D, Altenhein B, Roignant JY, Butter F. The developmental proteome of Drosophila melanogaster. Genome Res 2017; 27:1273-1285. [PMID: 28381612 PMCID: PMC5495078 DOI: 10.1101/gr.213694.116] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/30/2017] [Indexed: 01/12/2023]
Abstract
Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface.
Collapse
Affiliation(s)
- Nuria Casas-Vila
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Alina Bluhm
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Sergi Sayols
- Bioinformatics Core Facility, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Nadja Dinges
- RNA Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Tina Altenhein
- Institute of Genetics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599
| | - Benjamin Altenhein
- Institute of Genetics, Johannes Gutenberg University, 55128 Mainz, Germany.,Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | | | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| |
Collapse
|
23
|
Toombs JA, Sytnikova YA, Chirn GW, Ang I, Lau NC, Blower MD. Xenopus Piwi proteins interact with a broad proportion of the oocyte transcriptome. RNA (NEW YORK, N.Y.) 2017; 23:504-520. [PMID: 28031481 PMCID: PMC5340914 DOI: 10.1261/rna.058859.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and immunoprecipitation (CLIP) to identify thousands of transcripts associated with the Piwi proteins XIWI and XILI (Piwi-protein-associated transcripts, PATs) from early stage oocytes of X. laevis and X. tropicalis Most PATs associate with both XIWI and XILI and include transcripts of developmentally important proteins in oogenesis and embryogenesis. Only a minor fraction of PATs in both frog species displayed near perfect matches to piRNAs. Since predicting imperfect pairing between all piRNAs and target RNAs remains intractable, we instead determined that PAT read counts correlate well with the lengths and expression levels of transcripts, features that have also been observed for oocyte mRNAs associated with Drosophila Piwi proteins. We used an in vitro assay with exogenous RNA to confirm that XIWI associates with RNAs in a length- and concentration-dependent manner. In this assay, noncoding transcripts with many perfectly matched antisense piRNAs were unstable, whereas coding transcripts with matching piRNAs were stable, consistent with emerging evidence that Piwi proteins both promote the turnover of TEs and other RNAs, and may also regulate mRNA localization and translation. Our study suggests that Piwi proteins play multiple roles in germ cells and establishes a tractable vertebrate system to study the role of Piwi proteins in transcript regulation.
Collapse
Affiliation(s)
- James A Toombs
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Ignatius Ang
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Zhai L, Wang L, Teng F, Zhou L, Zhang W, Xiao J, Liu Y, Deng W. Argonaute and Argonaute-Bound Small RNAs in Stem Cells. Int J Mol Sci 2016; 17:208. [PMID: 26861290 PMCID: PMC4783940 DOI: 10.3390/ijms17020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Small RNAs are essential for a variety of cellular functions. Argonaute (AGO) proteins are associated with all of the different classes of small RNAs, and are indispensable in small RNA-mediated regulatory pathways. AGO proteins have been identified in various types of stem cells in diverse species from plants and animals. This review article highlights recent progress on how AGO proteins and AGO-bound small RNAs regulate the self-renewal and differentiation of distinct stem cell types, including pluripotent, germline, somatic, and cancer stem cells.
Collapse
Affiliation(s)
- Lihong Zhai
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Lin Wang
- Xiangyang Oral Hospital, Xiangyang 441003, Hubei, China.
| | - Feng Teng
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Lanting Zhou
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Wenjing Zhang
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Juan Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Ying Liu
- Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
25
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
26
|
Ferree PM. Mitotic misbehavior of a Drosophila melanogaster satellite in ring chromosomes: insights into intragenomic conflict among heterochromatic sequences. Fly (Austin) 2015; 8:101-7. [PMID: 25483254 DOI: 10.4161/fly.29488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, abnormally circularized chromosomes, known as 'rings,' can be mitotically unstable. Some rings derived from a compound X-Y chromosome induce mitotic abnormalities during the embryonic cleavage divisions and early death in Drosophila melanogaster, but the underlying basis is poorly understood. We recently demonstrated that a large region of 359-bp satellite DNA, which normally resides on the X chromosome, prevents sister ring chromatids from segregating properly during these divisions. Cytogenetic comparisons among 3 different X-Y rings with varying levels of lethality showed that all 3 contain similar amounts of 359-bp DNA, but the repetitive sequences surrounding the 359-bp DNA differ in each case. This finding suggests that ring misbehavior results from novel heterochromatin position effects on the 359-bp satellite. The purpose of this view is to explore possible explanations for these effects with regard to heterochromatin formation and replication of repetitive sequences. Also discussed are similarities of this system to a satellite-based hybrid incompatibility and potential influences on genome evolution.
Collapse
Affiliation(s)
- Patrick M Ferree
- a W. M. Keck Science Department; Claremont McKenna, Pitzer, and Scripps Colleges; Claremont, CA USA
| |
Collapse
|
27
|
Barckmann B, Pierson S, Dufourt J, Papin C, Armenise C, Port F, Grentzinger T, Chambeyron S, Baronian G, Desvignes JP, Curk T, Simonelig M. Aubergine iCLIP Reveals piRNA-Dependent Decay of mRNAs Involved in Germ Cell Development in the Early Embryo. Cell Rep 2015; 12:1205-16. [PMID: 26257181 PMCID: PMC4626872 DOI: 10.1016/j.celrep.2015.07.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/17/2015] [Accepted: 07/14/2015] [Indexed: 11/25/2022] Open
Abstract
The Piwi-interacting RNA (piRNA) pathway plays an essential role in the repression of transposons in the germline. Other functions of piRNAs such as post-transcriptional regulation of mRNAs are now emerging. Here, we perform iCLIP with the PIWI protein Aubergine (Aub) and identify hundreds of maternal mRNAs interacting with Aub in the early Drosophila embryo. Gene expression profiling reveals that a proportion of these mRNAs undergo Aub-dependent destabilization during the maternal-to-zygotic transition. Strikingly, Aub-dependent unstable mRNAs encode germ cell determinants. iCLIP with an Aub mutant that is unable to bind piRNAs confirms piRNA-dependent binding of Aub to mRNAs. Base pairing between piRNAs and mRNAs can induce mRNA cleavage and decay that are essential for embryonic development. These results suggest general regulation of maternal mRNAs by Aub and piRNAs, which plays a key developmental role in the embryo through decay and localization of mRNAs encoding germ cell determinants. Aub binds to maternal mRNAs in early Drosophila embryos Interaction between Aub and maternal mRNAs depends on piRNAs aub mutants are defective in mRNA decay during the MZT Aub-dependent unstable mRNAs encode germ cell determinants
Collapse
Affiliation(s)
- Bridlin Barckmann
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Stéphanie Pierson
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Jérémy Dufourt
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Catherine Papin
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Claudia Armenise
- RNA Silencing and Control of Transposition, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Fillip Port
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Thomas Grentzinger
- RNA Silencing and Control of Transposition, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Séverine Chambeyron
- RNA Silencing and Control of Transposition, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Grégory Baronian
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094 Montpellier Cedex 5, France
| | - Jean-Pierre Desvignes
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094 Montpellier Cedex 5, France
| | - Tomaz Curk
- Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martine Simonelig
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
28
|
Valenzuela-Miranda D, Nuñez-Acuña G, Valenzuela-Muñoz V, Asgari S, Gallardo-Escárate C. MicroRNA biogenesis pathway from the salmon louse (Caligus rogercresseyi): Emerging role in delousing drug response. Gene 2015; 555:231-41. [DOI: 10.1016/j.gene.2014.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/24/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022]
|
29
|
Coordinating Cell Cycle Remodeling with Transcriptional Activation at the Drosophila MBT. Curr Top Dev Biol 2015; 113:113-48. [DOI: 10.1016/bs.ctdb.2015.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Schwager EE, Meng Y, Extavour CG. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum. Dev Biol 2014; 402:276-90. [PMID: 25257304 DOI: 10.1016/j.ydbio.2014.08.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 08/13/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Yue Meng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA.
| |
Collapse
|
31
|
PIWI proteins are dispensable for mouse somatic development and reprogramming of fibroblasts into pluripotent stem cells. PLoS One 2014; 9:e97821. [PMID: 25238487 PMCID: PMC4169525 DOI: 10.1371/journal.pone.0097821] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
PIWI proteins play essential and conserved roles in germline development, including germline stem cell maintenance and meiosis. Because germline regulators such as OCT4, NANOG, and SOX2 are known to be potent factors that reprogram differentiated somatic cells into induced pluripotent stem cells (iPSCs), we investigated whether the PIWI protein family is involved in iPSC production. We find that all three mouse Piwi genes, Miwi, Mili, and Miwi2, are expressed in embryonic stem cells (ESCs) at higher levels than in fibroblasts, with Mili being the highest. However, mice lacking all three Piwi genes are viable and female fertile, and are only male sterile. Furthermore, embryonic fibroblasts derived from Miwi/Mili/Miwi2 triple knockout embryos can be efficiently reprogrammed into iPS cells. These iPS cells expressed pluripotency markers and were capable of differentiating into all three germ layers in teratoma assays. Genome-wide expression profiling reveals that the triple knockout iPS cells are very similar to littermate control iPS cells. These results indicate that PIWI proteins are dispensable for direct reprogramming of mouse fibroblasts.
Collapse
|
32
|
Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 2014; 1:205-218. [PMID: 25512877 DOI: 10.1093/nsr/nwu014] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a complex class of small non-coding RNAs that are mostly 24-32 nucleotides in length and composed of at least hundreds of thousands of species that specifically interact with the PIWI protein subfamily of the ARGONAUTE family. Recent studies revealed that PIWI proteins interact with a number of proteins, especially the TUDOR-domain-containing proteins, to regulate piRNA biogenesis and regulatory function. Current research also provides evidence that PIWI proteins and piRNAs are not only crucial for transposon silencing in the germline, but also mediate novel mechanisms of epigenetic programming, DNA rearrangements, mRNA turnover, and translational control both in the germline and in the soma. These new discoveries begin to reveal an exciting new dimension of gene regulation in the cell.
Collapse
Affiliation(s)
- Hsueh-Yen Ku
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
33
|
Basquin D, Spierer A, Begeot F, Koryakov DE, Todeschini AL, Ronsseray S, Vieira C, Spierer P, Delattre M. The Drosophila Su(var)3-7 gene is required for oogenesis and female fertility, genetically interacts with piwi and aubergine, but impacts only weakly transposon silencing. PLoS One 2014; 9:e96802. [PMID: 24820312 PMCID: PMC4018442 DOI: 10.1371/journal.pone.0096802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin is made of repetitive sequences, mainly transposable elements (TEs), the regulation of which is critical for genome stability. We have analyzed the role of the heterochromatin-associated Su(var)3-7 protein in Drosophila ovaries. We present evidences that Su(var)3-7 is required for correct oogenesis and female fertility. It accumulates in heterochromatic domains of ovarian germline and somatic cells nuclei, where it co-localizes with HP1. Homozygous mutant females display ovaries with frequent degenerating egg-chambers. Absence of Su(var)3-7 in embryos leads to defects in meiosis and first mitotic divisions due to chromatin fragmentation or chromosome loss, showing that Su(var)3-7 is required for genome integrity. Females homozygous for Su(var)3-7 mutations strongly impair repression of P-transposable element induced gonadal dysgenesis but have minor effects on other TEs. Su(var)3-7 mutations reduce piRNA cluster transcription and slightly impact ovarian piRNA production. However, this modest piRNA reduction does not correlate with transposon de-silencing, suggesting that the moderate effect of Su(var)3-7 on some TE repression is not linked to piRNA production. Strikingly, Su(var)3-7 genetically interacts with the piwi and aubergine genes, key components of the piRNA pathway, by strongly impacting female fertility without impairing transposon silencing. These results lead us to propose that the interaction between Su(var)3-7 and piwi or aubergine controls important developmental processes independently of transposon silencing.
Collapse
Affiliation(s)
- Denis Basquin
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Anne Spierer
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Flora Begeot
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Anne-Laure Todeschini
- Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, Paris, France
| | - Stéphane Ronsseray
- Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, Paris, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon1, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Pierre Spierer
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Marion Delattre
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505:353-359. [PMID: 24429634 PMCID: PMC4265809 DOI: 10.1038/nature12987] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
The discovery of millions of PIWI-interacting RNAs revealed a fascinating and unanticipated dimension of biology. The PIWI-piRNA pathway has been commonly perceived as germline-specific, even though the somatic function of PIWI proteins was documented when they were first discovered. Recent studies have begun to re-explore this pathway in somatic cells in diverse organisms, particularly lower eukaryotes. These studies have illustrated the multifaceted somatic functions of the pathway not only in transposon silencing but also in genome rearrangement and epigenetic programming, with biological roles in stem-cell function, whole-body regeneration, memory and possibly cancer.
Collapse
Affiliation(s)
- Robert J Ross
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Molly M Weiner
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| |
Collapse
|