1
|
Alsubeeh NA, Almuqbil MA, Davies W, Bertoli-Avella A, Anikar S, Zonic E, Eyaid WM. CCDC47 gene and trichohepatoneurodevelopmental syndrome: Report of the fifth and sixth cases from Saudi Arabia. Am J Med Genet A 2025; 197:e63784. [PMID: 39171352 DOI: 10.1002/ajmg.a.63784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 08/23/2024]
Abstract
Trichohepatoneurodevelopmental syndrome (THNS) is an ultra-rare and complex disorder affecting multiple organ systems. It is characterized by liver dysfunction, hypotonia, global developmental delay, coarse hair, and dysmorphic features. We describe two cases of THNS of Saudi origin, the fifth and sixth cases in the medical literature. Both cases presented with multiple dysmorphic features, generalized hypotonia, global developmental delay, and high liver enzyme level. Exome sequencing of Case 1 identified a pathogenic homozygous variant within the CCDC47: NM_020198.2:c.567_570del, p.(Glu190Profs*7). Genome sequencing of Case 2 identified two likely pathogenic heterozygous variants within the CCDC47: NM_020198.2:c.1327C>T, p.(Arg443*) and NM_020198.2:c.422dup, p.(Leu141Phefs*19). The trans phase of the detected variants has been confirmed by the parental testing. Furthermore, we evaluated the gene-disease association as per ClinGen guidelines and reached a strong level of association after inclusion of the new patients/variants. The findings from these cases will help to delineate the clinical phenotype and the mutational spectrum of this complex disorder.
Collapse
Affiliation(s)
| | - Mohammed A Almuqbil
- Department of Pediatrics, King Abdullah Specialist Children's Hospital (KASCH), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - William Davies
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics, Schools of Medicine and Psychology, Cardiff University, Cardiff, UK
| | | | | | | | - Wafaa M Eyaid
- King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Genetics and Precision Medicine Department, King Abdullah Specialist Children's Hospital (KASCH), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Barish S, Lin SJ, Maroofian R, Gezdirici A, Alhebby H, Trimouille A, Biderman Waberski M, Mitani T, Huber I, Tveten K, Holla ØL, Busk ØL, Houlden H, Ghayoor Karimiani E, Beiraghi Toosi M, Shervin Badv R, Najarzadeh Torbati P, Eghbal F, Akhondian J, Al Safar A, Alswaid A, Zifarelli G, Bauer P, Marafi D, Fatih JM, Huang K, Petree C, Calame DG, von der Lippe C, Alkuraya FS, Wali S, Lupski JR, Varshney GK, Posey JE, Pehlivan D. Homozygous variants in WDR83OS lead to a neurodevelopmental disorder with hypercholanemia. Am J Hum Genet 2024; 111:2566-2581. [PMID: 39471804 PMCID: PMC11568760 DOI: 10.1016/j.ajhg.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024] Open
Abstract
WD repeat domain 83 opposite strand (WDR83OS) encodes the 106-aa (amino acid) protein Asterix, which heterodimerizes with CCDC47 to form the PAT (protein associated with ER translocon) complex. This complex functions as a chaperone for large proteins containing transmembrane domains to ensure proper folding. Until recently, little was known about the role of WDR83OS or CCDC47 in human disease traits. However, biallelic variants in CCDC47 were identified in four unrelated families with trichohepatoneurodevelopmental syndrome, characterized by a neurodevelopmental disorder (NDD) with liver dysfunction. Three affected siblings in an additional family share a homozygous truncating WDR83OS variant and a phenotype of NDD, dysmorphic features, and liver dysfunction. Using family-based rare variant analyses of exome sequencing (ES) data and case matching through GeneMatcher, we describe the clinical phenotypes of 11 additional individuals in eight unrelated families (nine unrelated families, 14 individuals in total) with biallelic putative truncating variants in WDR83OS. Consistent clinical features include NDD (14/14), facial dysmorphism (13/14), intractable itching (9/14), and elevated bile acids (5/6). Whereas bile acids were significantly elevated in 5/6 of individuals tested, bilirubin was normal and liver enzymes were normal to mildly elevated in all 14 individuals. In three of six individuals for whom longitudinal data were available, we observed a progressive reduction in relative head circumference. A zebrafish model lacking Wdr83os function further supports its role in the nervous system, craniofacial development, and lipid absorption. Taken together, our data support a disease-gene association between biallelic loss-of-function of WDR83OS and a neurological disease trait with hypercholanemia.
Collapse
Affiliation(s)
- Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Hamoud Alhebby
- Division of Gastroenterology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Aurélien Trimouille
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France; INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme, Bordeaux University, Bordeaux, France
| | | | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilka Huber
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Øyvind L Busk
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Mehran Beiraghi Toosi
- Department of Pediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Eghbal
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Javad Akhondian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ayat Al Safar
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia; Department of Paediatrics, King Fahd Hospital of University, Al-khobar, Saudi Arabia
| | - Abdulrahman Alswaid
- King Saud Bin Abdulaziz University for Health Sciences, Department of Pediatrics, MC 1940, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | | | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sami Wali
- Division of Gastroenterology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Yang Q, Zhou X, Ling Y, Zhang Q, Yi S, Chen Q, Zhang S, Qin Z, Luo J. Clinical and genetic analysis of trichohepatoneurodevelopmental syndrome caused by a CCDC47 variant. Heliyon 2024; 10:e27955. [PMID: 38524542 PMCID: PMC10958427 DOI: 10.1016/j.heliyon.2024.e27955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Trichohepatoneurodevelopmental syndrome is an extremely uncommon autosomal recessive disorder resulting from variants in the CCDC47 gene, which encodes a Ca2+-binding endoplasmic reticulum (ER) transmembrane protein. To date, only four patients with CCDC47 deficiency have been reported, all of them with homozygous truncating CCDC47 variants. For this study, a Chinese family was recruited, which included a patient diagnosed with trichohepatoneurodevelopmental syndrome. Whole exome sequencing (WES) identified the proband's novel homozygous CCDC47 variation (NM_020198: c.634C > T(p.Arg212*). The variant was confirmed to be segregating in the proband and her unaffected relatives through Sanger sequencing. The patient described exhibited a clinical phenotype similar to that of patients with the CCDC47 variant. Compared to reported cases with CCDC47 pathogenic variants, our patients showed a novel complication of hearing impairment. In addition, brain abnormalities, small feet, bilateral hip dislocation, hip dysplasia, overlapping toes, pectus excavatum, scoliosis and narrow chest were not observed in our patient. We also examined five different variations and their corresponding phenotypes from five patients, both in current and previous research. Although some clinical manifestations of trichohepatoneurodevelopmental syndrome were highly variable, the most common phenotypes observed in these patients include microcephaly, profound intellectual disability, severe global development delay, pronounced growth restriction, hypotonia, woolly hair, facial dysmorphism, respiratory and visual abnormalities, gastrointestinal abnormalities, liver dysfunction, pruritus, skeletal and limb abnormalities, congenital heart defects and immunodeficiency. The present report is the first of a Chinese infant with homozygous variant in the CCDC47 gene. We expanded the genetic and phenotypic spectrum associated with trichohepatoneurodevelopmental syndrome.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yeying Ling
- Department of Neonatal Intensive Care Unit, Neonatal Medical Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiuli Chen
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
4
|
Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 2022; 23:107-124. [PMID: 34556847 DOI: 10.1038/s41580-021-00413-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Gordon Center for Integrative Science, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Munteanu CVA, Chirițoiu GN, Chirițoiu M, Ghenea S, Petrescu AJ, Petrescu ȘM. Affinity proteomics and deglycoproteomics uncover novel EDEM2 endogenous substrates and an integrative ERAD network. Mol Cell Proteomics 2021; 20:100125. [PMID: 34332121 PMCID: PMC8455867 DOI: 10.1016/j.mcpro.2021.100125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/09/2021] [Accepted: 07/25/2021] [Indexed: 02/08/2023] Open
Abstract
Various pathologies result from disruptions to or stress of endoplasmic reticulum (ER) homeostasis, such as Parkinson's disease and most neurodegenerative illnesses, diabetes, pulmonary fibrosis, viral infections and cancers. A critical process in maintaining ER homeostasis is the selection of misfolded proteins by the ER quality-control system (ERQC) for destruction via ER-associated degradation (ERAD). One key protein proposed to act during the first steps of misfolded glycoprotein degradation is the ER degradation-enhancing α-mannosidase-like protein 2 (EDEM2). Therefore, characterization of the EDEM2 associated proteome is of great interest. We took advantage of using melanoma cells overexpressing EDEM2 as a cancer model system, to start documenting at the deglycoproteome level (N-glycosites identification) the emerging link between ER homeostasis and cancer progression. The dataset created for identifying the EDEM2 glyco-clients carrying high mannose/hybrid N-glycans provides a comprehensive N-glycosites analysis mapping over 1000 N-glycosites on more than 600 melanoma glycoproteins. To identify EDEM2-associated proteins we used affinity-proteomics and proteome-wide analysis of sucrose density fractionation in an integrative workflow. Using intensity and spectral count-based quantification, we identify seven new EDEM2 partners, all of which are involved in ERQC and ERAD. Moreover, we defined novel endogenous candidates for EDEM2-dependent ERAD by combining deglycoproteomics, SILAC-based proteomics, and biochemical methods. These included tumor antigens and several ER-transiting endogenous melanoma proteins, including ITGA1 and PCDH2, the expression of which was negatively correlated with that of EDEM2. Tumor antigens are key in the antigen presentation process, whilst ITGA1 and PCDH2 are involved in melanoma metastasis and invasion. EDEM2 could therefore have a regulatory role in melanoma through the modulation of these glycoproteins degradation and trafficking. The data presented herein suggest that EDEM2 is involved in ER homeostasis to a greater extent than previously suggested.
Collapse
Affiliation(s)
- Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Gabriela N Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Marioara Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania.
| |
Collapse
|
6
|
Priyanka PP, Yenugu S. Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiology. Reprod Sci 2021; 28:2725-2734. [PMID: 33942254 DOI: 10.1007/s43032-021-00595-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/10/2023]
Abstract
The coiled-coil domain-containing (CCDC) proteins have been implicated in a variety of physiological and pathological processes. Their functional roles vary from their interaction with molecular components of signaling pathways to determining the physiological functions at the cellular and organ level. Thus, they govern important functions like gametogenesis, embryonic development, hematopoiesis, angiogenesis, and ciliary development. Further, they are implicated in the pathogenesis of a large number of cancers. Polymorphisms in CCDC genes are associated with the risk of lifetime diseases. Because of their role in many biological processes, they have been extensively studied. This review concisely presents the functional role of CCDC proteins that have been studied in the last decade. Studies on CCDC proteins continue to be an active area of investigation because of their indispensable functions. However, there is ample opportunity to further understand the involvement of CCDC proteins in many more functions. It is anticipated that basing on the available literature, the functional role of CCDC proteins will be explored much further.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
7
|
Cremer T, Neefjes J, Berlin I. The journey of Ca 2+ through the cell - pulsing through the network of ER membrane contact sites. J Cell Sci 2020; 133:133/24/jcs249136. [PMID: 33376155 DOI: 10.1242/jcs.249136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcium is the third most abundant metal on earth, and the fundaments of its homeostasis date back to pre-eukaryotic life forms. In higher organisms, Ca2+ serves as a cofactor for a wide array of (enzymatic) interactions in diverse cellular contexts and constitutes the most important signaling entity in excitable cells. To enable responsive behavior, cytosolic Ca2+ concentrations are kept low through sequestration into organellar stores, particularly the endoplasmic reticulum (ER), but also mitochondria and lysosomes. Specific triggers are then used to instigate a local release of Ca2+ on demand. Here, communication between organelles comes into play, which is accomplished through intimate yet dynamic contacts, termed membrane contact sites (MCSs). The field of MCS biology in relation to cellular Ca2+ homeostasis has exploded in recent years. Taking advantage of this new wealth of knowledge, in this Review, we invite the reader on a journey of Ca2+ flux through the ER and its associated MCSs. New mechanistic insights and technological advances inform the narrative on Ca2+ acquisition and mobilization at these sites of communication between organelles, and guide the discussion of their consequences for cellular physiology.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
8
|
McGilvray PT, Anghel SA, Sundaram A, Zhong F, Trnka MJ, Fuller JR, Hu H, Burlingame AL, Keenan RJ. An ER translocon for multi-pass membrane protein biogenesis. eLife 2020; 9:e56889. [PMID: 32820719 PMCID: PMC7505659 DOI: 10.7554/elife.56889] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
Membrane proteins with multiple transmembrane domains play critical roles in cell physiology, but little is known about the machinery coordinating their biogenesis at the endoplasmic reticulum. Here we describe a ~ 360 kDa ribosome-associated complex comprising the core Sec61 channel and five accessory factors: TMCO1, CCDC47 and the Nicalin-TMEM147-NOMO complex. Cryo-electron microscopy reveals a large assembly at the ribosome exit tunnel organized around a central membrane cavity. Similar to protein-conducting channels that facilitate movement of transmembrane segments, cytosolic and luminal funnels in TMCO1 and TMEM147, respectively, suggest routes into the central membrane cavity. High-throughput mRNA sequencing shows selective translocon engagement with hundreds of different multi-pass membrane proteins. Consistent with a role in multi-pass membrane protein biogenesis, cells lacking different accessory components show reduced levels of one such client, the glutamate transporter EAAT1. These results identify a new human translocon and provide a molecular framework for understanding its role in multi-pass membrane protein biogenesis.
Collapse
Affiliation(s)
- Philip T McGilvray
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - S Andrei Anghel
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Arunkumar Sundaram
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Frank Zhong
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - James R Fuller
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Hong Hu
- Center for Research Informatics, The University of ChicagoChicagoUnited States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| |
Collapse
|
9
|
Chitwood PJ, Hegde RS. An intramembrane chaperone complex facilitates membrane protein biogenesis. Nature 2020; 584:630-634. [PMID: 32814900 DOI: 10.1038/s41586-020-2624-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
Integral membrane proteins are encoded by approximately 25% of all protein-coding genes1. In eukaryotes, the majority of membrane proteins are inserted, modified and folded at the endoplasmic reticulum (ER)2. Research over the past several decades has determined how membrane proteins are targeted to the ER and how individual transmembrane domains (TMDs) are inserted into the lipid bilayer3. By contrast, very little is known about how multi-spanning membrane proteins with several TMDs are assembled within the membrane. During the assembly of TMDs, interactions between polar or charged amino acids typically stabilize the final folded configuration4-8. TMDs with hydrophilic amino acids are likely to be chaperoned during the co-translational biogenesis of membrane proteins; however, ER-resident intramembrane chaperones are poorly defined. Here we identify the PAT complex, an abundant obligate heterodimer of the widely conserved ER-resident membrane proteins CCDC47 and Asterix. The PAT complex engages nascent TMDs that contain unshielded hydrophilic side chains within the lipid bilayer, and it disengages concomitant with substrate folding. Cells that lack either subunit of the PAT complex show reduced biogenesis of numerous multi-spanning membrane proteins. Thus, the PAT complex is an intramembrane chaperone that protects TMDs during assembly to minimize misfolding of multi-spanning membrane proteins and maintain cellular protein homeostasis.
Collapse
|
10
|
Morimoto M, Waller-Evans H, Ammous Z, Song X, Strauss KA, Pehlivan D, Gonzaga-Jauregui C, Puffenberger EG, Holst CR, Karaca E, Brigatti KW, Maguire E, Coban-Akdemir ZH, Amagata A, Lau CC, Chepa-Lotrea X, Macnamara E, Tos T, Isikay S, Nehrebecky M, Overton JD, Klein M, Markello TC, Posey JE, Adams DR, Lloyd-Evans E, Lupski JR, Gahl WA, Malicdan MCV. Bi-allelic CCDC47 Variants Cause a Disorder Characterized by Woolly Hair, Liver Dysfunction, Dysmorphic Features, and Global Developmental Delay. Am J Hum Genet 2018; 103:794-807. [PMID: 30401460 PMCID: PMC6218603 DOI: 10.1016/j.ajhg.2018.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023] Open
Abstract
Ca2+ signaling is vital for various cellular processes including synaptic vesicle exocytosis, muscle contraction, regulation of secretion, gene transcription, and cellular proliferation. The endoplasmic reticulum (ER) is the largest intracellular Ca2+ store, and dysregulation of ER Ca2+ signaling and homeostasis contributes to the pathogenesis of various complex disorders and Mendelian disease traits. We describe four unrelated individuals with a complex multisystem disorder characterized by woolly hair, liver dysfunction, pruritus, dysmorphic features, hypotonia, and global developmental delay. Through whole-exome sequencing and family-based genomics, we identified bi-allelic variants in CCDC47 that encodes the Ca2+-binding ER transmembrane protein CCDC47. CCDC47, also known as calumin, has been shown to bind Ca2+ with low affinity and high capacity. In mice, loss of Ccdc47 leads to embryonic lethality, suggesting that Ccdc47 is essential for early development. Characterization of cells from individuals with predicted likely damaging alleles showed decreased CCDC47 mRNA expression and protein levels. In vitro cellular experiments showed decreased total ER Ca2+ storage, impaired Ca2+ signaling mediated by the IP3R Ca2+ release channel, and reduced ER Ca2+ refilling via store-operated Ca2+ entry. These results, together with the previously described role of CCDC47 in Ca2+ signaling and development, suggest that bi-allelic loss-of-function variants in CCDC47 underlie the pathogenesis of this multisystem disorder.
Collapse
Affiliation(s)
- Marie Morimoto
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Zineb Ammous
- The Community Health Clinic, Topeka, IN 46571, USA
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Charles R Holst
- BioElectron Technology Corporation, Mountain View, CA 94043, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Emily Maguire
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Zeynep H Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akiko Amagata
- BioElectron Technology Corporation, Mountain View, CA 94043, USA
| | - C Christopher Lau
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xenia Chepa-Lotrea
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen Macnamara
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tulay Tos
- Department of Medical Genetics, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases, Ankara 06080, Turkey
| | - Sedat Isikay
- Department of Physiotherapy and Rehabilitation, Hasan Kalyoncu University, School of Health Sciences, Gaziantep 27000, Turkey
| | - Michele Nehrebecky
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - John D Overton
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Matthew Klein
- BioElectron Technology Corporation, Mountain View, CA 94043, USA
| | - Thomas C Markello
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Adams
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - William A Gahl
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - May Christine V Malicdan
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Wu WS, Zhu L, Patil S, Gokul K, Reilly S, Chan J, Tekumalla P, Vishnudas V, Kiebish MA, Sarangarajan R, Akmaev VR, Kellogg MD, Narain NR. Human CCDC47 sandwich immunoassay development with electrochemiluminescence technology. J Immunol Methods 2017; 452:12-19. [PMID: 28974366 DOI: 10.1016/j.jim.2017.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 11/26/2022]
Abstract
Coiled-Coil Domain Containing 47 (CCDC47) is an endoplasmic reticulum (ER) transmembrane protein involved in calcium signaling through utilization of its calcium binding-acidic luminal domain. CCDC47 also interacts with ERAD (endoplasmic reticulum-associated degradation) complex and is involved in ER stress relief. In this report, we developed human CCDC47 monoclonal antibodies and a sandwich immunoassay for CCDC47 measurement in biological matrices. Specificity of developed antibodies were confirmed by immunoblot and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated cell lysates. To achieve high analytical sensitivity, traditional colorimetric enzyme-linked immunosorbent assay (ELISA) and electrochemiluminescence (ECL) technology were compared, and 3 logs of increased sensitivity was observed with the use of ECL. A CCDC47 sandwich ECL assay was subsequently developed and performances evaluated for calibration curves, precision and accuracy, as well as selectivity and interferences for sample measurement. Sample stability was also characterized for freeze/thaw cycles and short/long term storage conditions.
Collapse
Affiliation(s)
- Wenfang S Wu
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA; Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Liang Zhu
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Saurabh Patil
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Karthiga Gokul
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Sean Reilly
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Joyce Chan
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | | | - Vivek Vishnudas
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | | | | | | | - Mark D Kellogg
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA; Department of Pathology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Niven R Narain
- BERG, LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| |
Collapse
|
12
|
Yamashita A, Hiraki Y, Yamazaki T. Identification of CLN6 as a molecular entity of endoplasmic reticulum-driven anti-aggregate activity. Biochem Biophys Res Commun 2017; 487:917-922. [DOI: 10.1016/j.bbrc.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
|
13
|
Yamamoto S, Yamashita A, Arakaki N, Nemoto H, Yamazaki T. Prevention of aberrant protein aggregation by anchoring the molecular chaperone αB-crystallin to the endoplasmic reticulum. Biochem Biophys Res Commun 2014; 455:241-5. [DOI: 10.1016/j.bbrc.2014.10.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 10/30/2014] [Indexed: 01/06/2023]
|