1
|
Leite DJ, Schönauer A, Blakeley G, Harper A, Garcia-Castro H, Baudouin-Gonzalez L, Wang R, Sarkis N, Nikola AG, Koka VSP, Kenny NJ, Turetzek N, Pechmann M, Solana J, McGregor AP. An atlas of spider development at single-cell resolution provides new insights into arthropod embryogenesis. EvoDevo 2024; 15:5. [PMID: 38730509 PMCID: PMC11083766 DOI: 10.1186/s13227-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Amber Harper
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Helena Garcia-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Ruixun Wang
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Naïra Sarkis
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Alexander Günther Nikola
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Venkata Sai Poojitha Koka
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Department of Biochemistry Te Tari Matū Koiora, University of Otago, Dunedin, New Zealand
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
2
|
de Almeida BP, Schaub C, Pagani M, Secchia S, Furlong EEM, Stark A. Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo. Nature 2024; 626:207-211. [PMID: 38086418 PMCID: PMC10830412 DOI: 10.1038/s41586-023-06905-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
Enhancers control gene expression and have crucial roles in development and homeostasis1-3. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the Drosophila melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system.
Collapse
Affiliation(s)
- Bernardo P de Almeida
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- InstaDeep, Paris, France
| | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
3
|
Lepesant JMJ, Iampietro C, Galeota E, Augé B, Aguirrenbengoa M, Mercé C, Chaubet C, Rocher V, Haenlin M, Waltzer L, Pelizzola M, Di Stefano L. A dual role of dLsd1 in oogenesis: regulating developmental genes and repressing transposons. Nucleic Acids Res 2020; 48:1206-1224. [PMID: 31799607 PMCID: PMC7026653 DOI: 10.1093/nar/gkz1142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/14/2022] Open
Abstract
The histone demethylase LSD1 is a key chromatin regulator that is often deregulated in cancer. Its ortholog, dLsd1 plays a crucial role in Drosophila oogenesis; however, our knowledge of dLsd1 function is insufficient to explain its role in the ovary. Here, we have performed genome-wide analysis of dLsd1 binding in the ovary, and we document that dLsd1 is preferentially associated to the transcription start site of developmental genes. We uncovered an unanticipated interplay between dLsd1 and the GATA transcription factor Serpent and we report an unexpected role for Serpent in oogenesis. Besides, our transcriptomic data show that reducing dLsd1 levels results in ectopic transposable elements (TE) expression correlated with changes in H3K4me2 and H3K9me2 at TE loci. In addition, our results suggest that dLsd1 is required for Piwi dependent TE silencing. Hence, we propose that dLsd1 plays crucial roles in establishing specific gene expression programs and in repressing transposons during oogenesis.
Collapse
Affiliation(s)
- Julie M J Lepesant
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Carole Iampietro
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Eugenia Galeota
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Benoit Augé
- CBD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Marion Aguirrenbengoa
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Clemèntine Mercé
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France.,School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Camille Chaubet
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Vincent Rocher
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Marc Haenlin
- CBD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Lucas Waltzer
- CBD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand F-63000, France
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Luisa Di Stefano
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
4
|
Wu W, Kuo T, Kao C, Girardot C, Hung S, Liu T, Furlong EEM, Liu Y. Expanding the mesodermal transcriptional network by genome‐wide identification of Zinc finger homeodomain 1 (Zfh1) targets. FEBS Lett 2019; 593:1698-1710. [DOI: 10.1002/1873-3468.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Wei‐Hang Wu
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Tai‐Hong Kuo
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Chia‐Wei Kao
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Sheng‐Jou Hung
- Department of Biotechnology and Bioindustry Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| | - Eileen E. M. Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Ya‐Hsin Liu
- Department of Life Sciences College of Bioscience and Biotechnology National Cheng Kung University Tainan Taiwan
| |
Collapse
|
5
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
6
|
Choudhury TP, Gupta L, Kumar S. Identification, characterization and expression analysis of Anopheles stephensi double peroxidase. Acta Trop 2019; 190:210-219. [PMID: 30352205 DOI: 10.1016/j.actatropica.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022]
Abstract
Peroxidases catalyze the reduction of peroxides and that, in turn, oxidize various substrates. They have been widely reported to play an important role in mosquito innate immunity against various pathogens. Here, we have characterized double heme peroxidase (AsDBLOX) gene from the Indian malaria vector Anopheles stephensi. It is a true ortholog of An. gambiae DBLOX. This 4209 bp AsDBLOX gene encodes for a protein of 1402 amino acids that has two duplicated peroxidase domains, domain I (from amino acid 61 to 527) and domain II (from amino acid 714 to 1252). The first domain has only substrate binding sites and lacks all other motifs of a functional heme peroxidase (e.g. heme binding site, calcium binding site and homodimer interface). Instead, it has two integrin binding motifs-LDV (Leu-Asp-Val) and RGD (Arg-Gly-Asp). The second peroxidase domain, however, has all the features of a complete heme peroxidase along with an integrin binding motif LDI (Leu-Asp-Ile). Thus, AsDBLOX gene is a unique type of peroxinectin as these groups of proteins are characterized by integrin binding motifs along with a heme peroxidase domain. We also observed that the AsDBLOX gene is expressed in all the life cycle stages of mosquito and is highly induced in the pupal stage of development which indicates its possible role in development.
Collapse
Affiliation(s)
- Tania Pal Choudhury
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India; Department of Zoology, Ch. Bansi Lal University, Bhiwani, Haryana, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India; Department of Biotechnology, Ch. Bansi Lal University, Bhiwani, Haryana, India.
| |
Collapse
|
7
|
The Repo Homeodomain Transcription Factor Suppresses Hematopoiesis in Drosophila and Preserves the Glial Fate. J Neurosci 2018; 39:238-255. [PMID: 30504274 DOI: 10.1523/jneurosci.1059-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
Despite their different origins, Drosophila glia and hemocytes are related cell populations that provide an immune function. Drosophila hemocytes patrol the body cavity and act as macrophages outside the nervous system, whereas glia originate from the neuroepithelium and provide the scavenger population of the nervous system. Drosophila glia are hence the functional orthologs of vertebrate microglia, even though the latter are cells of immune origin that subsequently move into the brain during development. Interestingly, the Drosophila immune cells within (glia) and outside (hemocytes) the nervous system require the same transcription factor glial cells deficient/glial cells missing (Glide/Gcm) for their development. This raises the issue of how do glia specifically differentiate in the nervous system, and hemocytes in the procephalic mesoderm. The Repo homeodomain transcription factor and panglial direct target of Glide/Gcm is known to ensure glial terminal differentiation. Here we show that Repo also takes center stage in the process that discriminates between glia and hemocytes. First, Repo expression is repressed in the hemocyte anlagen by mesoderm-specific factors. Second, Repo ectopic activation in the procephalic mesoderm is sufficient to repress the expression of hemocyte-specific genes. Third, the lack of Repo triggers the expression of hemocyte markers in glia. Thus, a complex network of tissue-specific cues biases the potential of Glide/Gcm. These data allow us to revise the concept of fate determinants and help us to understand the bases of cell specification. Both sexes were analyzed.SIGNIFICANCE STATEMENT Distinct cell types often require the same pioneer transcription factor, raising the issue of how one factor triggers different fates. In Drosophila, glia and hemocytes provide a scavenger activity within and outside the nervous system, respectively. While they both require the glial cells deficient/glial cells missing (Glide/Gcm) transcription factor, glia originate from the ectoderm, and hemocytes from the mesoderm. Here we show that tissue-specific factors inhibit the gliogenic potential of Glide/Gcm in the mesoderm by repressing the expression of the homeodomain protein Repo, a major glial-specific target of Glide/Gcm. Repo expression in turn inhibits the expression of hemocyte-specific genes in the nervous system. These cell-specific networks secure the establishment of the glial fate only in the nervous system and allow cell diversification.
Collapse
|
8
|
Cusanovich DA, Reddington JP, Garfield DA, Daza RM, Aghamirzaie D, Marco-Ferreres R, Pliner HA, Christiansen L, Qiu X, Steemers FJ, Trapnell C, Shendure J, Furlong EEM. The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature 2018. [PMID: 29539636 PMCID: PMC5866720 DOI: 10.1038/nature25981] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding how gene regulatory networks control the progressive restriction of cell fates is a long-standing challenge. Recent advances in measuring single cell gene expression are providing new insights into lineage commitment. However, the regulatory events underlying these changes remain elusive. Here we investigate the dynamics of chromatin regulatory landscapes during embryogenesis at single cell resolution. Using single cell combinatorial indexing assay for transposase accessible chromatin (sci-ATAC-seq)1, we profiled chromatin accessibility in over 20,000 single nuclei from fixed Drosophila embryos spanning three landmark embryonic stages: 2-4 hours (hrs) after egg laying (predominantly stage 5 blastoderm nuclei), when each embryo comprises ~6,000 multipotent cells; 6-8hrs (predominantly stage 10-11), to capture a midpoint in embryonic development when major lineages in the mesoderm and ectoderm are specified; and 10-12hrs (predominantly stage 13), when each of the embryo’s >20,000 cells are undergoing terminal differentiation. Our results reveal spatial heterogeneity in the usage of the regulatory genome prior to gastrulation, a feature that aligns with future cell fate, and nuclei can be temporally ordered along developmental trajectories. During mid-embryogenesis, tissue granularity emerges such that individual cell types can be inferred by their chromatin accessibility, while maintaining a signature of their germ layer of origin. The data reveal overlapping usage of regulatory elements between cells of the endoderm and non-myogenic mesoderm, suggesting a common developmental program reminiscent of the mesendoderm lineage in other species2–4. Altogether, we identify over 30,000 distal regulatory elements exhibiting tissue-specific accessibility. We validated the germ layer specificity of a subset of these predicted enhancers in transgenic embryos, achieving 90% accuracy. Overall, our results demonstrate the power of shotgun single cell profiling of embryos to resolve dynamic changes in the chromatin landscape during development, and to uncover the cis-regulatory programs of metazoan germ layers and cell types.
Collapse
Affiliation(s)
- Darren A Cusanovich
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James P Reddington
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - David A Garfield
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Delasa Aghamirzaie
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Raquel Marco-Ferreres
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Hannah A Pliner
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|