1
|
Lysenkov SP, Muzhenya DV, Tuguz AR, Urakova TU, Shumilov DS, Thakushinov IA, Thakushinov RA, Tatarkova EA, Urakova DM. Cholinergic deficiency in the cholinergic system as a pathogenetic link in the formation of various syndromes in COVID-19. CHINESE J PHYSIOL 2023; 66:1-13. [PMID: 36814151 DOI: 10.4103/cjop.cjop-d-22-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
According to recent data, several mechanisms of viral invasion of the central nervous system (CNS) have been proposed, one of which is both direct penetration of the virus through afferent nerve fibers and damage to the endothelium of cerebral vessels. It has been proven that the SARS-CoV-2 virus affects pathologically not only the human cardiorespiratory system but is also associated with a wide range of neurological diseases, cerebrovascular accidents, and neuromuscular pathologies. However, the observed post-COVID symptom complex in patients, manifested in the form of headache, "fog in the head," high temperature, muscle weakness, lowering blood pressure, does it make us think about the pathophysiological mechanisms that contribute to the development of this clinical picture? One possible explanation is a disruption in the signaling of the acetylcholine system (AChS) in the body. Viral invasions, and in particular COVID-19, can negatively affect the work of the AChS, disrupting its coordination activities. Therefore, the main goal of this literature review is to analyze the information and substantiate the possible mechanisms for the occurrence of post-COVID syndrome in people who have had COVID-19 from the standpoint of AChS dysfunctions.
Collapse
Affiliation(s)
- Sergey Petrovich Lysenkov
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| | | | - Aminat Ramazanovna Tuguz
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | - Tamara Ur'evna Urakova
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| | - Dmitriy Sergeevich Shumilov
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | | | | | - Elena Anatolevna Tatarkova
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | - Diana Muratovna Urakova
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| |
Collapse
|
2
|
Deconstruction of Neurotrypsin Reveals a Multi-factorially Regulated Activity Affecting Myotube Formation and Neuronal Excitability. Mol Neurobiol 2022; 59:7466-7485. [PMID: 36197591 PMCID: PMC9616769 DOI: 10.1007/s12035-022-03056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Neurotrypsin (NT) is a highly specific nervous system multi-domain serine protease best known for its selective processing of the potent synaptic organizer agrin. Its enzymatic activity is thought to influence processes of synaptic plasticity, with its deregulation causing accelerated neuromuscular junction (NMJ) degeneration or contributing to forms of mental retardation. These biological effects are likely to stem from NT-based regulation of agrin signaling. However, dissecting the exact biological implications of NT-agrin interplay is difficult, due to the scarce molecular detail regarding NT activity and NT-agrin interactions. We developed a strategy to reliably produce and purify a catalytically competent engineered variant of NT called "NT-mini" and a library of C-terminal agrin fragments, with which we performed a thorough biochemical and biophysical characterization of NT enzyme functionality. We studied the regulatory effects of calcium ions and heparin, identified NT's heparin-binding domain, and discovered how zinc ions induce modulation of enzymatic activity. Additionally, we investigated myotube differentiation and hippocampal neuron excitability, evidencing a dose-dependent increase in neuronal activity alongside a negative impact on myoblast fusion when using the active NT enzyme. Collectively, our results provide in vitro and cellular foundations to unravel the molecular underpinnings and biological significance of NT-agrin interactions.
Collapse
|
3
|
Gemza A, Barresi C, Proemer J, Hatami J, Lazaridis M, Herbst R. Internalization of Muscle-Specific Kinase Is Increased by Agrin and Independent of Kinase-Activity, Lrp4 and Dynamin. Front Mol Neurosci 2022; 15:780659. [PMID: 35370548 PMCID: PMC8965242 DOI: 10.3389/fnmol.2022.780659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase absolutely required for neuromuscular junction formation. MuSK is activated by binding of motor neuron-derived Agrin to low-density lipoprotein receptor related protein 4 (Lrp4), which forms a complex with MuSK. MuSK activation and downstream signaling are critical events during the development of the neuromuscular junction. Receptor tyrosine kinases are commonly internalized upon ligand binding and crosstalk between endocytosis and signaling has been implicated. To extend our knowledge about endocytosis of synaptic proteins and its role during postsynaptic differentiation at the neuromuscular junction, we studied the stability and internalization of Lrp4, MuSK and acetylcholine receptors (AChRs) in response to Agrin. We provide evidence that MuSK but not Lrp4 internalization is increased by Agrin stimulation. MuSK kinase-activity is not sufficient to induce MuSK internalization and the absence of Lrp4 has no effect on MuSK endocytosis. Moreover, MuSK internalization and signaling are unaffected by the inhibition of Dynamin suggesting that MuSK endocytosis uses a non-conventional pathway and is not required for MuSK-dependent downstream signaling.
Collapse
Affiliation(s)
- Anna Gemza
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jakob Proemer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Hatami
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarita Lazaridis
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Martinez-Pena y Valenzuela I, Akaaboune M. The Metabolic Stability of the Nicotinic Acetylcholine Receptor at the Neuromuscular Junction. Cells 2021; 10:cells10020358. [PMID: 33572348 PMCID: PMC7916148 DOI: 10.3390/cells10020358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
The clustering and maintenance of nicotinic acetylcholine receptors (AChRs) at high density in the postsynaptic membrane is a hallmark of the mammalian neuromuscular junction (NMJ). The regulation of receptor density/turnover rate at synapses is one of the main thrusts of neurobiology because it plays an important role in synaptic development and synaptic plasticity. The state-of-the-art imaging revealed that AChRs are highly dynamic despite the overall structural stability of the NMJ over the lifetime of the animal. This review highlights the work on the metabolic stability of AChRs at developing and mature NMJs and discusses the role of synaptic activity and the regulatory signaling pathways involved in the dynamics of AChRs.
Collapse
Affiliation(s)
| | - Mohammed Akaaboune
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
- Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-73-(46)-478512; Fax: +1-73-(46)-470884
| |
Collapse
|
5
|
Yu Z, Zhang M, Luo B, Jing H, Yu Y, Wang S, Luo S. Lrp4 in hippocampal astrocytes serves as a negative feedback factor in seizures. Cell Biosci 2020; 10:135. [PMID: 33292473 PMCID: PMC7684739 DOI: 10.1186/s13578-020-00498-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epilepsy is characterized by the typical symptom of seizure, and anti-seizure medications are the main therapeutic method in clinical, but the effects of these therapy have not been satisfactory. To find a better treatment, it makes sense to further explore the regulatory mechanisms of seizures at genetic level. Lrp4 regionally expresses in mice hippocampus where is key to limbic epileptogenesis. It is well known that neurons release a high level of glutamate during seizures, and it has been reported that Lrp4 in astrocytes down-regulates glutamate released from neurons. However, it is still unclear whether there is a relationship between Lrp4 expression level and seizures, and whether Lrp4 plays a role in seizures. RESULTS We found that seizures induced by pilocarpine decreased Lrp4 expression level and increased miR-351-5p expression level in mice hippocampus. Glutamate reduced Lrp4 expression and enhanced miR-351-5p expression in cultured hippocampal astrocytes, and these effects can be partially attenuated by AP5. Furthermore, miR-351-5p inhibitor lessened the reduction of Lrp4 expression in glutamate treated hippocampal astrocytes. Local reduction of Lrp4 in hippocampus by sh Lrp4 lentivirus injection in hippocampus increased the threshold of seizures in pilocarpine or pentylenetetrazol (PTZ) injected mice. CONCLUSIONS These results indicated that high released glutamate induced by seizures down-regulated astrocytic Lrp4 through increasing miR-351-5p in hippocampal astrocytes via activating astrocytic NMDA receptor, and locally reduction of Lrp4 in hippocampus increased the threshold of seizures. Lrp4 in hippocampal astrocytes appears to serve as a negative feedback factor in seizures. This provides a new potential therapeutic target for seizures regulation.
Collapse
Affiliation(s)
- Zheng Yu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Meiying Zhang
- Nanchang University Hospital, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bin Luo
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hongyang Jing
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yue Yu
- Teensen Genesis School, Nanchang, 330006, Jiangxi, China
| | - Shunqi Wang
- Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghuo Distinct, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Multiple MuSK signaling pathways and the aging neuromuscular junction. Neurosci Lett 2020; 731:135014. [PMID: 32353380 DOI: 10.1016/j.neulet.2020.135014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
The neuromuscular junction (NMJ) is the vehicle for fast, reliable and robust communication between motor neuron and muscle. The unparalleled accessibility of this synapse to morphological, electrophysiological and genetic analysis has yielded an in depth understanding of many molecular components mediating its formation, maturation and stability. However, key questions surrounding the signaling pathways mediating these events and how they play out across the lifetime of the synapse remain unanswered. Such information is critical since the NMJ is necessary for normal movement and is compromised in several settings including myasthenia gravis, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), muscular dystrophy, sarcopenia and aging. Muscle specific kinase (MuSK) is a central player in most if not all contexts of NMJ formation and stability. However, elucidating the function of this receptor in this range of settings is challenging since MuSK participates in at least three signaling pathways: as a tyrosine kinase-dependent receptor for agrin-LRP4 and Wnts; and, as a kinase-independent BMP co-receptor. Here we focus on NMJ stability during aging and discuss open questions regarding the molecular mechanisms that govern active maintenance of the NMJ, with emphasis on MuSK and the potential role of its multiple signaling contexts.
Collapse
|
7
|
Rudolf R, Straka T. Nicotinic acetylcholine receptor at vertebrate motor endplates: Endocytosis, recycling, and degradation. Neurosci Lett 2019; 711:134434. [PMID: 31421156 DOI: 10.1016/j.neulet.2019.134434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022]
Abstract
At vertebrate motor endplates, the conversion of nerve impulses into muscle contraction is initiated by binding of acetylcholine to its nicotinic receptor (nAChR) at the postsynapse. Efficiency and safety of this process are dependent on proper localization, density, and molecular composition of the receptors. To warrant this, intricate machineries regulating the turnover of nAChR are in place. They control and execute the processes of i) expression, ii) delivery to the postsynaptic membrane, iii) clustering at the plasma membrane, iv) endocytic retrieval, v) activity-dependent recycling, and vi) degradation of nAChR. Concentrating on aspects iv-vi, this review addresses the current status of techniques, concepts, and open questions on endocytosis, recycling, and degradation of nAChR. A picture is emerging, that shows connections between executing machineries and their regulators. The first group includes the actin cytoskeleton, myosin motor proteins, Rab G-proteins, and the autophagic cascade. The second group features protein kinases A and C, Cdk5, and CaMKII as well as other components like the E3-ligase MuRF1 and the membrane shaping regulator, SH3GLB1. Recent studies have started to shed light onto nerve inputs that appear to master the tuning of the postsynaptic protein trafficking apparatus and the expression of critical components for nAChR turnover.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Alleviating Sepsis-Induced Neuromuscular Dysfunction Linked With Acetylcholine Receptors by Agrin. J Surg Res 2019; 241:308-316. [PMID: 31055156 DOI: 10.1016/j.jss.2019.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/22/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Abnormal expression and distribution of nicotinic acetylcholine receptors (nAChRs) in skeletal muscle caused by sepsis can lead to neuromuscular dysfunction. Here, we asked whether neural agrin regulates nAChRs to ameliorate muscle function, which could be associated with the agrin/muscle-specific kinase pathway. METHODS Rats were subjected to cecal ligation and puncture (CLP) group, sham group, or control group to observe the alteration caused by sepsis. To verify the effect of improving function, rats were injected with agrin or normal saline intramuscularly after CLP. Electromyogram was used to measure neuromuscular function. Cytokines levels of serum and the expression of related proteins and mRNA were tested after treatment. RESULTS Compared with the rats in control or sham group, CLP-treated rats showed an acute inflammatory status and a reduction of neuromuscular dysfunction in tibialis anterior muscle, which was associated with abnormal expression in agrin/muscle-specific kinase pathway and increased expression of γ- and α7-nAChR. Exogenous agrin alleviated neuromuscular dysfunction and decreased the expression of γ- and α7-nAChR through agrin-related signaling pathway. CONCLUSIONS The decreased expression of agrin may lead to skeletal muscle dysfunction. Early enhancement of intramuscular agrin levels after sepsis may be a potential strategy for the treatment of sepsis-induced muscle dysfunction.
Collapse
|
9
|
Affiliation(s)
- Lei Li
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| | - Lin Mei
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
10
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
11
|
Abstract
The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms.
Collapse
|