1
|
Webb CH, Wang Y. Cardiac regeneration in goldfish (Carassius auratus) associated with increased expression of key extracellular matrix molecules. Anat Rec (Hoboken) 2025; 308:1378-1390. [PMID: 39092661 DOI: 10.1002/ar.25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Cardiac regeneration is a natural phenomenon that occurs in many species outside of humans. The goldfish (Carassius auratus) is an understudied model of cardiac wound response, despite its ubiquity as pets as well as its relationship to the better-studied zebrafish. In this study, we examined the response of the goldfish heart to a resection injury. We found that by 70 days post-injury, goldfish scarlessly heal cardiac wounds under a certain size, with local cardiomyocyte proliferation driving the restoration of the myocardial layer. We also found the upregulation of extracellular matrix components related to cardiac regeneration in the injury site. This upregulation correlated with the level of cardiomyocyte proliferation occurring in the injury site, indicating an association between the two that warrants further exploration.
Collapse
Affiliation(s)
- Charles H Webb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Caño-Carrillo S, Garcia-Padilla C, Aranega AE, Lozano-Velasco E, Franco D. Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration. Int J Mol Sci 2024; 25:12904. [PMID: 39684625 DOI: 10.3390/ijms252312904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions.
Collapse
Affiliation(s)
- Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
3
|
Hu T, Fleischmann BK, Malek Mohammadi M. Cauterization of the root of the left coronary artery as a straightforward, large and reproducible ischemic injury model in neonatal mice. Lab Anim (NY) 2024; 53:308-326. [PMID: 39438662 PMCID: PMC11518978 DOI: 10.1038/s41684-024-01443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/30/2024] [Indexed: 10/25/2024]
Abstract
The adult mammalian heart is known to have very limited regenerative capacity, explaining at least in part the frequency of cardiovascular diseases and their impact as the leading cause of death worldwide. By contrast, the neonatal heart has the ability to regenerate upon injury, and the molecular mechanisms underlying this regenerative capacity are intensely investigated to provide novel cues for the repair of the adult heart. However, the existing rodent neonatal injury models-apex resection, left anterior descending artery ligation and cryoinjury-have limitations, such as being technically demanding, yielding a nonphysiological injury type and/or lack of reproducibility. Here we have therefore established a novel ischemic heart injury method in neonatal mice via cauterization of the root of the left coronary artery. This surgical procedure is technically straightforward, requires less than 10 min for completion and yields reproducible, large ischemic lesions (40% of the left ventricle) with low mortality rates (10% of animals). The injury also induces secondary pulmonary hypertension shortly after surgery, allowing to study the response of the right ventricle. Moreover, neonatal mice at postnatal days 1 and 3 display strongly opposing outcomes after the surgery, because of the lack of cardiac regeneration at the later stage. Thus, this new neonatal heart injury model is of great use for mechanistic studies exploring the regeneration of the left ventricle and the adaptation of the right ventricle upon myocardial infarction.
Collapse
Affiliation(s)
- Tianyuan Hu
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| | - Mona Malek Mohammadi
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Schuetz T, Dolejsi T, Beck E, Fugger F, Bild A, Duin MT, Gavranovic-Novakovic J, Hilbold E, Hoffmann T, Zuber J, Bauer A, Ruschitzka F, Bär C, Penninger JM, Haubner BJ. Murine neonatal cardiac regeneration depends on Insulin-like growth factor 1 receptor signaling. Sci Rep 2024; 14:22661. [PMID: 39349545 PMCID: PMC11443045 DOI: 10.1038/s41598-024-72783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Unlike adult mammals, the hearts of neonatal mice possess the ability to completely regenerate from myocardial infarction (MI). This observation has sparked vast interest in deciphering the potentially lifesaving and morbidity-reducing mechanisms involved in neonatal cardiac regeneration. In mice, the regenerative potential is lost within the first week of life and coincides with a reduction of Insulin-like growth factor 1 receptor (Igf1r) expression in the heart. Igf1r is a well-known regulator of cardiomyocyte maturation and proliferation in neonatal mice. To test the role of Igf1r as a pivotal factor in cardiac regeneration, we knocked down (KD) Igf1r specifically in cardiomyocytes using recombinant adeno-associated virus (rAAV) delivery and troponin T promotor driven shRNAmirs. Cardiomyocyte specific Igf1r KD versus control mice were subjected to experimental MI by permanent ligation of the left anterior descending artery (LAD). Cardiac functional and morphological data were analyzed over a 21-day period. Neonatal Igf1r KD mice showed reduced systolic cardiac function and increased fibrotic cardiac remodeling 21 days post injury. This cardiac phenotype was associated with reduced cardiomyocyte nuclei mitosis and decreased AKT and ERK phosphorylation in Igf1r KD, compared to control neonatal mouse hearts. Our in vivo murine data show that Igf1r KD shifts neonatal cardiac regeneration to a more adult-like scarring phenotype, identifying cardiomyocyte-specific Igf1r signaling as a crucial component of neonatal cardiac regeneration.
Collapse
Affiliation(s)
- Thomas Schuetz
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Theresa Dolejsi
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eva Beck
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Fabio Fugger
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Bild
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Marie-Theres Duin
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Jasmina Gavranovic-Novakovic
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Erika Hilbold
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | | - Axel Bauer
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Josef Martin Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Bernhard Johannes Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Boulgakoff L, Sturny R, Olejnickova V, Sedmera D, Kelly RG, Miquerol L. Participation of ventricular trabeculae in neonatal cardiac regeneration leads to ectopic recruitment of Purkinje-like cells. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1140-1157. [PMID: 39198628 DOI: 10.1038/s44161-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Unlike adult mammals, newborn mice can regenerate a functional heart after myocardial infarction; however, the precise origin of the newly formed cardiomyocytes and whether the distal part of the conduction system (the Purkinje fiber (PF) network) is properly formed in regenerated hearts remains unclear. PFs, as well as subendocardial contractile cardiomyocytes, are derived from trabeculae, transient myocardial ridges on the inner ventricular surface. Here, using connexin 40-driven genetic tracing, we uncover a substantial participation of the trabecular lineage in myocardial regeneration through dedifferentiation and proliferation. Concomitantly, regeneration disrupted PF network maturation, resulting in permanent PF hyperplasia and impaired ventricular conduction. Proliferation assays, genetic impairment of PF recruitment, lineage tracing and clonal analysis revealed that PF network hyperplasia results from excessive recruitment of PFs due to increased trabecular fate plasticity. These data indicate that PF network hyperplasia is a consequence of trabeculae participation in myocardial regeneration.
Collapse
Affiliation(s)
- Lucie Boulgakoff
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Rachel Sturny
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Veronika Olejnickova
- Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic
| | - David Sedmera
- Charles University, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille, Marseille, France.
| |
Collapse
|
6
|
Cooke JP, Youker KA, Lai L. Myocardial Recovery versus Myocardial Regeneration: Mechanisms and Therapeutic Modulation. Methodist Debakey Cardiovasc J 2024; 20:31-41. [PMID: 39184159 PMCID: PMC11342844 DOI: 10.14797/mdcvj.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 08/27/2024] Open
Abstract
Myocardial recovery is characterized by a return toward normal structure and function of the heart after an injury. Mechanisms of myocardial recovery include restoration and/or adaptation of myocyte structure and function, mitochondrial activity and number, metabolic homeostasis, electrophysiological stability, extracellular matrix remodeling, and myocardial perfusion. Myocardial regeneration is an element of myocardial recovery that involves the generation of new myocardial tissue, a process which is limited in adult humans but may be therapeutically augmented. Understanding the mechanisms of myocardial recovery and myocardial regeneration will lead to novel therapies for heart failure.
Collapse
Affiliation(s)
- John P. Cooke
- Houston Methodist Academic Institute, Houston, Texas, US
| | | | - Li Lai
- Houston Methodist Academic Institute, Houston, Texas, US
| |
Collapse
|
7
|
Zheng K, Hao Y, Xia C, Cheng S, Yu J, Chen Z, Li Y, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Zhao J, Li R, Zong J, Zhang H, Lai L, Huang P, Zhou C, Xia J, Zhang X, Wu J. Effects and mechanisms of the myocardial microenvironment on cardiomyocyte proliferation and regeneration. Front Cell Dev Biol 2024; 12:1429020. [PMID: 39050889 PMCID: PMC11266095 DOI: 10.3389/fcell.2024.1429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The adult mammalian cardiomyocyte has a limited capacity for self-renewal, which leads to the irreversible heart dysfunction and poses a significant threat to myocardial infarction patients. In the past decades, research efforts have been predominantly concentrated on the cardiomyocyte proliferation and heart regeneration. However, the heart is a complex organ that comprises not only cardiomyocytes but also numerous noncardiomyocyte cells, all playing integral roles in maintaining cardiac function. In addition, cardiomyocytes are exposed to a dynamically changing physical environment that includes oxygen saturation and mechanical forces. Recently, a growing number of studies on myocardial microenvironment in cardiomyocyte proliferation and heart regeneration is ongoing. In this review, we provide an overview of recent advances in myocardial microenvironment, which plays an important role in cardiomyocyte proliferation and heart regeneration.
Collapse
Affiliation(s)
- Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoxian Cheng
- Jingshan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Hu T, Malek Mohammadi M, Ebach F, Hesse M, Kotlikoff MI, Fleischmann BK. Right ventricular cardiomyocyte expansion accompanies cardiac regeneration in newborn mice after large left ventricular infarcts. JCI Insight 2024; 9:e176281. [PMID: 38319719 PMCID: PMC11143925 DOI: 10.1172/jci.insight.176281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Cauterization of the root of the left coronary artery (LCA) in the neonatal heart on postnatal day 1 (P1) resulted in large, reproducible lesions of the left ventricle (LV), and an attendant marked adaptive response in the right ventricle (RV). The response of both chambers to LV myocardial infarction involved enhanced cardiomyocyte (CM) division and binucleation, as well as LV revascularization, leading to restored heart function within 7 days post surgery (7 dps). By contrast, infarction of P3 mice resulted in cardiac scarring without a significant regenerative and adaptive response of the LV and the RV, leading to subsequent heart failure and death within 7 dps. The prominent RV myocyte expansion in P1 mice involved an acute increase in pulmonary arterial pressure and a unique gene regulatory response, leading to an increase in RV mass and preserved heart function. Thus, distinct adaptive mechanisms in the RV, such as CM proliferation and RV expansion, enable marked cardiac regeneration of the infarcted LV at P1 and full functional recovery.
Collapse
Affiliation(s)
- Tianyuan Hu
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| | - Mona Malek Mohammadi
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| | - Fabian Ebach
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| | | | - Bernd K. Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| |
Collapse
|
9
|
Abstract
Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.
Collapse
Affiliation(s)
- Michael Weinberger
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Yang X, Li L, Zeng C, Wang WE. The characteristics of proliferative cardiomyocytes in mammals. J Mol Cell Cardiol 2023; 185:50-64. [PMID: 37918322 DOI: 10.1016/j.yjmcc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Better understanding of the mechanisms regulating the proliferation of pre-existing cardiomyocyte (CM) should lead to better options for regenerating injured myocardium. The absence of a perfect research model to definitively identify newly formed mammalian CMs is lacking. However, methodologies are being developed to identify and enrich proliferative CMs. These methods take advantages of the different proliferative states of CMs during postnatal development, before and after injury in the neonatal heart. New approaches use CMs labeled in lineage tracing animals or single cell technique-based CM clusters. This review aims to provide a timely update on the characteristics of the proliferative CMs, including their structural, functional, genetic, epigenetic and metabolic characteristics versus non-proliferative CMs. A better understanding of the characteristics of proliferative CMs should lead to the mechanisms for inducing endogenous CMs to self-renew, which is a promising therapeutic strategy to treat cardiac diseases that cause CM death in humans.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Wei Eric Wang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
11
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part I: Experimental Injury Models to Study Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:325. [PMID: 37623338 PMCID: PMC10455172 DOI: 10.3390/jcdd10080325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which, ischemic heart disease is the most prevalent. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian heart. In contrast, some lower vertebrate species can regenerate the heart after injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this two-part review, we discuss the current state of the principal response in heart regeneration, where several involved processes are essential for full cardiac function in recovery.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
12
|
Guo QY, Yang JQ, Feng XX, Zhou YJ. Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Mil Med Res 2023; 10:18. [PMID: 37098604 PMCID: PMC10131330 DOI: 10.1186/s40779-023-00452-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2023] [Indexed: 04/27/2023] Open
Abstract
Heart injury such as myocardial infarction leads to cardiomyocyte loss, fibrotic tissue deposition, and scar formation. These changes reduce cardiac contractility, resulting in heart failure, which causes a huge public health burden. Military personnel, compared with civilians, is exposed to more stress, a risk factor for heart diseases, making cardiovascular health management and treatment innovation an important topic for military medicine. So far, medical intervention can slow down cardiovascular disease progression, but not yet induce heart regeneration. In the past decades, studies have focused on mechanisms underlying the regenerative capability of the heart and applicable approaches to reverse heart injury. Insights have emerged from studies in animal models and early clinical trials. Clinical interventions show the potential to reduce scar formation and enhance cardiomyocyte proliferation that counteracts the pathogenesis of heart disease. In this review, we discuss the signaling events controlling the regeneration of heart tissue and summarize current therapeutic approaches to promote heart regeneration after injury.
Collapse
Affiliation(s)
- Qian-Yun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jia-Qi Yang
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xun-Xun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yu-Jie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Clinical Center for Coronary Heart Disease, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
13
|
Martin M, Gähwiler EKN, Generali M, Hoerstrup SP, Emmert MY. Advances in 3D Organoid Models for Stem Cell-Based Cardiac Regeneration. Int J Mol Sci 2023; 24:ijms24065188. [PMID: 36982261 PMCID: PMC10049446 DOI: 10.3390/ijms24065188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The adult human heart cannot regain complete cardiac function following tissue injury, making cardiac regeneration a current clinical unmet need. There are a number of clinical procedures aimed at reducing ischemic damage following injury; however, it has not yet been possible to stimulate adult cardiomyocytes to recover and proliferate. The emergence of pluripotent stem cell technologies and 3D culture systems has revolutionized the field. Specifically, 3D culture systems have enhanced precision medicine through obtaining a more accurate human microenvironmental condition to model disease and/or drug interactions in vitro. In this study, we cover current advances and limitations in stem cell-based cardiac regenerative medicine. Specifically, we discuss the clinical implementation and limitations of stem cell-based technologies and ongoing clinical trials. We then address the advent of 3D culture systems to produce cardiac organoids that may better represent the human heart microenvironment for disease modeling and genetic screening. Finally, we delve into the insights gained from cardiac organoids in relation to cardiac regeneration and further discuss the implications for clinical translation.
Collapse
Affiliation(s)
- Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
| | - Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
- Wyss Zurich Translational Center, University of Zurich and ETH Zurich, 8092 Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
- Wyss Zurich Translational Center, University of Zurich and ETH Zurich, 8092 Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +41-44-634-5610
| |
Collapse
|
14
|
DeBenedittis P, Karpurapu A, Henry A, Thomas MC, McCord TJ, Brezitski K, Prasad A, Baker CE, Kobayashi Y, Shah SH, Kontos CD, Tata PR, Lumbers RT, Karra R. Coupled myovascular expansion directs cardiac growth and regeneration. Development 2022; 149:dev200654. [PMID: 36134690 PMCID: PMC10692274 DOI: 10.1242/dev.200654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2023]
Abstract
Heart regeneration requires multiple cell types to enable cardiomyocyte (CM) proliferation. How these cells interact to create growth niches is unclear. Here, we profile proliferation kinetics of cardiac endothelial cells (CECs) and CMs in the neonatal mouse heart and find that they are spatiotemporally coupled. We show that coupled myovascular expansion during cardiac growth or regeneration is dependent upon VEGF-VEGFR2 signaling, as genetic deletion of Vegfr2 from CECs or inhibition of VEGFA abrogates both CEC and CM proliferation. Repair of cryoinjury displays poor spatial coupling of CEC and CM proliferation. Boosting CEC density after cryoinjury with virus encoding Vegfa enhances regeneration. Using Mendelian randomization, we demonstrate that circulating VEGFA levels are positively linked with human myocardial mass, suggesting that Vegfa can stimulate human cardiac growth. Our work demonstrates the importance of coupled CEC and CM expansion and reveals a myovascular niche that may be therapeutically targeted for heart regeneration.
Collapse
Affiliation(s)
- Paige DeBenedittis
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Anish Karpurapu
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert Henry
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Institute of Health Informatics, University College London, London WC1E 6BT, UK
| | - Michael C. Thomas
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy J. McCord
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Kyla Brezitski
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Anil Prasad
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Caroline E. Baker
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Svati H. Shah
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher D. Kontos
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
- Center for Aging, Duke University Medical Center, Durham, NC 27710, USA
| | - R. Thomas Lumbers
- Institute of Health Informatics, University College London, London WC1E 6BT, UK
- Health Data Research UK London, University College London, London, WC1E 6BT, UK
- British Heart Foundation Research Accelerator, University College London, London WC1E 6BT, UK
| | - Ravi Karra
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Regeneration Next, Duke University, Durham, NC 27710, USA
- Center for Aging, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
15
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
16
|
Zhou H, Zhang F, Wu Y, Liu H, Duan R, Liu Y, Wang Y, He X, Zhang Y, Ma X, Guan Y, Liu Y, Liang D, Zhou L, Chen Y. LRP5 regulates cardiomyocyte proliferation and neonatal heart regeneration by the AKT/P21 pathway. J Cell Mol Med 2022; 26:2981-2994. [PMID: 35429093 PMCID: PMC9097834 DOI: 10.1111/jcmm.17311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Huixing Zhou
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Fulei Zhang
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yahan Wu
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Hongyu Liu
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Ran Duan
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yuanyuan Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Jinzhou Medical University Liaoning Jinzhou China
| | - Yan Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Jinzhou Medical University Liaoning Jinzhou China
| | - Xiaoyu He
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yuemei Zhang
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Xiue Ma
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yi Guan
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yi Liu
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Dandan Liang
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Research Units of Origin and Regulation of Heart Rhythm Chinese Academy of Medical Sciences Shanghai China
| | - Liping Zhou
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
| | - Yi‐Han Chen
- Department of Cardiology Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Research Units of Origin and Regulation of Heart Rhythm Chinese Academy of Medical Sciences Shanghai China
- Department of Pathology and Pathophysiology Tongji University School of Medicine Shanghai China
| |
Collapse
|
17
|
Chowdhury K, Lin S, Lai SL. Comparative Study in Zebrafish and Medaka Unravels the Mechanisms of Tissue Regeneration. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.783818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tissue regeneration has been in the spotlight of research for its fascinating nature and potential applications in human diseases. The trait of regenerative capacity occurs diversely across species and tissue contexts, while it seems to decline over evolution. Organisms with variable regenerative capacity are usually distinct in phylogeny, anatomy, and physiology. This phenomenon hinders the feasibility of studying tissue regeneration by directly comparing regenerative with non-regenerative animals, such as zebrafish (Danio rerio) and mice (Mus musculus). Medaka (Oryzias latipes) is a fish model with a complete reference genome and shares a common ancestor with zebrafish approximately 110–200 million years ago (compared to 650 million years with mice). Medaka shares similar features with zebrafish, including size, diet, organ system, gross anatomy, and living environment. However, while zebrafish regenerate almost every organ upon experimental injury, medaka shows uneven regenerative capacity. Their common and distinct biological features make them a unique platform for reciprocal analyses to understand the mechanisms of tissue regeneration. Here we summarize current knowledge about tissue regeneration in these fish models in terms of injured tissues, repairing mechanisms, available materials, and established technologies. We further highlight the concept of inter-species and inter-organ comparisons, which may reveal mechanistic insights and hint at therapeutic strategies for human diseases.
Collapse
|
18
|
del Campo CV, Liaw NY, Gunadasa-Rohling M, Matthaei M, Braga L, Kennedy T, Salinas G, Voigt N, Giacca M, Zimmermann WH, Riley PR. Regenerative potential of epicardium-derived extracellular vesicles mediated by conserved miRNA transfer. Cardiovasc Res 2022; 118:597-611. [PMID: 33599250 PMCID: PMC8803084 DOI: 10.1093/cvr/cvab054] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS After a myocardial infarction, the adult human heart lacks sufficient regenerative capacity to restore lost tissue, leading to heart failure progression. Finding novel ways to reprogram adult cardiomyocytes into a regenerative state is a major therapeutic goal. The epicardium, the outermost layer of the heart, contributes cardiovascular cell types to the forming heart and is a source of trophic signals to promote heart muscle growth during embryonic development. The epicardium is also essential for heart regeneration in zebrafish and neonatal mice and can be reactivated after injury in adult hearts to improve outcome. A recently identified mechanism of cell-cell communication and signalling is that mediated by extracellular vesicles (EVs). Here, we aimed to investigate epicardial signalling via EV release in response to cardiac injury and as a means to optimize cardiac repair and regeneration. METHODS AND RESULTS We isolated epicardial EVs from mouse and human sources and targeted the cardiomyocyte population. Epicardial EVs enhanced proliferation in H9C2 cells and in primary neonatal murine cardiomyocytes in vitro and promoted cell cycle re-entry when injected into the injured area of infarcted neonatal hearts. These EVs also enhanced regeneration in cryoinjured engineered human myocardium (EHM) as a novel model of human myocardial injury. Deep RNA-sequencing of epicardial EV cargo revealed conserved microRNAs (miRs) between human and mouse epicardial-derived exosomes, and the effects on cell cycle re-entry were recapitulated by administration of cargo miR-30a, miR-100, miR-27a, and miR-30e to human stem cell-derived cardiomyocytes and cryoinjured EHM constructs. CONCLUSION Here, we describe the first characterization of epicardial EV secretion, which can signal to promote proliferation of cardiomyocytes in infarcted mouse hearts and in a human model of myocardial injury, resulting in enhanced contractile function. Analysis of exosome cargo in mouse and human identified conserved pro-regenerative miRs, which in combination recapitulated the therapeutic effects of promoting cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Cristina Villa del Campo
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Norman Y Liaw
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Moritz Matthaei
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Località Padriciano, 99, 34149 Trieste TS, Italy
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre, King's College London, Strand, London WC2R 2L, UK
| | - Tahnee Kennedy
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Gabriela Salinas
- NGS- Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Centre Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Località Padriciano, 99, 34149 Trieste TS, Italy
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre, King's College London, Strand, London WC2R 2L, UK
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Straße 42a, 37075 Göttingen, Germany
| | - Paul Richard Riley
- Department of Physiology, Anatomy and Genetics, British Heart Foundation, Oxbridge Centre of Regenerative Medicine, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| |
Collapse
|
19
|
Costa A, Cushman S, Haubner BJ, Derda AA, Thum T, Bär C. Neonatal injury models: integral tools to decipher the molecular basis of cardiac regeneration. Basic Res Cardiol 2022; 117:26. [PMID: 35503383 PMCID: PMC9064850 DOI: 10.1007/s00395-022-00931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023]
Abstract
Myocardial injury often leads to heart failure due to the loss and insufficient regeneration of resident cardiomyocytes. The low regenerative potential of the mammalian heart is one of the main drivers of heart failure progression, especially after myocardial infarction accompanied by large contractile muscle loss. Preclinical therapies for cardiac regeneration are promising, but clinically still missing. Mammalian models represent an excellent translational in vivo platform to test drugs and treatments for the promotion of cardiac regeneration. Particularly, short-lived mice offer the possibility to monitor the outcome of such treatments throughout the life span. Importantly, there is a short period of time in newborn mice in which the heart retains full regenerative capacity after cardiac injury, which potentially also holds true for the neonatal human heart. Thus, in vivo neonatal mouse models of cardiac injury are crucial to gain insights into the molecular mechanisms underlying the cardiac regenerative processes and to devise novel therapeutic strategies for the treatment of diseased adult hearts. Here, we provide an overview of the established injury models to study cardiac regeneration. We summarize pioneering studies that demonstrate the potential of using neonatal cardiac injury models to identify factors that may stimulate heart regeneration by inducing endogenous cardiomyocyte proliferation in the adult heart. To conclude, we briefly summarize studies in large animal models and the insights gained in humans, which may pave the way toward the development of novel approaches in regenerative medicine.
Collapse
Affiliation(s)
- Alessia Costa
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Bernhard J. Haubner
- Department of Internal Medicine III (Cardiology and Angiology), Innsbruck Medical University, Innsbruck, Austria ,Department of Cardiology, University Heart Center, University Hospital Zurich, Zürich, Switzerland
| | - Anselm A. Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany ,REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany ,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| |
Collapse
|
20
|
Zena LA, Ekström A, Gräns A, Olsson C, Axelsson M, Sundh H, Sandblom E. It takes time to heal a broken heart: ventricular plasticity improves heart performance after myocardial infarction in rainbow trout, Oncorhynchus mykiss. J Exp Biol 2021; 224:273477. [PMID: 34792140 DOI: 10.1242/jeb.243578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022]
Abstract
Coronary arteriosclerosis is a common feature of both wild and farmed salmonid fishes and may be linked to stress-induced cardiac pathologies. Yet, the plasticity and capacity for long-term myocardial restructuring and recovery following a restriction in coronary blood supply are unknown. Here, we analyzed the consequences of acute (3 days) and chronic (from 33 to 62 days) coronary occlusion (i.e. coronary artery ligation) on cardiac morphological characteristics and in vivo function in juvenile rainbow trout, Oncorhynchus mykiss. Acute coronary artery occlusion resulted in elevated resting heart rate and decreased inter-beat variability, which are both markers of autonomic dysfunction following acute myocardial ischemia, along with severely reduced heart rate scope (maximum-resting heart rate) relative to sham-operated trout. We also observed a loss of myocardial interstitial collagen and compact myocardium. Following long-term coronary artery ligation, resting heart rate and heart rate scope normalized relative to sham-operated trout. Moreover, a distinct fibrous collagen layer separating the compact myocardium into two layers had formed. This may contribute to maintain ventricular integrity across the cardiac cycle or, alternatively, demark a region of the compact myocardium that continues to receive oxygen from the luminal venous blood. Taken together, we demonstrate that rainbow trout may cope with the aversive effects caused by coronary artery obstruction through plastic ventricular remodeling, which, at least in part, restores cardiac performance and myocardium oxygenation.
Collapse
Affiliation(s)
- Lucas A Zena
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.,Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Gothenburg 405 30, Sweden
| | - Catharina Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
21
|
Aslan GS, Polat F, Eren SN, Yucel D, Arbatli S, Cumbul A, Kocabas F. Identification of Novel and Potent Modulators Involved in Neonatal Cardiac Regeneration. Pediatr Cardiol 2021; 42:1554-1566. [PMID: 34046720 DOI: 10.1007/s00246-021-02640-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022]
Abstract
Neonatal mammalian heart has been shown to possess the capacity to regenerate substantially after an injury. This remarkable regenerative capacity is lost in a week. This transition has been marked with cardiomyocyte cell cycle arrest and induction of fibrotic response similar to what occurs after myocardial infarction in adult hearts. Recent studies outlined the function of several cardiogenic factors that play a pivotal role in neonatal cardiac regeneration. However, underlying molecular mechanisms of neonatal cardiac regeneration and other cardiogenic factors remained elusive. Here, we investigated the involvement of novel putative cardiogenic factors in neonatal cardiac regeneration and cardiomyocyte cell cycle withdrawal. We have shown that Cbl, Dnmt3a, and Itch are significantly downregulated during neonatal cardiac regeneration process after cardiac injury in vivo. Intriguingly, several of studied factors are upregulated in non-regenerative period of 7-day-old mice after cardiac injury. Knockdown of Cbl, Dnmt3a and Itch in rat neonatal cardiomyocytes lead to the induction of cardiomyocyte proliferation. Cardiomyocyte proliferation accompanies upregulation of positive regulators of cardiomyocyte division and downregulation of CDKIs. Taken together, our findings suggest that Cbl, Dnmt3a, and Itch may be involved in the regulation of cardiomyocyte cell cycle withdrawal and may represent new targets for the induction of cardiac regeneration.
Collapse
Affiliation(s)
- Galip Servet Aslan
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Faculty of Biological Science, Goethe University, Frankfurt, Germany
| | - Feyza Polat
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Seyma Nur Eren
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Dogacan Yucel
- Faculty of Medicine, University of Minnesota, Minnesota, USA
| | | | - Alev Cumbul
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
22
|
Wang L, Bhakta M, Fernandez-Perez A, Munshi NV. Inducible cardiomyocyte injury within the atrioventricular conduction system uncovers latent regenerative capacity in mice. J Clin Invest 2021; 131:138637. [PMID: 34596051 DOI: 10.1172/jci138637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
The cardiac conduction system (CCS) ensures regular contractile function, and injury to any of its components can cause cardiac dysrhythmia. Although all cardiomyocytes (CMs) originate from common progenitors, the CCS is composed of biologically distinct cell types with unique functional and developmental characteristics. In contrast to ventricular cardiomyocytes, which continue to proliferate after birth, most CCS cells terminally exit the cell cycle during fetal development. Although the CCS should thus provide a poor substrate for postnatal injury repair, its regenerative capacity remains untested. Here, we describe a genetic system for ablating CMs that reside within the atrioventricular conduction system (AVCS). Adult mouse AVCS ablation resulted in regenerative failure characterized by persistent atrioventricular conduction defects and contractile dysfunction. In contrast, AVCS injury in neonatal mice led to recovery in a subset of these mice, thus providing evidence for CCS plasticity. Furthermore, CM proliferation did not appear to completely account for the observed functional recovery, suggesting that mechanisms regulating recovery from dysrhythmia are likely to be distinct from cardiac regeneration associated with ventricular injury. Taken together, we anticipate that our results will motivate further mechanistic studies of CCS plasticity and enable the exploration of rhythm restoration as an alternative therapeutic strategy.
Collapse
Affiliation(s)
- Lin Wang
- Department of Internal Medicine (Cardiology Division)
| | - Minoti Bhakta
- Department of Internal Medicine (Cardiology Division)
| | | | - Nikhil V Munshi
- Department of Internal Medicine (Cardiology Division).,Department of Molecular Biology.,McDermott Center for Human Growth and Development, and.,Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Long DW, Webb CH, Wang Y. Persistent fibrosis and decreased cardiac function following cardiac injury in the Ctenopharyngodon idella (grass carp). Anat Rec (Hoboken) 2021; 305:66-80. [PMID: 34219409 DOI: 10.1002/ar.24706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/10/2022]
Abstract
Following the discovery of heart regeneration in zebrafish, several more species within the Cyprinidae family have been found to have the same capability, suggesting heart regeneration may be conserved within this family. Although gonad regeneration has been observed in grass carp (Ctenopharyngodon idella), one of the largest cyprinid fish, the species' response to cardiac injury has not been characterized. Surprisingly, we found cardiomyocytes do not repopulate the injured region following cryoinjury to the ventricle, instead exhibiting unresolved fibrosis and decreased cardiac function that persists for the 8-week duration of this study. Additionally, fibroblasts are likely depleted following injury, a phenomenon not previously described in any cardiac model. The data collected in this study indicate that heart regeneration is unlikely in grass carp (C. idella). It is possible that not all members of the Cyprinidae family possesses regenerative capability observed in zebrafish. Further study of these phenomenon may reveal the underlying differences between regeneration versus unresolved fibrosis in heart disease.
Collapse
Affiliation(s)
- Daniel W Long
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Charles H Webb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1236-1280. [PMID: 33893979 DOI: 10.1007/s11427-020-1915-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology, or Evo-Devo for short, has become an established field that, broadly speaking, seeks to understand how changes in development drive major transitions and innovation in organismal evolution. It does so via integrating the principles and methods of many subdisciplines of biology. Although we have gained unprecedented knowledge from the studies on model organisms in the past decades, many fundamental and crucially essential processes remain a mystery. Considering the tremendous biodiversity of our planet, the current model organisms seem insufficient for us to understand the evolutionary and physiological processes of life and its adaptation to exterior environments. The currently increasing genomic data and the recently available gene-editing tools make it possible to extend our studies to non-model organisms. In this review, we review the recent work on the regulatory signaling of developmental and regeneration processes, environmental adaptation, and evolutionary mechanisms using both the existing model animals such as zebrafish and Drosophila, and the emerging nonstandard model organisms including amphioxus, ascidian, ciliates, single-celled phytoplankton, and marine nematode. In addition, the challenging questions and new directions in these systems are outlined as well.
Collapse
|
25
|
Fajardo VM, Feng I, Chen BY, Perez-Ramirez CA, Shi B, Clark P, Tian R, Lien CL, Pellegrini M, Christofk H, Nakano H, Nakano A. GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration. Sci Rep 2021; 11:8669. [PMID: 33883682 PMCID: PMC8060418 DOI: 10.1038/s41598-021-88159-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
The mammalian heart switches its main metabolic substrate from glucose to fatty acids shortly after birth. This metabolic switch coincides with the loss of regenerative capacity in the heart. However, it is unknown whether glucose metabolism regulates heart regeneration. Here, we report that glucose metabolism is a determinant of regenerative capacity in the neonatal mammalian heart. Cardiac-specific overexpression of Glut1, the embryonic form of constitutively active glucose transporter, resulted in an increase in glucose uptake and concomitant accumulation of glycogen storage in postnatal heart. Upon cryoinjury, Glut1 transgenic hearts showed higher regenerative capacity with less fibrosis than non-transgenic control hearts. Interestingly, flow cytometry analysis revealed two distinct populations of ventricular cardiomyocytes: Tnnt2-high and Tnnt2-low cardiomyocytes, the latter of which showed significantly higher mitotic activity in response to high intracellular glucose in Glut1 transgenic hearts. Metabolic profiling shows that Glut1-transgenic hearts have a significant increase in the glucose metabolites including nucleotides upon injury. Inhibition of the nucleotide biosynthesis abrogated the regenerative advantage of high intra-cardiomyocyte glucose level, suggesting that the glucose enhances the cardiomyocyte regeneration through the supply of nucleotides. Our data suggest that the increase in glucose metabolism promotes cardiac regeneration in neonatal mouse heart.
Collapse
Affiliation(s)
- Viviana M Fajardo
- Division of Neonatology, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Iris Feng
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Bao Ying Chen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA
| | - Cesar A Perez-Ramirez
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Baochen Shi
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Peter Clark
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, USA
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Ching-Ling Lien
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Heather Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Haruko Nakano
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, Developmental Biology, School of Life Science, University of California Los Angeles, Los Angeles, CA, USA.
- Division of Cardiology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
26
|
Narematsu M, Nakajima Y. The early embryonic heart regenerates by compensation of proliferating residual cardiomyocytes after cryoinjury. Cell Tissue Res 2021; 384:757-769. [PMID: 33830297 DOI: 10.1007/s00441-021-03431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/03/2021] [Indexed: 10/21/2022]
Abstract
The adult mammalian heart is non-regenerative because cardiomyocytes withdraw from the cell cycle shortly after birth. Embryonic mammalian hearts, in which cardiomyocytes are genetically ablated in a salt-and-pepper-like pattern, regenerate due to compensation by residual cardiomyocytes. To date, it remains unknown whether or how transmural ventricular defects at the looped heart stage regenerate after cryoinjury. We established a cryoablation model in stage 16 chick embryonic hearts. In hearts at 5 h post cryoinjury (hpc), cryoinjury-induced defects were approximately 200 µm in width in the primitive ventricle; thereafter, the defect was filled with mesenchymal cells accumulating between the epicardium and endocardium. The defect began to regress at 4 days post cryoinjury (dpc) and disappeared around 9 dpc. Immunohistochemistry showed that there were no isl1-positive cells in either the scar tissue or residual cardiomyocytes. BrdU incorporation into residual cardiomyocytes was transiently downregulated in association with upregulation of p27 (Kip1), suggesting that cell cycle arrest occurred at G1-to-S transition immediately after cryoinjury. Estimated cell cycle length was examined, and the results showed that the shortest cell cycle length was 18 h at stages 19-23; it increased with development due to elongation of the G2-M-G1 phase and 30 h at stages 27-29. The S phase length was constant at 6-8 h. The cell cycle length was elongated immediately after cryoinjury, and it reversed at 1-2 dpc. Cryoablated transmural defects in the early embryonic heart were restored by compensation by residual myocytes.
Collapse
Affiliation(s)
- Mayu Narematsu
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimach, Abenoku, Osaka, 545-8585, Japan
| | - Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimach, Abenoku, Osaka, 545-8585, Japan.
| |
Collapse
|
27
|
Zheng L, Du J, Wang Z, Zhou Q, Zhu X, Xiong JW. Molecular regulation of myocardial proliferation and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:13. [PMID: 33821373 PMCID: PMC8021683 DOI: 10.1186/s13619-021-00075-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Heart regeneration is a fascinating and complex biological process. Decades of intensive studies have revealed a sophisticated molecular network regulating cardiac regeneration in the zebrafish and neonatal mouse heart. Here, we review both the classical and recent literature on the molecular and cellular mechanisms underlying heart regeneration, with a particular focus on how injury triggers the cell-cycle re-entry of quiescent cardiomyocytes to replenish their massive loss after myocardial infarction or ventricular resection. We highlight several important signaling pathways for cardiomyocyte proliferation and propose a working model of how these injury-induced signals promote cardiomyocyte proliferation. Thus, this concise review provides up-to-date research progresses on heart regeneration for investigators in the field of regeneration biology.
Collapse
Affiliation(s)
- Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Zihao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Qinchao Zhou
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China.
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| |
Collapse
|
28
|
Sun K, Li YY, Jin J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct Target Ther 2021; 6:79. [PMID: 33612829 PMCID: PMC7897720 DOI: 10.1038/s41392-020-00455-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The response of immune cells in cardiac injury is divided into three continuous phases: inflammation, proliferation and maturation. The kinetics of the inflammatory and proliferation phases directly influence the tissue repair. In cardiac homeostasis, cardiac tissue resident macrophages (cTMs) phagocytose bacteria and apoptotic cells. Meanwhile, NK cells prevent the maturation and transport of inflammatory cells. After cardiac injury, cTMs phagocytose the dead cardiomyocytes (CMs), regulate the proliferation and angiogenesis of cardiac progenitor cells. NK cells prevent the cardiac fibrosis, and promote vascularization and angiogenesis. Type 1 macrophages trigger the cardioprotective responses and promote tissue fibrosis in the early stage. Reversely, type 2 macrophages promote cardiac remodeling and angiogenesis in the late stage. Circulating macrophages and neutrophils firstly lead to chronic inflammation by secreting proinflammatory cytokines, and then release anti-inflammatory cytokines and growth factors, which regulate cardiac remodeling. In this process, dendritic cells (DCs) mediate the regulation of monocyte and macrophage recruitment. Recruited eosinophils and Mast cells (MCs) release some mediators which contribute to coronary vasoconstriction, leukocyte recruitment, formation of new blood vessels, scar formation. In adaptive immunity, effector T cells, especially Th17 cells, lead to the pathogenesis of cardiac fibrosis, including the distal fibrosis and scar formation. CMs protectors, Treg cells, inhibit reduce the inflammatory response, then directly trigger the regeneration of local progenitor cell via IL-10. B cells reduce myocardial injury by preserving cardiac function during the resolution of inflammation.
Collapse
Affiliation(s)
- Kang Sun
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
29
|
Santos F, Correia M, Nóbrega-Pereira S, Bernardes de Jesus B. Age-Related Pathways in Cardiac Regeneration: A Role for lncRNAs? Front Physiol 2021; 11:583191. [PMID: 33551829 PMCID: PMC7855957 DOI: 10.3389/fphys.2020.583191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Aging imposes a barrier for tissue regeneration. In the heart, aging leads to a severe rearrangement of the cardiac structure and function and to a subsequent increased risk of heart failure. An intricate network of distinct pathways contributes to age-related alterations during healthy heart aging and account for a higher susceptibility of heart disease. Our understanding of the systemic aging process has already led to the design of anti-aging strategies or to the adoption of protective interventions. Nevertheless, our understanding of the molecular determinants operating during cardiac aging or repair remains limited. Here, we will summarize the molecular and physiological alterations that occur during aging of the heart, highlighting the potential role for long non-coding RNAs (lncRNAs) as novel and valuable targets in cardiac regeneration/repair.
Collapse
Affiliation(s)
- Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
30
|
Shen H, Darehzereshki A, Sucov HM, Lien CL. Apical Resection and Cryoinjury of Neonatal Mouse Heart. Methods Mol Biol 2021; 2158:23-32. [PMID: 32857362 DOI: 10.1007/978-1-0716-0668-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
Neonatal mouse hearts have a regenerative capacity similar to adult zebrafish. Different cardiac injury models have been established to investigate the regenerative capacity of neonatal mouse hearts, including ventricular amputation, cryoinjury, and ligation of a major coronary artery. While the ventricular resection model can be utilized to study how tissue forms and regenerates de novo, cryoinjury and coronary artery ligation are methods that might better mimic myocardial infarction by creating tissue damage and necrosis as opposed to the removal of healthy tissue in the ventricular amputation model. Here we describe methods of creating ventricular resection and cardiac cryoinjury in newborn mice.
Collapse
Affiliation(s)
- Hua Shen
- Department of Stem Cell Biology and Regenerative Medicine, Broad CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ali Darehzereshki
- Saban Research Institute and Heart Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Surgery, MedStar Health Baltimore, Franklin Square Medical Center, Baltimore, MD, USA
| | - Henry M Sucov
- Department of Stem Cell Biology and Regenerative Medicine, Broad CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ching-Ling Lien
- Saban Research Institute and Heart Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Surgery, Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Is zebrafish heart regeneration "complete"? Lineage-restricted cardiomyocytes proliferate to pre-injury numbers but some fail to differentiate in fibrotic hearts. Dev Biol 2020; 471:106-118. [PMID: 33309949 DOI: 10.1016/j.ydbio.2020.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 12/28/2022]
Abstract
Adult zebrafish are frequently described to be able to "completely" regenerate the heart. Yet, the extent to which cardiomyocytes lost to injury are replaced is unknown, since existing evidence for cardiomyocyte proliferation is indirect or non-quantitative. We established stereological methods to quantify the number of cardiomyocytes at several time-points post cryoinjury. Intriguingly, after cryoinjuries that killed about 1/3 of the ventricular cardiomyocytes, pre-injury cardiomyocyte numbers were restored already within 30 days. Yet, many hearts retained small residual scars, and a subset of cardiomyocytes bordering these fibrotic areas remained smaller, lacked differentiated sarcomeric structures, and displayed defective calcium signaling. Thus, a subset of regenerated cardiomyocytes failed to fully mature. While lineage-tracing experiments have shown that regenerating cardiomyocytes are derived from differentiated cardiomyocytes, technical limitations have previously made it impossible to test whether cardiomyocyte trans-differentiation contributes to regeneration of non-myocyte cell lineages. Using Cre responder lines that are expressed in all major cell types of the heart, we found no evidence for cardiomyocyte transdifferentiation into endothelial, epicardial, fibroblast or immune cell lineages. Overall, our results imply a refined answer to the question whether zebrafish can completely regenerate the heart: in response to cryoinjury, preinjury cardiomyocyte numbers are indeed completely regenerated by proliferation of lineage-restricted cardiomyocytes, while restoration of cardiomyocyte differentiation and function, as well as resorption of scar tissue, is less robustly achieved.
Collapse
|
32
|
Large Animal Models of Cell-Free Cardiac Regeneration. Biomolecules 2020; 10:biom10101392. [PMID: 33003617 PMCID: PMC7600588 DOI: 10.3390/biom10101392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
The adult mammalian heart lacks the ability to sufficiently regenerate itself, leading to the progressive deterioration of function and heart failure after ischemic injuries such as myocardial infarction. Thus far, cell-based therapies have delivered unsatisfactory results, prompting the search for cell-free alternatives that can induce the heart to repair itself through cardiomyocyte proliferation, angiogenesis, and advantageous remodeling. Large animal models are an invaluable step toward translating basic research into clinical applications. In this review, we give an overview of the state-of-the-art in cell-free cardiac regeneration therapies that have been tested in large animal models, mainly pigs. Cell-free cardiac regeneration therapies involve stem cell secretome- and extracellular vesicles (including exosomes)-induced cardiac repair, RNA-based therapies, mainly regarding microRNAs, but also modified mRNA (modRNA) as well as other molecules including growth factors and extracellular matrix components. Various methods for the delivery of regenerative substances are used, including adenoviral vectors (AAVs), microencapsulation, and microparticles. Physical stimulation methods and direct cardiac reprogramming approaches are also discussed.
Collapse
|
33
|
Cai W, Tan J, Yan J, Zhang L, Cai X, Wang H, Liu F, Ye M, Cai CL. Limited Regeneration Potential with Minimal Epicardial Progenitor Conversions in the Neonatal Mouse Heart after Injury. Cell Rep 2020; 28:190-201.e3. [PMID: 31269439 PMCID: PMC6837841 DOI: 10.1016/j.celrep.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/19/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
The regeneration capacity of neonatal mouse heart is controversial. In addition, whether epicardial cells provide a progenitor pool for de novo heart regeneration is incompletely defined. Following apical resection of the neonatal mouse heart, we observed limited regeneration potential. Fate-mapping of Tbx18MerCreMer mice revealed that newly formed coronary vessels and a limited number of cardiomyocytes were derived from the T-box transcription factor 18 (Tbx18) lineage. However, further lineage tracing with SM-MHCCreERT2 and Nfactc1Cre mice revealed that the new smooth muscle and endothelial cells are in fact derivatives of pre-existing coronary vessels. Our data show that neonatal mouse heart can regenerate but that its potential is limited. Moreover, although epicardial cells are multipotent during embryogenesis, their contribution to heart repair through “stem” or “progenitor” cell conversion is minimal after birth. These observations suggest that early embryonic heart development and postnatal heart regeneration are distinct biological processes. Multipotency of epicardial cells is significantly decreased after birth. The regeneration potential of the newborn mouse heart is controversial, and whether epicardial cells provide progenitors for coronary vascular regeneration is unclear. Cai et al. demonstrate a limited regeneration capacity of the neonatal heart upon injury. Epicardial cells do not convert into functional cardiac cells, including coronary vessels, during repair.
Collapse
Affiliation(s)
- Weibin Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China.
| | - Jing Tan
- Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Jianyun Yan
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, Indiana 46202, USA
| | - Xiaoqiang Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Haiping Wang
- Department of Biochemistry, Guangdong Engineering & Technology Research Center for Disease-Model Animals, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Fang Liu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
34
|
Bakovic M, Thakkar D, DeBenedittis P, Chong DC, Thomas MC, Iversen ES, Karra R. Clonal Analysis of the Neonatal Mouse Heart using Nearest Neighbor Modeling. J Vis Exp 2020. [PMID: 32894270 DOI: 10.3791/61656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
By replacing lost or dysfunctional myocardium, tissue regeneration is a promising approach to treat heart failure. However, the challenge of detecting bona fide heart regeneration limits the validation of potential regenerative factors. One method to detect new cardiomyocytes is multicolor lineage tracing with clonal analysis. Clonal analysis experiments can be difficult to undertake, because labeling conditions that are too sparse lack sensitivity for rare events such as cardiomyocyte proliferation, and diffuse labeling limits the ability to resolve clones. Presented here is a protocol to undertake clonal analysis of the neonatal mouse heart by using statistical modeling of nearest neighbor distributions to resolve cardiomyocyte clones. This approach enables resolution of clones over a range of labeling conditions and provides a robust analytical approach for quantifying cardiomyocyte proliferation and regeneration. This protocol can be adapted to other tissues and can be broadly used to study tissue regeneration.
Collapse
Affiliation(s)
| | - Devang Thakkar
- Center for Genomic and Computational Biology, Duke University
| | | | | | | | | | - Ravi Karra
- Department of Medicine, Duke University; Regeneration Next, Duke University;
| |
Collapse
|
35
|
Sampaio-Pinto V, Ruiz-Villalba A, Nascimento DS, Pérez-Pomares JM. Bone marrow contribution to the heart from development to adulthood. Semin Cell Dev Biol 2020; 112:16-26. [PMID: 32591270 DOI: 10.1016/j.semcdb.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Cardiac chamber walls contain large numbers of non-contractile interstitial cells, including fibroblasts, endothelial cells, pericytes and significant populations of blood lineage-derived cells. Blood cells first colonize heart tissues a few days before birth, although their recruitment from the bloodstream to the cardiac interstitium is continuous and extends throughout adult life. The bone marrow, as the major hematopoietic site of adult individuals, is in charge of renewing all circulating cell types, and it therefore plays a pivotal role in the incorporation of blood cells to the heart. Bone marrow-derived cells are instrumental to tissue homeostasis in the steady-state heart, and are major effectors in cardiac disease progression. This review will provide a comprehensive approach to bone marrow-derived blood cell functions in the heart, and discuss aspects related to hot topics in the cardiovascular field like cell-based heart regeneration strategies.
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - José M Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain.
| |
Collapse
|
36
|
Cell-based therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair mechanisms in non-human vertebrates. Heart Fail Rev 2020; 24:133-142. [PMID: 30421074 DOI: 10.1007/s10741-018-9750-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemic cardiomyopathy is the cardiovascular condition with the highest impact on the Western population. In mammals (humans included), prolonged ischemia in the ventricular walls causes the death of cardiomyocytes (myocardial infarction, MI). The loss of myocardial mass is soon compensated by the formation of a reparative, non-contractile fibrotic scar that ultimately affects heart performance. Despite the enormous clinical relevance of MI, no effective therapy is available for the long-term treatment of this condition. Moreover, since the human heart is not able to undergo spontaneous regeneration, many researchers aim at designing cell-based therapies that allow for the substitution of dead cardiomyocytes by new, functional ones. So far, the majority of such strategies rely on the injection of different progenitor/stem cells to the infarcted heart. These cardiovascular progenitors, which are expected to differentiate into cardiomyocytes de novo, seldom give rise to new cardiac muscle. In this context, the most important challenge in the field is to fully disclose the molecular and cellular mechanisms that could promote active myocardial regeneration after cardiac damage. Accordingly, we suggest that such strategy should be inspired by the unique regenerative and reparative responses displayed by non-human animal models, from the restricted postnatal myocardial regeneration abilities of the murine heart to the full ventricular regeneration of some bony fishes (e.g., zebrafish). In this review article, we will discuss about current scientific approaches to study cardiac reparative and regenerative phenomena using animal models.
Collapse
|
37
|
Lack of macroscopically evident cardiac regeneration or spontaneous functional recovery in infarcted neonatal pigs. Hellenic J Cardiol 2020; 61:219-221. [PMID: 31740356 DOI: 10.1016/j.hjc.2019.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/18/2019] [Accepted: 10/16/2019] [Indexed: 11/24/2022] Open
|
38
|
Wang H, Bennett-Kennett R, Paulsen MJ, Hironaka CE, Thakore AD, Farry JM, Eskandari A, Lucian HJ, Shin HS, Wu MA, Imbrie-Moore AM, Steele AN, Stapleton LM, Zhu Y, Dauskardt RH, Woo YJ. Multiaxial Lenticular Stress-Strain Relationship of Native Myocardium is Preserved by Infarct-Induced Natural Heart Regeneration in Neonatal Mice. Sci Rep 2020; 10:7319. [PMID: 32355240 PMCID: PMC7193551 DOI: 10.1038/s41598-020-63324-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Neonatal mice exhibit natural heart regeneration after myocardial infarction (MI) on postnatal day 1 (P1), but this ability is lost by postnatal day 7 (P7). Cardiac biomechanics intricately affect long-term heart function, but whether regenerated cardiac muscle is biomechanically similar to native myocardium remains unknown. We hypothesized that neonatal heart regeneration preserves native left ventricular (LV) biomechanical properties after MI. C57BL/6J mice underwent sham surgery or left anterior descending coronary artery ligation at age P1 or P7. Echocardiography performed 4 weeks post-MI showed that P1 MI and sham mice (n = 22, each) had similar LV wall thickness, diameter, and ejection fraction (59.6% vs 60.7%, p = 0.6514). Compared to P7 shams (n = 20), P7 MI mice (n = 20) had significant LV wall thinning, chamber enlargement, and depressed ejection fraction (32.6% vs 61.8%, p < 0.0001). Afterward, the LV was explanted and pressurized ex vivo, and the multiaxial lenticular stress-strain relationship was tracked. While LV tissue modulus for P1 MI and sham mice were similar (341.9 kPa vs 363.4 kPa, p = 0.6140), the modulus for P7 MI mice was significantly greater than that for P7 shams (691.6 kPa vs 429.2 kPa, p = 0.0194). We conclude that, in neonatal mice, regenerated LV muscle has similar biomechanical properties as native LV myocardium.
Collapse
Affiliation(s)
- Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Ross Bennett-Kennett
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Akshara D Thakore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Anahita Eskandari
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Matthew A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lyndsay M Stapleton
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
39
|
Cardiac Regeneration and Repair: From Mechanisms to Therapeutic Strategies. CONCEPTS AND APPLICATIONS OF STEM CELL BIOLOGY 2020. [DOI: 10.1007/978-3-030-43939-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Abstract
Heart failure is a major cause of death worldwide owing to the inability of the adult human heart to regenerate after a heart attack. However, many vertebrate species are capable of complete cardiac regeneration following injury. In this Review, we discuss the various model organisms of cardiac regeneration, and outline what they have taught us thus far about the cellular and molecular responses essential for optimal cardiac repair. We compare across different species, highlighting evolutionarily conserved mechanisms of regeneration and demonstrating the importance of developmental gene expression programmes, plasticity of the heart and the pathophysiological environment for the regenerative response. Additionally, we discuss how the findings from these studies have led to improvements in cardiac repair in preclinical models such as adult mice and pigs, and discuss the potential to translate these findings into therapeutic approaches for human patients following myocardial infarction.
Collapse
Affiliation(s)
- Eleanor L Price
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
41
|
Abstract
Cardiogenesis is a complex developmental process involving multiple overlapping stages of cell fate specification, proliferation, differentiation, and morphogenesis. Precise spatiotemporal coordination between the different cardiogenic processes is ensured by intercellular signalling crosstalk and tissue-tissue interactions. Notch is an intercellular signalling pathway crucial for cell fate decisions during multicellular organismal development and is aptly positioned to coordinate the complex signalling crosstalk required for progressive cell lineage restriction during cardiogenesis. In this Review, we describe the role of Notch signalling and the crosstalk with other signalling pathways during the differentiation and patterning of the different cardiac tissues and in cardiac valve and ventricular chamber development. We examine how perturbation of Notch signalling activity is linked to congenital heart diseases affecting the neonate and adult, and discuss studies that shed light on the role of Notch signalling in heart regeneration and repair after injury.
Collapse
|
42
|
Lai SL, Marín-Juez R, Stainier DYR. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell Mol Life Sci 2019; 76:1365-1380. [PMID: 30578442 PMCID: PMC6420886 DOI: 10.1007/s00018-018-2995-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Immediately after cardiac injury, the immune system plays major roles in repair and regeneration as it becomes involved in a number of processes including damage-associated signaling, inflammation, revascularization, cardiomyocyte dedifferentiation and replenishment, and fibrotic scar formation/resolution. Recent studies have revealed that different immune responses occur in the various experimental models capable or incapable of cardiac regeneration, and that harnessing these immune responses might improve cardiac repair. In light of this concept, this review analyzes current knowledge about the immune responses to cardiac injury from a comparative perspective. Insights gained from such comparative analyses may provide ways to modulate the immune response as a potential therapeutic strategy for cardiac disease.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
43
|
Savla JJ, Levine BD, Sadek HA. The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe? High Alt Med Biol 2019; 19:124-130. [PMID: 29939783 DOI: 10.1089/ham.2018.0044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Savla, Jainy J., Benjamin D. Levine, and Hesham A. Sadek. The effect of hypoxia on cardiovascular disease: Friend or foe? High Alt Med Biol. 19:124-130, 2018.-Over 140 million people reside at altitudes exceeding 2500 m across the world, resulting in exposure to atmospheric (hypobaric) hypoxia. Whether this chronic exposure is beneficial or detrimental to the cardiovascular system, however, is uncertain. On one hand, multiple studies have suggested a protective effect of living at moderate and high altitudes for cardiovascular risk factors and cardiovascular disease (CVD) events. Conversely, residence at high altitude comes at the tradeoff of developing diseases such as chronic mountain sickness and high-altitude pulmonary hypertension and worsens outcomes for diseases such as chronic obstructive pulmonary disease. Interestingly, recently published data show a potential role for severe hypoxia as a unique and unexpected therapy after myocardial infarction. In this review, we will discuss the current literature evaluating the effects of altitude exposure and the accompanying hypoxia on health and the potential therapeutic applications of hypoxia on CVD.
Collapse
Affiliation(s)
- Jainy J Savla
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Benjamin D Levine
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
- 2 Institute for Exercise and Environmental Medicine , Texas Health Presbyterian Hospital, Dallas, Texas
| | - Hesham A Sadek
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
44
|
Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 2018; 127:154-164. [PMID: 30571978 DOI: 10.1016/j.yjmcc.2018.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 12/17/2018] [Indexed: 01/11/2023]
Abstract
RATIONALE Understanding and manipulating the cardiomyocyte cell cycle has been the focus of decades of research, however the ultimate goal of activating mitotic activity in adult mammalian cardiomyocytes remains elusive and controversial. The relentless pursuit of controlling cardiomyocyte mitosis has been complicated and obfuscated by a multitude of indices used as evidence of cardiomyocyte cell cycle activity that lack clear identification of cardiomyocyte "proliferation" versus cell cycle progression, endoreplication, endomitosis, and even DNA damage. Unambiguous appreciation of the complexity of cardiomyocyte replication that avoids oversimplification and misinterpretation is desperately needed. OBJECTIVE Track cardiomyocyte cell cycle activity and authenticate fidelity of proliferation markers as indicators of de novo cardiomyogenesis in post-mitotic cardiomyocytes. METHODS AND RESULTS Cardiomyocytes expressing the FUCCI construct driven by the α-myosin heavy chain promoter were readily and uniformly detected through the myocardium of transgenic mice. Cardiomyocyte cell cycle activity peaks at postnatal day 2 and rapidly declines thereafter with almost all cardiomyocytes arrested at the G1/S cell cycle transition. Myocardial infarction injury in adult hearts prompts transient small increases in myocytes progressing through cell cycle without concurrent mitotic activity, indicating lack of cardiomyogenesis. In comparison, cardiomyogenic activity during early postnatal development correlated with coincidence of FUCCI and cKit+ cells that were undetectable in the adult myocardium. CONCLUSIONS Cardiomyocyte-specific expression of Fluorescence Ubiquitination-based Cell Cycle Indicators (FUCCI) reveals previously unappreciated aspects of cardiomyocyte cell cycle arrest and biological activity in postnatal development and in response to pathologic damage. Compared to many other methods and model systems, the FUCCI transgenic (FUCCI-Tg) mouse represents a valuable tool to unambiguously track cell cycle and proliferation of the entire cardiomyocyte population in the adult murine heart. FUCCI-Tg provides a desperately needed novel approach in the armamentarium of tools to validate cardiomyocyte proliferative activity that will reveal cell cycle progression, discriminate between cycle progression, DNA replication, and proliferation, and provide important insight for enhancing cardiomyocyte proliferation in the context of adult myocardial tissue.
Collapse
|
45
|
Zuppo DA, Tsang M. Fusion heals the broken-hearted. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S21. [PMID: 30613596 DOI: 10.21037/atm.2018.09.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Daniel A Zuppo
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Tsang
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Abstract
After decades of directed research, no effective regenerative therapy is currently available to repair the injured human heart. The epicardium, a layer of mesothelial tissue that envelops the heart in all vertebrates, has emerged as a new player in cardiac repair and regeneration. The epicardium is essential for muscle regeneration in the zebrafish model of innate heart regeneration, and the epicardium also participates in fibrotic responses in mammalian hearts. This structure serves as a source of crucial cells, such as vascular smooth muscle cells, pericytes, and fibroblasts, during heart development and repair. The epicardium also secretes factors that are essential for proliferation and survival of cardiomyocytes. In this Review, we describe recent advances in our understanding of the biology of the epicardium and the effect of these findings on the candidacy of this structure as a therapeutic target for heart repair and regeneration.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Regeneration Next, Duke University, Durham, NC, USA.
| |
Collapse
|
47
|
Abstract
BACKGROUND The adult mammalian heart is incapable of meaningful functional recovery after injury, and thus promoting heart regeneration is 1 of the most important therapeutic targets in cardiovascular medicine. In contrast to the adult mammalian heart, the neonatal mammalian heart is capable of regeneration after various types of injury. Since the first report in 2011, a number of groups have reported their findings on neonatal heart regeneration. The current review provides a comprehensive analysis of heart regeneration studies in neonatal mammals conducted to date, outlines lessons learned, and poses unanswered questions. METHODS We performed a PubMed search using the keywords "neonatal" and "heart" and "regeneration." In addition, we assessed all publications that cited the first neonatal heart regeneration reports: Porrello et al, Science, Feb 2011 for apical resection injury; Porrello et al, PNAS, Dec 2012 for coronary ligation injury; and Mahmoud et al, Nature Methods, Jan 2014 for surgical methodology. Publications were examined for surgical models used, timing of surgery, and postinjury assessment including anatomic, histological, and functional assessment, as well as conclusions drawn. RESULTS We found 30 publications that performed neonatal apical resection, 19 publications that performed neonatal myocardial infarction by coronary artery ligation, and 6 publications that performed cryoinjury using liquid nitrogen-cooled metal probes. Both apical resection and ischemic infarction injury in neonatal mice result in a robust regenerative response, mediated by cardiomyocyte proliferation. On the other hand, several reports have demonstrated that cryoinjury is associated with incomplete heart regeneration in neonatal mice. Not surprisingly, several studies suggest that injury size, as well as surgical and histological techniques, can strongly influence the observed regenerative response and final conclusions. Studies have utilized these neonatal cardiac injury models to identify factors that either inhibit or stimulate heart regeneration. CONCLUSIONS Overall, there is consensus that both apical resection and coronary ligation injuries during the first 2 days of life result in heart regeneration in neonatal mammals, whereas cryoinjury was not associated with a similar regenerative response. This regenerative response is mediated by proliferation of preexisting cardiomyocytes, and is modifiable by injury size and surgical technique, as well as metabolic, immunologic, genetic, and environmental factors.
Collapse
Affiliation(s)
- Nicholas T Lam
- Department of Internal Medicine, Division of Cardiology (N.T.L and H.A.S.)
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology (N.T.L and H.A.S.).,Hamon Center for Regenerative Science and Medicine (H.A.S.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
48
|
Abstract
Death of adult cardiac myocytes and supportive tissues resulting from cardiovascular diseases such as myocardial infarction is the proximal driver of pathological ventricular remodeling that often culminates in heart failure. Unfortunately, no currently available therapeutic barring heart transplantation can directly replenish myocytes lost from the injured heart. For decades, the field has struggled to define the intrinsic capacity and cellular sources for endogenous myocyte turnover in pursuing more innovative therapeutic strategies aimed at regenerating the injured heart. Although controversy persists to this day as to the best therapeutic regenerative strategy to use, a growing consensus has been reached that the very limited capacity for new myocyte formation in the adult mammalian heart is because of proliferation of existing cardiac myocytes but not because of the activity of an endogenous progenitor cell source of some sort. Hence, future therapeutic approaches should take into consideration the fundamental biology of myocyte renewal in designing strategies to potentially replenish these cells in the injured heart.
Collapse
Affiliation(s)
| | - Jeffery D Molkentin
- From the Department of Pediatrics (R.J.V., J.D.M.)
- Howard Hughes Medical Institute (J.D.M.)
| | - Steven R Houser
- Cincinnati Children's Hospital Medical Center, OH; and the Lewis Katz School of Medicine, Cardiovascular Research Center, Temple University, Philadelphia, PA (S.R.H.)
| |
Collapse
|
49
|
Jadapalli JK, Halade GV. Unified nexus of macrophages and maresins in cardiac reparative mechanisms. FASEB J 2018; 32:5227-5237. [PMID: 29750575 DOI: 10.1096/fj.201800254r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are immune-sensing "big eater" phagocytic cells responsible for an innate, adaptive, and regenerative response. After myocardial infarction, macrophages predominantly clear the deceased cardiomyocyte apoptotic or necrotic neutrophils to develop a regenerative and reparative program with the activation of the lipoxygenase-mediated maresin (MaR) metabolome at the site of ischemic injury. The specialized proresolving molecule and macrophage mediator in resolving inflammation, MaR-1, produced by human macrophages, has potent defining effects that limit polymorphonuclear neutrophil infiltration, enhance uptake of apoptotic PMNs, regulate inflammation resolution and tissue regeneration, and reduce pain. In addition to proresolving and anti-inflammatory actions, MaR-1 displays potent tissue regenerative effects in stroke and is an antinociceptive. Macrophages actively participate in the biosynthesis of bioactive MaR-2, which exhibits anti-inflammatory, proresolving, and atherosclerotic effects. A new class of macrophage-derived molecules, MaR conjugates in tissue regeneration, is identified that regulates phagocytosis and the repair and regeneration of damaged tissue. The presented review provides a current summary of the effect of MaR in resolution pathophysiology, with relevance to a cardiac repair program.-Jadapalli, J. K., Halade, G. V. Unified nexus of macrophages and maresins in cardiac reparative mechanisms.
Collapse
Affiliation(s)
- Jeevan Kumar Jadapalli
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama, Birmingham, Alabama, USA
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
50
|
Sampaio-Pinto V, Rodrigues SC, Laundos TL, Silva ED, Vasques-Nóvoa F, Silva AC, Cerqueira RJ, Resende TP, Pianca N, Leite-Moreira A, D'Uva G, Thorsteinsdóttir S, Pinto-do-Ó P, Nascimento DS. Neonatal Apex Resection Triggers Cardiomyocyte Proliferation, Neovascularization and Functional Recovery Despite Local Fibrosis. Stem Cell Reports 2018; 10:860-874. [PMID: 29503089 PMCID: PMC5918841 DOI: 10.1016/j.stemcr.2018.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
So far, opposing outcomes have been reported following neonatal apex resection in mice, questioning the validity of this injury model to investigate regenerative mechanisms. We performed a systematic evaluation, up to 180 days after surgery, of the pathophysiological events activated upon apex resection. In response to cardiac injury, we observed increased cardiomyocyte proliferation in remote and apex regions, neovascularization, and local fibrosis. In adulthood, resected hearts remain consistently shorter and display permanent fibrotic tissue deposition in the center of the resection plane, indicating limited apex regrowth. However, thickening of the left ventricle wall, explained by an upsurge in cardiomyocyte proliferation during the initial response to injury, compensated cardiomyocyte loss and supported normal systolic function. Thus, apex resection triggers both regenerative and reparative mechanisms, endorsing this injury model for studies aimed at promoting cardiomyocyte proliferation and/or downplaying fibrosis. Apex resection triggers fibrosis, neovascularization, and cardiomyocyte proliferation Permanent fibrotic deposition is confined to the apex Injured hearts display morphometric alterations but regain functional competence Cardiomyocyte proliferation is sufficient to compensate tissue loss by resection
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sílvia C Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Tiago L Laundos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Elsa D Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Ana C Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Gladstone Institutes, University of California San Francisco, San Francisco 94158, USA
| | - Rui J Cerqueira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Tatiana P Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Nicola Pianca
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy
| | - Adelino Leite-Moreira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina da Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Gabriele D'Uva
- Scientific and Technological Pole, IRCCS MultiMedica, 20138 Milan, Italy
| | - Sólveig Thorsteinsdóttir
- Departamento de Biologia Animal, cE3c - Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|