1
|
Moescheid MF, Lu Z, Soria CD, Quack T, Puckelwaldt O, Holroyd N, Holzaepfel P, Haeberlein S, Rinaldi G, Berriman M, Grevelding CG. The retinoic acid family-like nuclear receptor SmRAR identified by single-cell transcriptomics of ovarian cells controls oocyte differentiation in Schistosoma mansoni. Nucleic Acids Res 2025; 53:gkae1228. [PMID: 39676663 PMCID: PMC11879061 DOI: 10.1093/nar/gkae1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Studies on transcription regulation in platyhelminth development are scarce, especially for parasitic flatworms. Here, we employed single-cell transcriptomics to identify genes involved in reproductive development in the trematode model Schistosoma mansoni. This parasite causes schistosomiasis, a major neglected infectious disease affecting >240 million people worldwide. The pathology of schistosomiasis is closely associated with schistosome eggs deposited in host organs including the liver. Unlike other trematodes, schistosomes exhibit distinct sexes, with egg production reliant on the pairing-dependent maturation of female reproductive organs. Despite this significance, the molecular mechanisms underlying ovary development and oocyte differentiation remain largely unexplored. Utilizing an organ isolation approach for S. mansoni, we extracted ovaries of paired females followed by single-cell RNA sequencing (RNA-seq) with disassociated oocytes. A total of 1967 oocytes expressing 7872 genes passed quality control (QC) filtering. Unsupervised clustering revealed four distinct cell clusters: somatic, germ cells and progeny, intermediate and late germ cells. Among distinct marker genes for each cluster, we identified a hitherto uncharacterized transcription factor of the retinoic acid receptor family, SmRAR. Functional analyses of SmRAR and associated genes like Smmeiob (meiosis-specific, oligonucleotide/oligosaccharide binding motif (OB) domain-containing) demonstrated their pairing-dependent and ovary-preferential expression and their decisive roles in oocyte differentiation of S. mansoni.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Carmen Diaz Soria
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Thomas Quack
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Pauline Holzaepfel
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Christoph G Grevelding
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
2
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Wu W, LoVerde PT. Updated knowledge and a proposed nomenclature for nuclear receptors with two DNA binding domains (2DBD-NRs). PLoS One 2023; 18:e0286107. [PMID: 37699039 PMCID: PMC10497141 DOI: 10.1371/journal.pone.0286107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023] Open
Abstract
Nuclear receptors (NRs) are important transcriptional modulators in metazoans. Typical NRs possess a conserved DNA binding domain (DBD) and a ligand binding domain (LBD). Since we discovered a type of novel NRs each of them has two DBDs and single LBD (2DBD-NRs) more than decade ago, there has been very few studies about 2DBD-NRs. Recently, 2DBD-NRs have been only reported in Platyhelminths and Mollusca and are thought to be specific NRs to lophotrochozoan. In this study, we searched different databases and identified 2DBD-NRs in different animals from both protostomes and deuterostomes. Phylogenetic analysis shows that at least two ancient 2DBD-NR genes were present in the urbilaterian, a common ancestor of protostomes and deuterostomes. 2DBD-NRs underwent gene duplication and loss after the split of different animal phyla, most of them in a certain animal phylum are paralogues, rather than orthologues, like in other animal phyla. Amino acid sequence analysis shows that the conserved motifs in typical NRs are also present in 2DBD-NRs and they are gene specific. From our phylogenetic analysis of 2DBD-NRs and following the rule of Nomenclature System for the Nuclear Receptors, a nomenclature for 2DBD-NRs is proposed.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Structural Biology University of Texas Health, San Antonio, Texas, United States of America
| | - Philip T. LoVerde
- Departments of Biochemistry and Structural Biology University of Texas Health, San Antonio, Texas, United States of America
| |
Collapse
|
4
|
Planarians to schistosomes: an overview of flatworm cell-types and regulators. J Helminthol 2023; 97:e7. [PMID: 36644809 DOI: 10.1017/s0022149x22000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis remains a major neglected tropical disease that afflicts over 200 million people globally. Schistosomes, the aetiological agent of schistosomiasis, are parasitic flatworms that propagate between molluscan and mammalian hosts. Inside the mammalian host, schistosomes rapidly grow over 100-fold in size and develop into a sexually mature male or female that thrives in the bloodstream for several decades. Recent work has identified schistosome stem cells as the source that drives parasite transmission, reproduction and longevity. Moreover, studies have begun to uncover molecular programmes deployed by stem cells that are essential for tissue development and maintenance, parasite survival and immune evasion. Such programmes are reminiscent of neoblast-driven development and regeneration of planarians, the free-living flatworm relative of schistosomes. Over the last few decades, research in planarians has employed modern functional genomic tools that significantly enhanced our understanding of stem cell-driven animal development and regeneration. In this review, we take a broad stroke overview of major flatworm organ systems at the cellular and molecular levels. We summarize recent advances on genetic regulators that play critical roles in differentiation and maintenance of flatworm cell types. Finally, we provide perspectives on how investigation of basic parasite biology is critical to discovering new approaches to battle schistosomiasis.
Collapse
|
5
|
Guo L, Bloom JS, Dols-Serrate D, Boocock J, Ben-David E, Schubert OT, Kozuma K, Ho K, Warda E, Chui C, Wei Y, Leighton D, Lemus Vergara T, Riutort M, Sánchez Alvarado A, Kruglyak L. Island-specific evolution of a sex-primed autosome in a sexual planarian. Nature 2022; 606:329-334. [PMID: 35650439 PMCID: PMC9177419 DOI: 10.1038/s41586-022-04757-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/12/2022] [Indexed: 12/26/2022]
Abstract
The sexual strain of the planarian Schmidtea mediterranea, indigenous to Tunisia and several Mediterranean islands, is a hermaphrodite1,2. Here we isolate individual chromosomes and use sequencing, Hi-C3,4 and linkage mapping to assemble a chromosome-scale genome reference. The linkage map reveals an extremely low rate of recombination on chromosome 1. We confirm suppression of recombination on chromosome 1 by genotyping individual sperm cells and oocytes. We show that previously identified genomic regions that maintain heterozygosity even after prolonged inbreeding make up essentially all of chromosome 1. Genome sequencing of individuals isolated in the wild indicates that this phenomenon has evolved specifically in populations from Sardinia and Corsica. We find that most known master regulators5-13 of the reproductive system are located on chromosome 1. We used RNA interference14,15 to knock down a gene with haplotype-biased expression, which led to the formation of a more pronounced female mating organ. On the basis of these observations, we propose that chromosome 1 is a sex-primed autosome primed for evolution into a sex chromosome.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Joshua S Bloom
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Daniel Dols-Serrate
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - James Boocock
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Eyal Ben-David
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Olga T Schubert
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kaiya Kozuma
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katarina Ho
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily Warda
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Clarice Chui
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yubao Wei
- Institute of Reproductive Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Daniel Leighton
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tzitziki Lemus Vergara
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez Alvarado
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Leonid Kruglyak
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Kitamura M, Tanaka H, Horiguchi Y, Manta S, Saito I, Iwaya H, Okamoto H, Nagao N, Yanagihara Y, Taguchi Y, Tezuka R, Maezawa T, Sekii K, Kobayashi K. Sex-Inducing Activities of the Land Planarian Bipalium nobile Extract Fractions, Obtained Using Bioassay-Guided Fractionation, in the Freshwater Planarian Dugesia ryukyuensis. Zoolog Sci 2021; 38:544-557. [PMID: 34854286 DOI: 10.2108/zs210029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
Sexually mature planarians produce sex-inducing substances that induce postembryonic development of hermaphroditic reproductive organs in asexual freshwater planarians. Although the sex-inducing substances may be useful for elucidating the mechanism underlying this reproductive switch, the available information is limited. The potency of sex-inducing activity is conserved, at least at the order level. Recently, we showed that the sex-inducing activity in the land planarian Bipalium nobile was much higher than that in freshwater planarians. In the present study, we performed bioassay-guided fractionation of the sex-inducing substances produced by B. nobile and propose that crucial sex-inducing activity that triggers complete sexualization for asexual worms of the freshwater planarian Dugesia ryukyuensis is produced by additive and/or synergetic effects of various sex-inducing substances involved in ovarian development. The current study provided an isolation scheme for the minimum-required combination of sex-inducing substances for producing crucial sex-inducing activity.
Collapse
Affiliation(s)
- Makoto Kitamura
- Center for Integrated Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroyuki Tanaka
- Department of Business Communication, Shiga Junior College, Otsu, Shiga 520-0803, Japan
| | - Yurie Horiguchi
- Center for Integrated Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sayaka Manta
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Ikuma Saito
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Hisashi Iwaya
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Hikaru Okamoto
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Nanna Nagao
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yumi Yanagihara
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yu Taguchi
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Rei Tezuka
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Takanobu Maezawa
- Advanced Science Course, Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Tsuyama, Okayama 708-8509, Japan
| | - Kiyono Sekii
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Kazuya Kobayashi
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan,
| |
Collapse
|
7
|
Kuehn E, Clausen DS, Null RW, Metzger BM, Willis AD, Özpolat BD. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:225-240. [PMID: 34793615 PMCID: PMC9114164 DOI: 10.1002/jez.b.23100] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 02/03/2023]
Abstract
Development of sexual characters and generation of gametes are tightly coupled with growth. Platynereis dumerilii is a marine annelid that has been used to study germline development and gametogenesis. P. dumerilii has germ cell clusters found across the body in the juvenile worms, and the clusters eventually form the gametes. Like other segmented worms, P. dumerilii grows by adding new segments at its posterior end. The number of segments reflect the growth state of the worms and therefore is a useful and measurable growth state metric to study the growth‐reproduction crosstalk. To understand how growth correlates with progression of gametogenesis, we investigated germline development across several developmental stages. We discovered a distinct transition period when worms increase the number of germline clusters at a particular segment number threshold. Additionally, we found that keeping worms short in segment number, by manipulating environmental conditions or via amputations, supported a segment number threshold requirement for germline development. Finally, we asked if these clusters in P. dumerilii play a role in regeneration (as similar free‐roaming cells are observed in Hydra and planarian regeneration) and found that the clusters were not required for regeneration in P. dumerilii, suggesting a strictly germline nature. Overall, these molecular analyses suggest a previously unidentified developmental transition dependent on the growth state of juvenile P. dumerilii leading to substantially increased germline expansion. Total segment number predicts the state of germline development and the abundance of germline clusters in Platynereis dumerilii. Changing environmental conditions or amputating worms do not alter the segment number threshold requirement for germline development. The vasa‐expressing germ clusters are not required for regeneration in Platynereis dumerilii.
Collapse
Affiliation(s)
- Emily Kuehn
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.,Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - David S Clausen
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Ryan W Null
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Bria M Metzger
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - B Duygu Özpolat
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
8
|
Wu W, LoVerde PT. Nuclear hormone receptors in parasitic Platyhelminths. Mol Biochem Parasitol 2019; 233:111218. [PMID: 31470045 DOI: 10.1016/j.molbiopara.2019.111218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/16/2022]
Abstract
Nuclear receptors (NRs) belong to a large protein superfamily which includes intracellular receptors for secreted hydrophobic signal molecules, such as steroid hormones and thyroid hormones. They regulate development and reproduction in metazoans by binding to the promoter region of their target gene to activate or repress mRNA synthesis. Isolation and characterization of NRs in the parasitic trematode Schistosoma mansoni identified two homologues of mammalian thyroid receptor (TR). This was the first known protostome exhibiting TR homologues. Three novel NRs each possess a novel set of two DNA binding domains (DBD) in tandem with a ligand binding domain (LBD) (2DBD-NRs) isolated in Schistosoma mansoni revealed a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. Full length cDNA of several NRs have been isolated and studied in the parasitic trematodes S. mansoni, S. japonicum and in the cestode Echinococcus multilocularis. The genome of the blood flukes S. mansoni, S. japonicum and S. haematobium, the liver fluke Clonorchis sinensis and the cestode Echinococcus multilocularis have been sequenced. Study of the NR complement in parasitic Platyhelminths will help us to understand the role of NRs in regulation of their development and understand the evolution of NR in animals.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, TX, 78229-3800, USA
| | - Philip T LoVerde
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, TX, 78229-3800, USA.
| |
Collapse
|
9
|
Issigonis M, Newmark PA. From worm to germ: Germ cell development and regeneration in planarians. Curr Top Dev Biol 2019; 135:127-153. [DOI: 10.1016/bs.ctdb.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Wang Z, Schaffer NE, Kliewer SA, Mangelsdorf DJ. Nuclear receptors: emerging drug targets for parasitic diseases. J Clin Invest 2017; 127:1165-1171. [PMID: 28165341 PMCID: PMC5373876 DOI: 10.1172/jci88890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Parasitic worms infect billions of people worldwide. Current treatments rely on a small group of drugs that have been used for decades. A shortcoming of these drugs is their inability to target the intractable infectious stage of the parasite. As well-known therapeutic targets in mammals, nuclear receptors have begun to be studied in parasitic worms, where they are widely distributed and play key roles in governing metabolic and developmental transcriptional networks. One such nuclear receptor is DAF-12, which is required for normal nematode development, including the all-important infectious stage. Here we review the emerging literature that implicates DAF-12 and potentially other nuclear receptors as novel anthelmintic targets.
Collapse
Affiliation(s)
| | | | | | - David J. Mangelsdorf
- Department of Pharmacology
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Dong XL, Liu TH, Wang W, Pan CX, Du GY, Wu YF, Pan MH, Lu C. BmNHR96 participate BV entry of BmN-SWU1 cells via affecting the cellular cholesterol level. Biochem Biophys Res Commun 2017; 482:1484-1490. [DOI: 10.1016/j.bbrc.2016.12.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
12
|
Saberi A, Jamal A, Beets I, Schoofs L, Newmark PA. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians. PLoS Biol 2016; 14:e1002457. [PMID: 27163480 PMCID: PMC4862687 DOI: 10.1371/journal.pbio.1002457] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/11/2016] [Indexed: 11/21/2022] Open
Abstract
Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development. Genome-wide analysis of the planarian Schmidtea mediterranea reveals a complement of over 550 G protein-coupled receptors, including two with critical roles in germline development. G protein-coupled receptors (GPCRs) are the largest and most versatile family of cell-surface receptors. They play critical roles in various cellular and physiological systems and have emerged as a leading group of therapeutic targets. Due to their structural and functional conservation across animals, much has been learned about GPCRs from studies in laboratory models. Here, we performed genome-wide receptor mining to identify and categorize the complement of GPCR-encoding genes in the planarian Schmidtea mediterranea, an emerging model organism for regeneration and germ cell biology. We then conducted two studies implicating planarian GPCRs in the regulation of reproductive function. First, we found the receptor component of a central neuropeptide Y signaling pathway and demonstrated its involvement in the systemic control of reproductive development. Next, we showed that a novel chemoreceptor family member is expressed in somatic cells of the planarian gonads and directs germ cell maturation via the niche. We predict that future studies on the hundreds of other planarian GPCRs identified in this work will not only help us understand the conserved role of these receptors in various physiological pathways but also pave the way for identification of novel therapeutic targets in parasitic relatives of the planarian.
Collapse
Affiliation(s)
- Amir Saberi
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ayana Jamal
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Isabel Beets
- Department of Biology, Functional Genomics and Proteomics Unit, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics Unit, KU Leuven, Leuven, Belgium
| | - Phillip A. Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|