1
|
Al-Abbasi Z, Bhuiyan SA, Renthal W, Molliver DC. A Transcriptomic Comparison of the HD10.6 Human Sensory Neuron-Derived Cell Line with Primary and iPSC Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.643725. [PMID: 40236231 PMCID: PMC11996562 DOI: 10.1101/2025.04.03.643725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A key concern in early-stage analgesic discovery efforts is the extent to which mechanisms identified in rodents will translate to humans. To evaluate an alternative approach to the use of rodent dissociated DRG neurons for in vitro analyses of nociceptive signaling, we performed a transcriptomic analysis of the HD10.6 human dorsal root ganglion (DRG)-derived immortalized cell line. We conducted RNA-seq on proliferating and mature HD10.6 cells to characterize transcriptional changes associated with maturation. We then compared the transcriptomes of HD10.6 cells and several recently developed lines of human induced pluripotent stem cell-derived sensory neurons (iPSC-SN) to single-nucleus RNA-seq data from human DRGs. HD10.6 cells showed the highest correlation with 3 human sensory neuron subtypes associated with nociception and pruriception. Each of the iPSC-SN lines evaluated showed a distinct pattern of correlation with human sensory neuron subtypes. We identified G protein-coupled receptors (GPCRs) and ion channels that are expressed in both HD10.6 cells and human DRG neurons, as well as numerous genes that are expressed in human DRG but not in rodent, underscoring the need for human sensory neuron in vitro models. Proof-of-concept evaluations of protein kinase A, protein kinase C and Erk signaling provide examples of scalable assays using HD10.6 cells to investigate well-established GPCR signaling pathways. We conclude that HD10.6 cells provide a versatile model for exploring human neuronal signaling mechanisms.
Collapse
|
2
|
Fernandez A, Sarn N, Eng C, Wright KM. Altered primary somatosensory neuron development in a Pten heterozygous model for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.04.552039. [PMID: 37781577 PMCID: PMC10541114 DOI: 10.1101/2023.08.04.552039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social interactions, repetitive behaviors, and hyper- or hyposensitivity to sensory stimuli. The mechanisms underlying the emergence of sensory features in ASD are not fully understood, but recent studies in rodent models highlight that these may result from differences in primary sensory neurons themselves. We examined sensory behaviors in a Pten haploinsufficient mouse model ( Pten Het ) for syndromic ASD and identified elevated responses to mechanical stimuli and a higher threshold to thermal responses. Transcriptomic and in vivo anatomical analysis identified alterations in subtype-specific markers of primary somatosensory neurons in Pten Het dorsal root ganglia (DRG). These defects emerge early during DRG development and involve dysregulation of multiple signaling pathways downstream of Pten . Finally, we show that mice harboring an ASD-associated mutation ( Pten Y69H ) also show altered expression of somatosensory neuron subtype-specific markers. Together, these results show that precise levels of Pten are required for proper somatosensory development and provide insight into the molecular and cellular basis of sensory abnormalities in a model for syndromic ASD.
Collapse
|
3
|
Taylor OB, El‐Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2025; 73:4-24. [PMID: 39448874 PMCID: PMC11660542 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
- Neuroscience Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
| | - Levi Todd
- Department of Ophthalmology and Visual SciencesSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andy J. Fischer
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
4
|
Li MY, Yang XL, Chung CC, Lai YJ, Tsai JC, Kuo YL, Yu JY, Wang TW. TRIP6 promotes neural stem cell maintenance through YAP-mediated Sonic Hedgehog activation. FASEB J 2024; 38:e23501. [PMID: 38411462 DOI: 10.1096/fj.202301805rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
In the adult mammalian brain, new neurons are continuously generated from neural stem cells (NSCs) in the subventricular zone (SVZ)-olfactory bulb (OB) pathway. YAP, a transcriptional co-activator of the Hippo pathway, promotes cell proliferation and inhibits differentiation in embryonic neural progenitors. However, the role of YAP in postnatal NSCs remains unclear. Here, we showed that YAP was present in NSCs of the postnatal mouse SVZ. Forced expression of Yap promoted NSC maintenance and inhibited differentiation, whereas depletion of Yap by RNA interference or conditional knockout led to the decline of NSC maintenance, premature neuronal differentiation, and collapse of neurogenesis. For the molecular mechanism, thyroid hormone receptor-interacting protein 6 (TRIP6) recruited protein phosphatase PP1A to dephosphorylate LATS1/2, therefore inducing YAP nuclear localization and activation. Moreover, TRIP6 promoted NSC maintenance, cell proliferation, and inhibited differentiation through YAP. In addition, YAP regulated the expression of the Sonic Hedgehog (SHH) pathway effector Gli2 and Gli1/2 mediated the effect of YAP on NSC maintenance. Together, our findings demonstrate a novel TRIP6-YAP-SHH axis, which is critical for regulating postnatal neurogenesis in the SVZ-OB pathway.
Collapse
Affiliation(s)
- Ming-Yang Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Xiu-Li Yang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Chi Chung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jui-Cheng Tsai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Lin Kuo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsu-Wei Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
5
|
Hsieh MC, Lai CY, Lin LT, Chou D, Yeh CM, Cheng JK, Wang HH, Lin KH, Lin TB, Peng HY. Melatonin Relieves Paclitaxel-Induced Neuropathic Pain by Regulating pNEK2-Dependent Epigenetic Pathways in DRG Neurons. ACS Chem Neurosci 2023; 14:4227-4239. [PMID: 37978917 DOI: 10.1021/acschemneuro.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
The neurohormone melatonin (MLT) demonstrates promising potential in ameliorating neuropathic pain induced by paclitaxel (PTX) chemotherapy. However, little is known about its protective effect on dorsal root ganglion (DRG) neurons in neuropathic pain resulting from the chemotherapeutic drug PTX. Here, PTX-treated rats revealed that intrathecal administration of MLT dose-dependently elevated hind paw withdrawal thresholds and latency, indicating that MLT significantly reversed PTX-induced neuropathic pain. Mechanistically, the analgesic effects of MLT were found to be mediated via melatonin receptor 2 (MT2), as pretreatment with an MT2 receptor antagonist inhibited these effects. Moreover, intrathecal MLT injection reversed the pNEK2-dependent epigenetic program induced by PTX. All of the effects caused by MLT were blocked by pretreatment with an MT2 receptor-selective antagonist, 4P-PDOT. Remarkably, multiple MLT administered during PTX treatment (PTX+MLTs) exhibited not only rapid but also lasting reversal of allodynia/hyperalgesia compared to single-bolus MLT administered after PTX treatment (PTX+MLT). In addition, PTX+MLTs exhibited greater efficacy in reversing PTX-induced alterations in pRSK2, pNEK2, JMJD3, H3K27me3, and TRPV1 expression and interaction in DRG neurons than PTX+MLT. These results indicated that MLT administered during PTX treatment reduced the incidence and/or severity of neuropathy and had a better inhibitory effect on the pNEK2-dependent epigenetic program compared to MLT administered after PTX treatment. In conclusion, MLT/MT2 is a promising therapy for the treatment of pNEK2-dependent painful neuropathy resulting from PTX treatment. MLT administered during PTX chemotherapy may be more effective in the prevention or reduction of PTX-induced neuropathy and maintaining quality.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung 40343, Taiwan
- Central Taiwan University of Science and Technology, Taichung 40343, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei104, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 252, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung 40604, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| |
Collapse
|
6
|
Brandt JP, Smith CJ. Piezo1-mediated spontaneous calcium transients in satellite glia impact dorsal root ganglia development. PLoS Biol 2023; 21:e3002319. [PMID: 37747915 PMCID: PMC10564127 DOI: 10.1371/journal.pbio.3002319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/10/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Spontaneous Ca2+ transients of neural cells is a hallmark of the developing nervous system. It is widely accepted that chemical signals, like neurotransmitters, contribute to spontaneous Ca2+ transients in the nervous system. Here, we reveal an additional mechanism of spontaneous Ca2+ transients that is mechanosensitive in the peripheral nervous system (PNS) using intravital imaging of growing dorsal root ganglia (DRG) in zebrafish embryos. GCaMP6s imaging shows that developing DRG satellite glia contain distinct spontaneous Ca2+ transients, classified into simultaneous, isolated, and microdomains. Longitudinal analysis over days in development demonstrates that as DRG satellite glia become more synchronized, isolated Ca2+ transients remain constant. Using a chemical screen, we identify that Ca2+ transients in DRG glia are dependent on mechanical properties, which we confirmed using an experimental application of mechanical force. We find that isolated spontaneous Ca2+ transients of the glia during development is altered by manipulation of mechanosensitive protein Piezo1, which is expressed in the developing ganglia. In contrast, simultaneous Ca2+ transients of DRG satellite glia is not Piezo1-mediated, thus demonstrating that distinct mechanisms mediate subtypes of spontaneous Ca2+ transients. Activating Piezo1 eventually impacts the cell abundance of DRG cells and behaviors that are driven by DRG neurons. Together, our results reveal mechanistically distinct subtypes of Ca2+ transients in satellite glia and introduce mechanobiology as a critical component of spontaneous Ca2+ transients in the developing PNS.
Collapse
Affiliation(s)
- Jacob P. Brandt
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody J. Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
7
|
Wei X, Huang G, Liu J, Ge J, Zhang W, Mei Z. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomed Pharmacother 2023; 162:114619. [PMID: 37004330 DOI: 10.1016/j.biopha.2023.114619] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The most frequent reason of morbidity and mortality in the world, cerebral ischemia sets off a chain of molecular and cellular pathologies that associated with some central nervous system (CNS) disorders mainly including ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy and other CNS diseases. In recent times, despite significant advancements in the treatment of the pathological processes underlying various neurological illnesses, effective therapeutic approaches that are specifically targeted to minimizing the damage of such diseases remain absent. Hippo signaling pathway, characterized by enzyme linked reactions between MSTI/2, LAST1/2, and YAP or TAZ proteins, controls cell division, survival, and differentiation, as well as being engaged in a variety of biological activities, such as the development and transformation of the nervous system. Recently, accumulating studies demonstrated that Hippo pathway takes part in the processes of ischemic stroke, AD, PD, etc., including but not limited to oxidative stress, inflammatory response, blood-brain barrier damage, mitochondrial disorders, and neural cells death. Thus, it's crucial to understand the molecular basis of the Hippo signaling pathway for determining potential new therapeutic targets against ischemia-associated CNS diseases. Here, we discuss latest advances in the deciphering of the Hippo signaling pathway and highlight the therapeutic potential of targeting the pathway in treating ischemia-associated CNS diseases.
Collapse
|
8
|
Wang J, Chen H, Hou W, Han Q, Wang Z. Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. Dev Neurosci 2023; 45:276-289. [PMID: 37080186 DOI: 10.1159/000530621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wulei Hou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingjian Han
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Cao HJ, Huang L, Zheng MR, Zhang T, Xu LC. Characterization of circular RNAs in dorsal root ganglia after central and peripheral axon injuries. Front Cell Neurosci 2022; 16:1046050. [PMID: 36578373 PMCID: PMC9790916 DOI: 10.3389/fncel.2022.1046050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
In central nervous system, axons fail to regenerate after injury while in peripheral nervous system, axons retain certain regenerative ability. Dorsal root ganglion (DRG) neuron has an ascending central axon branch and a descending peripheral axon branch stemming from one single axon and serves as a suitable model for the comparison of growth competence following central and peripheral axon injuries. Molecular alterations underpin different injury responses of DRG branches have been investigated from many aspects, such as coding gene expression, chromatin accessibility, and histone acetylation. However, changes of circular RNAs are poorly characterized. In the present study, we comprehensively investigate circular RNA expressions in DRGs after rat central and peripheral axon injuries using sequencing analysis and identify a total of 33 differentially expressed circular RNAs after central branch injury as well as 55 differentially expressed circular RNAs after peripheral branch injury. Functional enrichment of host genes of differentially expressed circular RNAs demonstrate the participation of Hippo signaling pathway and Notch signaling pathway after both central and peripheral axon injuries. Circular RNA changes after central axon injury are also linked with apoptosis and cellular junction while changes after peripheral axon injury are associated with metabolism and PTEN-related pathways. Altogether, the present study offers a systematic evaluation of alterations of circular RNAs in rat DRGs following injuries to the central and peripheral axon branches and contributes to the deciphering of essential biological activities and mechanisms behind successful nerve regeneration.
Collapse
Affiliation(s)
- Hong-Jun Cao
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Li Huang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Meng-Ru Zheng
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Tao Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ling-Chi Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Ling-Chi Xu,
| |
Collapse
|
10
|
Ishan M, Chen G, Yu W, Wang Z, Giovannini M, Cao X, Liu HX. Deletion of Nf2 in neural crest-derived tongue mesenchyme alters tongue shape and size, Hippo signalling and cell proliferation in a region- and stage-specific manner. Cell Prolif 2021; 54:e13144. [PMID: 34697858 PMCID: PMC8666282 DOI: 10.1111/cpr.13144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives The mammalian tongue develops from the branchial arches (1–4) and comprises highly organized tissues compartmentalized by mesenchyme/connective tissue that is largely derived from neural crest (NC). This study aimed to understand the roles of tumour suppressor Neurofibromin 2 (Nf2) in NC‐derived tongue mesenchyme in regulating Hippo signalling and cell proliferation for the proper development of tongue shape and size. Materials and methods Conditional knockout (cKO) of Nf2 in NC cell lineage was generated using Wnt1‐Cre (Wnt1‐Cre/Nf2cKO). Nf2 expression, Hippo signalling activities, cell proliferation and tongue shape and size were thoroughly analysed in different tongue regions and tissue types of Wnt1‐Cre/Nf2cKO and Cre‐/Nf2fx/fx littermates at various stages (E10.5–E18.5). Results In contrast to many other organs in which the Nf2/Hippo pathway activity restrains growth and cell proliferation and as a result, loss of Nf2 decreases Hippo pathway activity and promotes an enlarged organ development, here we report our observations of distinct, tongue region‐ and stage‐specific alterations of Hippo signalling activity and cell proliferation in Nf2cKO in NC‐derived tongue mesenchyme. Compared to Cre−/Nf2fx/fx littermates, Wnt1‐Cre/Nf2cKO depicted a non‐proportionally enlarged tongue (macroglossia) at E12.5–E13.5 and microglossia at later stages (E15.5–E18.5). Specifically, at E12.5 Nf2cKO mutants had a decreased level of Hippo signalling transcription factor Yes‐associated protein (Yap), Yap target genes and cell proliferation anteriorly, while having an increased Yap, Yap target genes and cell proliferation posteriorly, which lead to a tip‐pointed and posteriorly widened tongue. At E15.5, loss of Nf2 in the NC lineage resulted in distinct changes in cell proliferation in different regions, that is, high in epithelium and mesenchyme subjacent to the epithelium, and lower in deeper layers of the mesenchyme. At E18.5, cell proliferation was reduced throughout the Nf2cKO tongue.
Collapse
Affiliation(s)
- Mohamed Ishan
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Guiqian Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Wenxin Yu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Zhonghou Wang
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Avraham O, Feng R, Ewan EE, Rustenhoven J, Zhao G, Cavalli V. Profiling sensory neuron microenvironment after peripheral and central axon injury reveals key pathways for neural repair. eLife 2021; 10:e68457. [PMID: 34586065 PMCID: PMC8480984 DOI: 10.7554/elife.68457] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensory neurons with cell bodies in dorsal root ganglia (DRG) represent a useful model to study axon regeneration. Whereas regeneration and functional recovery occurs after peripheral nerve injury, spinal cord injury or dorsal root injury is not followed by regenerative outcomes. Regeneration of sensory axons in peripheral nerves is not entirely cell autonomous. Whether the DRG microenvironment influences the different regenerative capacities after injury to peripheral or central axons remains largely unknown. To answer this question, we performed a single-cell transcriptional profiling of mouse DRG in response to peripheral (sciatic nerve crush) and central axon injuries (dorsal root crush and spinal cord injury). Each cell type responded differently to the three types of injuries. All injuries increased the proportion of a cell type that shares features of both immune cells and glial cells. A distinct subset of satellite glial cells (SGC) appeared specifically in response to peripheral nerve injury. Activation of the PPARα signaling pathway in SGC, which promotes axon regeneration after peripheral nerve injury, failed to occur after central axon injuries. Treatment with the FDA-approved PPARα agonist fenofibrate increased axon regeneration after dorsal root injury. This study provides a map of the distinct DRG microenvironment responses to peripheral and central injuries at the single-cell level and highlights that manipulating non-neuronal cells could lead to avenues to promote functional recovery after CNS injuries or disease.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Rui Feng
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Eric Edward Ewan
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Justin Rustenhoven
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- Center for Brain Immunology and Glia (BIG), Washington University School of MedicineSt LouisUnited States
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
- Hope Center for Neurological Disorders, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
12
|
Zhao X, Le TP, Erhardt S, Findley TO, Wang J. Hippo-Yap Pathway Orchestrates Neural Crest Ontogenesis. Front Cell Dev Biol 2021; 9:706623. [PMID: 34307386 PMCID: PMC8298320 DOI: 10.3389/fcell.2021.706623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Neural crest (NC) cells are a migratory stem cell population in vertebrate embryogenesis that can give rise to multiple cell types, including osteoblasts, chondrocytes, smooth muscle cells, neurons, glia, and melanocytes, greatly contributing to the development of different tissues and organs. Defects in NC development are implicated in many human diseases, such as numerous syndromes, craniofacial aberration and congenital heart defects. Research on NC development has gained intense interest and made significant progress. Recent studies showed that the Hippo-Yap pathway, a conserved fundamental pathway with key roles in regulation of cell proliferation, survival, and differentiation, is indispensable for normal NC development. However, the roles and mechanisms of the Hippo-Yap pathway in NC development remain largely unknown. In this review, we summarize the key functions of the Hippo-Yap pathway indicated in NC induction, migration, proliferation, survival, and differentiation, as well as the diseases caused by its dysfunction in NC cells. We also discuss emerging current and future studies in the investigation of the Hippo-Yap pathway in NC development.
Collapse
Affiliation(s)
| | | | | | | | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
Feltri ML, Weaver MR, Belin S, Poitelon Y. The Hippo pathway: Horizons for innovative treatments of peripheral nerve diseases. J Peripher Nerv Syst 2021; 26:4-16. [PMID: 33449435 DOI: 10.1111/jns.12431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022]
Abstract
Initially identified in Drosophila, the Hippo signaling pathway regulates how cells respond to their environment by controlling proliferation, migration and differentiation. Many recent studies have focused on characterizing Hippo pathway function and regulation in mammalian cells. Here, we present a brief overview of the major components of the Hippo pathway, as well as their regulation and function. We comprehensively review the studies that have contributed to our understanding of the Hippo pathway in the function of the peripheral nervous system and in peripheral nerve diseases. Finally, we discuss innovative approaches that aim to modulate Hippo pathway components in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
14
|
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol 2020; 81:92-109. [PMID: 33275833 DOI: 10.1002/dneu.22796] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Hippo signaling pathway is a highly conserved and familiar tissue growth regulator, primarily dealing with cell survival, cell proliferation, and apoptosis. The Yes-associated protein (YAP) is the key transcriptional effector molecule, which is under negative regulation of the Hippo pathway. Wealth of studies have identified crucial roles of Hippo/YAP signaling pathway during the process of development, including the development of neuronal system. We provide here, an overview of the contributions of this signaling pathway at multiple stages of neuronal development including, proliferation of neural stem cells (NSCs), migration of NSCs toward their destined niche, maintaining NSCs in the quiescent state, differentiation of NSCs into neurons, neuritogenesis, synaptogenesis, brain development, and in neuronal apoptosis. Hyperactivation of the neuronal Hippo pathway can also lead to a variety of devastating neurodegenerative diseases. Instances of aberrant Hippo pathway leading to neurodegenerative diseases along with the approaches utilizing this pathway as molecular targets for therapeutics has been highlighted in this review. Recent evidences suggesting neuronal repair and regenerative potential of this pathway has also been pointed out, that will shed light on a novel aspect of Hippo pathway in regenerative medicine. Our review provides a better understanding of the significance of Hippo pathway in the journey of neuronal system from development to diseases as a whole.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
The Hippo Pathway as a Driver of Select Human Cancers. Trends Cancer 2020; 6:781-796. [PMID: 32446746 DOI: 10.1016/j.trecan.2020.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The Hippo pathway regulates myriad biological processes in diverse species and is a key cancer signaling network in humans. Although Hippo has been linked to multiple aspects of cancer, its role in this disease is incompletely understood. Large-scale pan-cancer analyses of core Hippo pathway genes reveal that the pathway is mutated at a high frequency only in select human cancers, including malignant mesothelioma and meningioma. Hippo pathway deregulation is also enriched in squamous epithelial cancers. We discuss cancer-related functions of the Hippo pathway and potential explanations for the cancer-restricted mutation profile of core Hippo pathway genes. Greater understanding of Hippo pathway deregulation in cancers will be essential to guide the imminent use of Hippo-targeted therapies.
Collapse
|
16
|
Expression and regulation of FRMD6 in mouse DRG neurons and spinal cord after nerve injury. Sci Rep 2020; 10:1880. [PMID: 32024965 PMCID: PMC7002571 DOI: 10.1038/s41598-020-58261-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
FRMD6, a member of the group of FERM-domain proteins, is involved both in communication between cells, interactions with extracellular matrix, cellular apoptotic and regenerative mechanisms. FRMD6 was first discovered in the rodent sciatic nerve, and in the present immunohistochemical study we investigated the distribution of FRMD6 in the dorsal root ganglia (DRGs), sciatic nerve and spinal cord following sciatic nerve injury. FRMD6-immunoreactivity was found in the cytoplasm, nucleus or both, and in a majority of DRG neurons. FRMD6-immunoreactivity co-existed with several well-known neuronal markers, including calcitonin gene-related peptide, isolectin B4 and neurofilament 200 in mouse DRGs. After peripheral nerve injury, the FRMD6 mRNA levels and the overall percentage of FRMD6-positive neuron profiles (NPs) were decreased in ipsilateral lumbar DRGs, the latter mainly affecting small size neurons with cytoplasmic localization. Conversely, the proportion of NPs with nuclear FRMD6-immunoreactivity was significantly increased. In the sciatic nerve, FRMD6-immunoreactivity was observed in non-neuronal cells and in axons, and accumulated proximally to a ligation of the nerve. In the spinal cord FRMD6-immunoreactivity was detected in neurons in both dorsal and ventral horns, and was upregulated in ipsilateral dorsal horn after peripheral nerve axotomy. Our results demonstrate that FRMD6 is strictly regulated by peripheral nerve injury at the spinal level.
Collapse
|
17
|
Kumar D, Nitzan E, Kalcheim C. YAP promotes neural crest emigration through interactions with BMP and Wnt activities. Cell Commun Signal 2019; 17:69. [PMID: 31228951 PMCID: PMC6589182 DOI: 10.1186/s12964-019-0383-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background Premigratory neural crest progenitors undergo an epithelial-to-mesenchymal transition and leave the neural tube as motile cells. Previously, we showed that BMP generates trunk neural crest emigration through canonical Wnt signaling which in turn stimulates G1/S transition. The molecular network underlying this process is, however, not yet completely deciphered. Yes-associated-protein (YAP), an effector of the Hippo pathway, controls various aspects of development including cell proliferation, migration, survival and differentiation. In this study, we examined the possible involvement of YAP in neural crest emigration and its relationship with BMP and Wnt. Methods We implemented avian embryos in which levels of YAP gene activity were either reduced or upregulated by in ovo plasmid electroporation, and monitored effects on neural crest emigration, survival and proliferation. Neural crest-derived sensory neuron and melanocyte development were assessed upon gain of YAP function. Imunohistochemistry was used to assess YAP expression. In addition, the activity of specific signaling pathways including YAP, BMP and Wnt was monitored with specific reporters. Results We find that the Hippo pathway transcriptional co-activator YAP is expressed and is active in premigratory crest of avian embryos. Gain of YAP function stimulates neural crest emigration in vivo, and attenuating YAP inhibits cell exit. This is associated with an accumulation of FoxD3-expressing cells in the dorsal neural tube, with reduced proliferation, and enhanced apoptosis. Furthermore, gain of YAP function inhibits differentiation of Islet-1-positive sensory neurons and augments the number of EdnrB2-positive melanocytes. Using specific in vivo reporters, we show that loss of YAP function in the dorsal neural tube inhibits BMP and Wnt activities whereas gain of YAP function stimulates these pathways. Reciprocally, inhibition of BMP and Wnt signaling by noggin or Xdd1, respectively, downregulates YAP activity. In addition, YAP-dependent stimulation of neural crest emigration is compromised upon inhibition of either BMP or Wnt activities. Together, our results suggest a positive bidirectional cross talk between these pathways. Conclusions Our data show that YAP is necessary for emigration of neural crest progenitors. In addition, they incorporate YAP signaling into a BMP/Wnt-dependent molecular network responsible for emigration of trunk-level neural crest.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Erez Nitzan
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
18
|
|
19
|
Moon KH, Kim JW. Hippo Signaling Circuit and Divergent Tissue Growth in Mammalian Eye. Mol Cells 2018; 41:257-263. [PMID: 29665674 PMCID: PMC5935098 DOI: 10.14348/molcells.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 02/02/2023] Open
Abstract
Vertebrate organ development is accompanied by demarcation of tissue compartments, which grow coordinately with their neighbors. Hence, perturbing the coordinative growth of neighboring tissue compartments frequently results in organ malformation. The growth of tissue compartments is regulated by multiple intercellular and intracellular signaling pathways, including the Hippo signaling pathway that limits the growth of various organs. In the optic neuroepithelial continuum, which is partitioned into the retina, retinal pigment epithelium (RPE) and ciliary margin (CM) during eye development, the Hippo signaling activity operates differentially, as it does in many tissues. In this review, we summarize recent studies that have explored the relationship between the Hippo signaling pathway and growth of optic neuroepithelial compartments. We will focus particularly on the roles of a tumor suppressor, neurofibromin 2 (NF2), whose expression is not only dependent on compartment-specific transcription factors, but is also subject to regulation by a Hippo-Yap feedback signaling circuit.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
20
|
Zhang Q, Nguyen PD, Shi S, Burrell JC, Xu Q, Cullen KD, Le AD. Neural Crest Stem-Like Cells Non-genetically Induced from Human Gingiva-Derived Mesenchymal Stem Cells Promote Facial Nerve Regeneration in Rats. Mol Neurobiol 2018; 55:6965-6983. [PMID: 29372546 DOI: 10.1007/s12035-018-0913-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
Non-genetic induction of somatic cells into neural crest stem-like cells (NCSCs) is promising for potential cell-based therapies for post-traumatic peripheral nerve regeneration. Here, we report that human gingiva-derived mesenchymal stem cells (GMSCs) could be reproducibly and readily induced into NCSCs via non-genetic approaches. Compared to parental GMSCs, induced NCSC population had increased expression in NCSC-related genes and displayed robust differentiation into neuronal and Schwann-like cells. Knockdown of the expression of Yes-associated protein 1 (YAP1), a critical mechanosensor and mechanotransducer, attenuated the expression of NCSC-related genes; specific blocking of RhoA/ROCK activity and non-muscle myosin II (NM II)-dependent contraction suppressed YAP1 and NCSC-related genes and concurrently abolished neural spheroid formation in NCSCs. Using a rat model of facial nerve defect, implantation of NCSC-laden nerve conduits promoted functional regeneration of the injured nerve. These promising findings demonstrate that induced NCSCs derived from GMSCs represent an easily accessible and promising source of neural stem-like cells for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA
| | - Phuong D Nguyen
- Division of Plastic and Reconstructive Surgery, University of Pennsylvania Perelman School of Medicine, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Shihong Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA
| | - Justin C Burrell
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, 3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - Qilin Xu
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA
| | - Kacy D Cullen
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, 3320 Smith Walk, Philadelphia, PA, 19104, USA
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA.
- Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Moon KH, Kim HT, Lee D, Rao MB, Levine EM, Lim DS, Kim JW. Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development. Dev Cell 2017; 44:13-28.e3. [PMID: 29249622 DOI: 10.1016/j.devcel.2017.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Mahesh B Rao
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Dae-Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
22
|
Huang Z, Hu J, Pan J, Wang Y, Hu G, Zhou J, Mei L, Xiong WC. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development 2017; 143:2398-409. [PMID: 27381227 DOI: 10.1242/dev.130658] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 05/16/2016] [Indexed: 01/08/2023]
Abstract
YAP (yes-associated protein), a key transcriptional co-factor that is negatively regulated by the Hippo pathway, is crucial for the development and size control of multiple organs, including the liver. However, its role in the brain remains unclear. Here, we provide evidence for YAP regulation of mouse neocortical astrocytic differentiation and proliferation. YAP was undetectable in neurons, but selectively expressed in neural stem cells (NSCs) and astrocytes. YAP in NSCs was required for neocortical astrocytic differentiation, with no apparent role in self-renewal or neural differentiation. However, YAP in astrocytes was necessary for astrocytic proliferation. Yap (Yap1) knockout, Yap(nestin) conditional knockout and Yap(GFAP) conditional knockout mice displayed fewer neocortical astrocytes and impaired astrocytic proliferation and, consequently, death of neocortical neurons. Mechanistically, YAP was activated by BMP2, and the active/nuclear YAP was crucial for BMP2 induction and stabilization of SMAD1 and astrocytic differentiation. Expression of SMAD1 in YAP-deficient NSCs partially rescued the astrocytic differentiation deficit in response to BMP2. Taken together, these results identify a novel function of YAP in neocortical astrocytic differentiation and proliferation, and reveal a BMP2-YAP-SMAD1 pathway underlying astrocytic differentiation in the developing mouse neocortex.
Collapse
Affiliation(s)
- Zhihui Huang
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA Institute of Hypoxia Medicine and Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinxia Hu
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30912, USA Institute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Jinxiu Pan
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Ying Wang
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA Research Center of Blood Transfusion Medicine, Key Laboratory of Laboratory Medicine (Wenzhou Medical University), Ministry of Education, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Guoqing Hu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Lin Mei
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
23
|
Shi Y, Bollam SR, White SM, Laughlin SZ, Graham GT, Wadhwa M, Chen H, Nguyen C, Vitte J, Giovannini M, Toretsky J, Yi C. Rac1-Mediated DNA Damage and Inflammation Promote Nf2 Tumorigenesis but Also Limit Cell-Cycle Progression. Dev Cell 2016; 39:452-465. [PMID: 27818180 PMCID: PMC5519326 DOI: 10.1016/j.devcel.2016.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/09/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
Abstract
Merlin encoded by the Nf2 gene is a bona fide tumor suppressor that has been implicated in regulation of both the Hippo-Yap and Rac1-Pak1 pathways. Using genetically engineered murine liver models, we show that co-deletion of Rac1 with Nf2 blocks tumor initiation but paradoxically exacerbates hepatomegaly induced by Nf2 loss, which can be suppressed either by treatment with pro-oxidants or by co-deletion of Yap. Our results suggest that while Yap acts as the central driver of proliferation during Nf2 tumorigenesis, Rac1 primarily functions as an inflammation switch by inducing reactive oxygen species that, on one hand, induce nuclear factor κB signaling and expression of inflammatory cytokines, and on the other activate p53 checkpoint and senescence programs dampening the cyclin D1-pRb-E2F1 pathway. Interestingly, senescence markers are associated with benign NF2 tumors but not with malignant NF2 mutant mesotheliomas, suggesting that senescence may underlie the benign nature of most NF2 tumors.
Collapse
Affiliation(s)
- Yuhao Shi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Saumya R Bollam
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sean Z Laughlin
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Garrett T Graham
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mandheer Wadhwa
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hengye Chen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Chan Nguyen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jeffery Toretsky
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
24
|
Agarwalla PK, Koch MJ, Mordes DA, Codd PJ, Coumans JV. Pigmented Lesions of the Nervous System and the Neural Crest: Lessons From Embryology. Neurosurgery 2016; 78:142-55. [PMID: 26355366 DOI: 10.1227/neu.0000000000001010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurosurgeons encounter a number of pigmented tumors of the central nervous system in a variety of locations, including primary central nervous system melanoma, blue nevus of the spinal cord, and melanotic schwannoma. When examined through the lens of embryology, pigmented lesions share a unifying connection: They occur in structures that are neural crest cell derivatives. Here, we review the important progress made in the embryology of neural crest cells, present 3 cases of pigmented tumors of the nervous system, and discuss these clinical entities in the context of the development of melanoblasts. Pigmented lesions of the nervous system arise along neural crest cell migration routes and from neural crest-derived precursors. Awareness of the evolutionary clues of vertebrate pigmentation by the neurosurgical and neuro-oncological community at large is valuable for identifying pathogenic or therapeutic targets and for designing future research on nervous system pigmented lesions. When encountering such a lesion, clinicians should be aware of the embryological basis to direct additional evaluation, including genetic testing, and to work with the scientific community in better understanding these lesions and their relationship to neural crest developmental biology.
Collapse
Affiliation(s)
- Pankaj K Agarwalla
- Departments of *Neurosurgery and‡Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
25
|
Lopez-Anido C, Poitelon Y, Gopinath C, Moran JJ, Ma KH, Law WD, Antonellis A, Feltri ML, Svaren J. Tead1 regulates the expression of Peripheral Myelin Protein 22 during Schwann cell development. Hum Mol Genet 2016; 25:3055-3069. [PMID: 27288457 DOI: 10.1093/hmg/ddw158] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/14/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
Schwann cells are myelinating glia in the peripheral nervous system that form the myelin sheath. A major cause of peripheral neuropathy is a copy number variant involving the Peripheral Myelin Protein 22 (PMP22) gene, which is located within a 1.4-Mb duplication on chromosome 17 associated with the most common form of Charcot-Marie-Tooth Disease (CMT1A). Rodent models of CMT1A have been used to show that reducing Pmp22 overexpression mitigates several aspects of a CMT1A-related phenotype. Mechanistic studies of Pmp22 regulation identified enhancers regulated by the Sox10 (SRY sex determining region Y-box 10) and Egr2/Krox20 (Early growth response protein 2) transcription factors in myelinated nerves. However, relatively little is known regarding how other transcription factors induce Pmp22 expression during Schwann cell development and myelination. Here, we examined Pmp22 enhancers as a function of cell type-specificity, nerve injury and development. While Pmp22 enhancers marked by active histone modifications were lost or remodeled after injury, we found that these enhancers were permissive in early development prior to Pmp22 upregulation. Pmp22 enhancers contain binding motifs for TEA domain (Tead) transcription factors of the Hippo signaling pathway. We discovered that Tead1 and co-activators Yap and Taz are required for Pmp22 expression, as well as for the expression of Egr2 Tead1 directly binds Pmp22 and Egr2 enhancers early in development and Tead1 binding is induced during myelination, correlating with Pmp22 expression. The data identify Tead1 as a novel regulator of Pmp22 expression during development in concert with Sox10 and Egr2.
Collapse
Affiliation(s)
- Camila Lopez-Anido
- Waisman Center, Madison, WI, USA.,Comparative Biomedical Sciences Graduate Program, Madison, WI, USA
| | | | - Chetna Gopinath
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Ki Hwan Ma
- Waisman Center, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, Madison, WI, USA
| | - William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John Svaren
- Waisman Center, Madison, WI, USA .,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
26
|
Melfi S, Colciago A, Giannotti G, Bonalume V, Caffino L, Fumagalli F, Magnaghi V. Stressing out the Hippo/YAP signaling pathway: toward a new role in Schwann cells. Cell Death Dis 2015; 6:e1915. [PMID: 26469964 PMCID: PMC4632312 DOI: 10.1038/cddis.2015.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- S Melfi
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, Milan, Italy
| | - A Colciago
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, Milan, Italy
| | - G Giannotti
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, Milan, Italy
| | - V Bonalume
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, Milan, Italy
| | - L Caffino
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, Milan, Italy
| | - F Fumagalli
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, Milan, Italy
| | - V Magnaghi
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via G. Balzaretti 9, Milan, Italy
| |
Collapse
|