1
|
Lloyd K, Pitstick L, Gao F, Cuevas-Nunez MC, Ventrella R. The Effects of Photobiomodulation Therapy on Xenopus laevis Embryonic Epithelium. Photobiomodul Photomed Laser Surg 2025; 43:215-218. [PMID: 40238654 DOI: 10.1089/photob.2024.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Background: Photobiomodulation therapy (PBMT) is widely used in clinical settings, particularly for treating oral mucositis. Although PBMT has shown promise in aiding tissue healing, its safety and potential effects on tumorigenesis remain controversial. Objective: Xenopus laevis (X. laevis) tadpoles have proven to be an effective in vivo model system to study how different therapies affect epithelial biology. Because of this, the goal of this study was to investigate how PBMT influences epithelial tissue in X. laevis tadpoles. Methods: X. laevis tadpoles were treated with PBMT three times, every 24 h, using a 660 nm low-level laser at a fluence of 2.08 J/cm2 and an irradiance of 0.208 W/cm2, resulting in a cumulative dose of 2.25 J. Tadpole tails were then fixed, and the abnormal tissue area was analyzed using fluorescent microscopy. Results: PBMT induced the formation of abnormal tissue structures along the epithelial edges. The altered tissue increased from 0.03% in control tadpoles to 0.37% in PBMT-treated tadpoles (p < 0.0001; Mann-Whitney nonparametric test), and the number of tadpoles displaying this abnormal phenotype increased from 3.8% of control tadpoles to 30.6% of PBMT-treated tadpoles (p < 0.001; chi-squared test). Conclusion: This study demonstrates that PBMT can have significant effects on the epithelial tissue of X. laevis. The PBMT-induced abnormal tissue structures represent a loss of tissue polarization and cellular organization along the tail edge, both of which are essential to maintaining tissue homeostasis. For the first time, we show that X. laevis may provide an in vivo model system for examining the effects and mechanisms of PBMT.
Collapse
Affiliation(s)
- Kelsey Lloyd
- College of Dental Medicine-Illinois, Midwestern University, Downers Grove, Illinois, USA
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| | - Feng Gao
- College of Dental Medicine-Illinois, Midwestern University, Downers Grove, Illinois, USA
| | - Maria C Cuevas-Nunez
- College of Dentistry, UIC Barcelona International University of Catalonia, Barcelona, Spain
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| |
Collapse
|
2
|
Carotenuto R, Pallotta MM, Tussellino M, Fogliano C. Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective. BIOLOGY 2023; 12:890. [PMID: 37372174 DOI: 10.3390/biology12060890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
3
|
Mevissen TET, Prasad AV, Walter JC. TRIM21-dependent target protein ubiquitination mediates cell-free Trim-Away. Cell Rep 2023; 42:112125. [PMID: 36807144 PMCID: PMC10435667 DOI: 10.1016/j.celrep.2023.112125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antibody receptor and E3 ubiquitin ligase that promotes destruction of a broad range of pathogens. TRIM21 also underlies the antibody-dependent protein targeting method Trim-Away. Current evidence suggests that TRIM21 binding to antibodies leads to formation of a self-anchored K63 ubiquitin chain on the N terminus of TRIM21 that triggers the destruction of TRIM21, antibody, and target protein. Here, we report that addition of antibody and TRIM21 to Xenopus egg extracts promotes efficient degradation of endogenous target proteins, establishing cell-free Trim-Away as a powerful tool to interrogate protein function. Chemical methylation of TRIM21 had no effect on target proteolysis, whereas deletion of all lysine residues in targets abolished their ubiquitination and proteasomal degradation. These results demonstrate that target protein, but not TRIM21, polyubiquitination is required for Trim-Away, and they suggest that current models of TRIM21 function should be fundamentally revised.
Collapse
Affiliation(s)
- Tycho E T Mevissen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| | - Anisa V Prasad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Torres-Dimas E, Cruz-Ramírez A, Bermúdez-Cruz RM. Cancer in Amphibia, a rare phenomenon? Cell Biol Int 2022; 46:1992-1998. [PMID: 35979661 DOI: 10.1002/cbin.11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 08/06/2022] [Indexed: 11/08/2022]
Abstract
Compared to other animals, the spontaneous occurrence of tumors in wild amphibians is relatively rare, generally limited to specific populations or species. The number of reports of spontaneous tumors in amphibians known up to 1986 was 491 cases in anurans and about 253 cases in urodeles. Similarly, there have been many, unsuccessful attempts to chemically or biologically induce tumors in amphibians. With these considerations, it is inevitable to wonder: do urodeles and anurans have an inherent resistance to cancer? Here, we review the spontaneous and induced occurrence of tumors in amphibians in a timeline, as well as failed attempts to induce tumors in these amphibians. Indeed, recent studies seem to indicate that there is a relationship between regeneration and cancer because regenerating tissues seem to resist tumorigenesis, as opposed to nonregenerative tissues of the same amphibian models. Although the mechanisms that allow regenerating tissues to resist tumorigenesis have not been elucidated, it is worth to note that, in addition to the apparent relationship between regeneration and cancer, amphibians possess characteristics that could contribute to their ability to resist the development of neoplastic events. The implications of these features in cancer susceptibility are discussed.
Collapse
Affiliation(s)
- Esteban Torres-Dimas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
5
|
Carotenuto R, Tussellino M, Ronca R, Benvenuto G, Fogliano C, Fusco S, Netti PA. Toxic effects of SiO 2NPs in early embryogenesis of Xenopuslaevis. CHEMOSPHERE 2022; 289:133233. [PMID: 34896176 DOI: 10.1016/j.chemosphere.2021.133233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The exposure of organisms to the nanoparticulate is potentially hazardous, particularly when it occurs during embryogenesis. The effects of commercial SiO2NPs in early development were studied, using Xenopus laevis as a model to investigate their possible future employment by means of the Frog Embryo Teratogenesis Assay-Xenopus test (FETAX). The SiO2NPs did not change the survival but produced several abnormalities in developing embryos, in particular, the dorsal pigmentation, the cartilages of the head and branchial arches were modified; the encephalon, spinal cord and nerves are anomalous and the intestinal brush border show signs of suffering; these embryos are also bradycardic. In addition, the expression of genes involved in the early pathways of embryo development was modified. Treated embryos showed an increase of reactive oxygen species. This study suggests that SiO2NPs are toxic but non-lethal and showed potential teratogenic effects in Xenopus. The latter may be due to their cellular accumulation and/or to the effect caused by the interaction of SiO2NPs with cytoplasmic and/or nuclear components. ROS production could contribute to the observed effects. In conclusion, the data indicates that the use of SiO2NPs requires close attention and further studies to better clarify their activity in animals, including humans.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | - Raffaele Ronca
- Institute of Biostructures and Bioimaging (IBB)-CNR, Naples, Italy
| | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Italian Institute of Technology, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy; Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Matos B, Howl J, Jerónimo C, Fardilha M. Modulation of serine/threonine-protein phosphatase 1 (PP1) complexes: A promising approach in cancer treatment. Drug Discov Today 2021; 26:2680-2698. [PMID: 34390863 DOI: 10.1016/j.drudis.2021.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
Cancer is the second leading cause of death worldwide. Despite the availability of numerous therapeutic options, tumor heterogeneity and chemoresistance have limited the success of these treatments, and the development of effective anticancer therapies remains a major focus in oncology research. The serine/threonine-protein phosphatase 1 (PP1) and its complexes have been recognized as potential drug targets. Research on the modulation of PP1 complexes is currently at an early stage, but has immense potential. Chemically diverse compounds have been developed to disrupt or stabilize different PP1 complexes in various cancer types, with the objective of inhibiting disease progression. Beneficial results obtained in vitro now require further pre-clinical and clinical validation. In conclusion, the modulation of PP1 complexes seems to be a promising, albeit challenging, therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - John Howl
- Molecular Pharmacology Group, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Walentek P. Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia. Genesis 2021; 59:e23406. [PMID: 33400364 DOI: 10.1002/dvg.23406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022]
Abstract
The Xenopus embryonic epidermis is a powerful model to study mucociliary biology, development, and disease. Particularly, the Xenopus system is being used to elucidate signaling pathways, transcription factor functions, and morphogenetic mechanisms regulating cell fate specification, differentiation and cell function. Thereby, Xenopus research has provided significant insights into potential underlying molecular mechanisms for ciliopathies and chronic airway diseases. Recent studies have also established the embryonic epidermis as a model for mucociliary epithelial remodeling, multiciliated cell trans-differentiation, cilia loss, and mucus secretion. Additionally, the tadpole foregut epithelium is lined by a mucociliary epithelium, which shows remarkable features resembling mammalian airway epithelia, including its endodermal origin and a variable cell type composition along the proximal-distal axis. This review aims to summarize the advantages of the Xenopus epidermis for mucociliary epithelial biology and disease modeling. Furthermore, the potential of the foregut epithelium as novel mucociliary model system is being highlighted. Additional perspectives are presented on how to expand the range of diseases that can be modeled in the frog system, including proton pump inhibitor-associated pneumonia as well as metaplasia in epithelial cells of the airway and the gastroesophageal region.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
9
|
Zlatow AL, Wilson SS, Bouley DM, Tetens-Woodring J, Buchholz DR, Green SL. Axial Skeletal Malformations in Genetically Modified Xenopus laevis and Xenopus tropicalis. Comp Med 2020; 70:532-541. [PMID: 33203505 PMCID: PMC7754201 DOI: 10.30802/aalas-cm-20-000069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal malformations in captive-bred, adult Xenopus spp., have not previously been reported. Here we describe 10 sexually mature, genetically modified laboratory frogs (6 Xenopus laevis and 4 Xenopus tropicalis) with axial skeletal abnormalities. The young adult frogs were described by veterinary staff as presenting with "hunchbacks," but were otherwise considered to be in good health. All affected frogs were genetically engineered using various techniques: transcription activator-like effector nucleases (TALEN) editing using thyroid hormone receptor α TALEN mRNA, restriction enzyme-mediated integration methods involving insertion of the inducible transgene pCAR/TRDN, or via I-SceI meganuclease transgenesis using either pDRTREdpTR-HS4 or pDPCrtTA-TREG-HS4 plasmid sequences. Radiographic findings (6 frogs) and gross necropsy (10 frogs) revealed vertebral column malformations and sacroiliac deformities that resulted in moderate to severe kyphosis and kyphoscoliosis. These findings were confirmed and additional skeletal abnormalities were identified using computed tomography to create a 3D reconstruction of 4 frogs. Additional findings visible on the 3D reconstructions included incomplete vertebral segmentation, malformed transverse processes, and a short and/or curved urostyle. Histopathologic findings included misshapen intervertebral joints with nonconforming articular surfaces, narrowed joint cavities, flattened or irregularly-formed articular cartilage, irregular maturation lines and nonpolarized chondrocytes, excess fibrocartilage, and evidence of irregular bone resorption and growth. While the specific etiology of the vertebral skeletal abnormalities remains unclear, possibilities include: 1) egg/oocyte physical manipulation (dejellying, microinjection, fertilization, etc.), 2) induction and expression of the transgenes, 3) inactivation (knockout) of existing genes by insertional mutagenesis, or 4) a combination of the above. Furthermore, the possibility of undetected changes in the macro or microenvironment, or a feature of the genetic background of the affected frogs cannot be ruled out.
Collapse
Affiliation(s)
- Anne L Zlatow
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Sabrina S Wilson
- Diagnostic Imaging Service, William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Sherril L Green
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California;,
| |
Collapse
|
10
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
An in vivo brain-bacteria interface: the developing brain as a key regulator of innate immunity. NPJ Regen Med 2020; 5:2. [PMID: 32047653 PMCID: PMC7000827 DOI: 10.1038/s41536-020-0087-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023] Open
Abstract
Infections have numerous effects on the brain. However, possible roles of the brain in protecting against infection, and the developmental origin and role of brain signaling in immune response, are largely unknown. We exploited a unique Xenopus embryonic model to reveal control of innate immune response to pathogenic E. coli by the developing brain. Using survival assays, morphological analysis of innate immune cells and apoptosis, and RNA-seq, we analyzed combinations of infection, brain removal, and tail-regenerative response. Without a brain, survival of embryos injected with bacteria decreased significantly. The protective effect of the developing brain was mediated by decrease of the infection-induced damage and of apoptosis, and increase of macrophage migration, as well as suppression of the transcriptional consequences of the infection, all of which decrease susceptibility to pathogen. Functional and pharmacological assays implicated dopamine signaling in the bacteria–brain–immune crosstalk. Our data establish a model that reveals the very early brain to be a central player in innate immunity, identify the developmental origins of brain–immune interactions, and suggest several targets for immune therapies.
Collapse
|
12
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
13
|
Easterling MR, Engbrecht KM, Crespi EJ. Endocrine regulation of regeneration: Linking global signals to local processes. Gen Comp Endocrinol 2019; 283:113220. [PMID: 31310748 DOI: 10.1016/j.ygcen.2019.113220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
Regeneration in amphibians and reptiles has been explored since the early 18th century, giving us a working in vivo model to study epimorphic regeneration in vertebrates. Studies aiming to uncover primary mechanisms of regeneration have predominantly focused on genetic pathways regulating specific stages of the regeneration process: wound healing, blastema formation and growth, and pattern formation. However, studies across organisms show that environmental conditions and physiological state of the animal can affect the rate or quality of regeneration, and endocrine signals are likely the mediators of these effects. Endocrine signals working/acting directly on receptors expressed in the structure or via neuroendocrine pathways can affect regeneration by modulating immune response to injury, allocation of energetic resources, or by enhancing or inhibiting proliferation and differentiation pathways in regenerating tissue. This review discusses the cumulative knowledge known about endocrine regulation of regeneration and important future research directions of interest to both ecological and biomedical research.
Collapse
Affiliation(s)
- Marietta R Easterling
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States.
| | - Kristin M Engbrecht
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States; Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Erica J Crespi
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States
| |
Collapse
|
14
|
Zeng SL, Sudlow LC, Berezin MY. Using Xenopus oocytes in neurological disease drug discovery. Expert Opin Drug Discov 2019; 15:39-52. [PMID: 31674217 DOI: 10.1080/17460441.2020.1682993] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: Neurological diseases present a difficult challenge in drug discovery. Many of the current treatments have limited efficiency or result in a variety of debilitating side effects. The search of new therapies is of a paramount importance, since the number of patients that require a better treatment is growing rapidly. As an in vitro model, Xenopus oocytes provide the drug developer with many distinct advantages, including size, durability, and efficiency in exogenous protein expression. However, there is an increasing need to refine the recent breakthroughs.Areas covered: This review covers the usage and recent advancements of Xenopus oocytes for drug discovery in neurological diseases from expression and functional measurement techniques to current applications in Alzheimer's disease, painful neuropathies, and amyotrophic lateral sclerosis (ALS). The existing limitations of Xenopus oocytes in drug discovery are also discussed.Expert opinion: With the rise of aging population and neurological disorders, Xenopus oocytes, will continue to play an important role in understanding the mechanism of the disease, identification and validation of novel molecular targets, and drug screening, providing high-quality data despite the technical limitations. With further advances in oocytes-related techniques toward an accurate modeling of the disease, the diagnostics and treatment of neuropathologies will be becoming increasing personalized.
Collapse
Affiliation(s)
- Steven L Zeng
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Tudrej P, Kujawa KA, Cortez AJ, Lisowska KM. Characteristics of in Vivo Model Systems for Ovarian Cancer Studies. Diagnostics (Basel) 2019; 9:E120. [PMID: 31540126 PMCID: PMC6787695 DOI: 10.3390/diagnostics9030120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
An understanding of the molecular pathogenesis and heterogeneity of ovarian cancer holds promise for the development of early detection strategies and novel, efficient therapies. In this review, we discuss the advantages and limitations of animal models available for basic and preclinical studies. The fruit fly model is suitable mainly for basic research on cellular migration, invasiveness, adhesion, and the epithelial-to-mesenchymal transition. Higher-animal models allow to recapitulate the architecture and microenvironment of the tumor. We discuss a syngeneic mice model and the patient derived xenograft model (PDX), both useful for preclinical studies. Conditional knock-in and knock-out methodology allows to manipulate selected genes at a given time and in a certain tissue. Such models have built our knowledge about tumor-initiating genetic events and cell-of-origin of ovarian cancers; it has been shown that high-grade serous ovarian cancer may be initiated in both the ovarian surface and tubal epithelium. It is postulated that clawed frog models could be developed, enabling studies on tumor immunity and anticancer immune response. In laying hen, ovarian cancer develops spontaneously, which provides the opportunity to study the genetic, biochemical, and environmental risk factors, as well as tumor initiation, progression, and histological origin; this model can also be used for drug testing. The chick embryo chorioallantoic membrane is another attractive model and allows the study of drug response.
Collapse
Affiliation(s)
- Patrycja Tudrej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Alexander Jorge Cortez
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|
16
|
Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, Fortriede JD, Burns KA, Wang Y, Lotay VS, Wang DZ, Segerdell E, Chaturvedi P, Karimi K, Vize PD, Zorn AM. Xenbase: Facilitating the Use of Xenopus to Model Human Disease. Front Physiol 2019; 10:154. [PMID: 30863320 PMCID: PMC6399412 DOI: 10.3389/fphys.2019.00154] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.
Collapse
Affiliation(s)
- Mardi J Nenni
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Malcolm E Fisher
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Virgilio Ponferrada
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Stanley Chu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joshua D Fortriede
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kevin A Burns
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Ying Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vaneet S Lotay
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Dong Zhou Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Erik Segerdell
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
17
|
Hardwick LJA, Philpott A. Xenopus Models of Cancer: Expanding the Oncologist's Toolbox. Front Physiol 2018; 9:1660. [PMID: 30538639 PMCID: PMC6277521 DOI: 10.3389/fphys.2018.01660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023] Open
Abstract
The use of the Xenopus model system has provided diverse contributions to cancer research, not least because of the striking parallels between tumour pathogenesis and early embryo development. Cell cycle regulation, signalling pathways, and cell behaviours such as migration are frequently perturbed in cancers; all have been investigated using Xenopus, and these developmental events can additionally act as an assay for drug development studies. In this mini-review, we focus our discussion primarily on whole embryo Xenopus models informing cancer biology; the contributions to date and future potential. Insights into tumour immunity, oncogene function, and visualisation of vascular responses during tumour formation have all been achieved with naturally occurring tumours and induced-tumour-like-structures in Xenopus. Finally, as we are now entering the era of genetically modified Xenopus models, we can harness genome editing techniques to recapitulate human disease through creating embryos with analogous genetic abnormalities. With the speed, versatility and accessibility that epitomise the Xenopus system, this new range of pre-clinical Xenopus models has great potential to advance our mechanistic understanding of oncogenesis and provide an early in vivo model for chemotherapeutic development.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Philpott Lab, Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Cambridge, United Kingdom.,Wellcome MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Peterhouse, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Philpott Lab, Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Cambridge, United Kingdom.,Wellcome MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Baxi AB, Lombard-Banek C, Moody SA, Nemes P. Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry. ACS Chem Neurosci 2018; 9:2064-2073. [PMID: 29578674 DOI: 10.1021/acschemneuro.7b00525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular program by which embryonic ectoderm is induced to form neural tissue is essential to understanding normal and impaired development of the central nervous system. Xenopus has been a powerful vertebrate model in which to elucidate this process. However, abundant vitellogenin (yolk) proteins in cells of the early Xenopus embryo interfere with protein detection by high-resolution mass spectrometry (HRMS), the technology of choice for identifying these gene products. Here, we systematically evaluated strategies of bottom-up proteomics to enhance proteomic detection from the neural ectoderm (NE) of X. laevis using nanoflow high-performance liquid chromatography (nanoLC) HRMS. From whole embryos, high-pH fractionation prior to nanoLC-HRMS yielded 1319 protein groups vs 762 proteins without fractionation (control). Compared to 702 proteins from dorsal halves of embryos (control), 1881 proteins were identified after yolk platelets were depleted via sucrose-gradient centrifugation. We combined these approaches to characterize protein expression in the NE of the early embryo. To guide microdissection of the NE tissues from the gastrula (stage 10), their precursor (midline dorsal-animal, or D111) cells were fate-mapped from the 32-cell embryo using a fluorescent lineage tracer. HRMS of the cell clones identified 2363 proteins, including 147 phosphoproteins (without phosphoprotein enrichment), transcription factors, and members from pathways of cellular signaling. In reference to transcriptomic maps of the developing X. laevis, 76 proteins involved in signaling pathways were gene matched to transcripts with known enrichment in the neural plate. Besides a protocol, this work provides qualitative proteomic data on the early developing NE.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Camille Lombard-Banek
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| |
Collapse
|
19
|
Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget 2017; 7:19575-88. [PMID: 26988909 PMCID: PMC4991402 DOI: 10.18632/oncotarget.8036] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/11/2016] [Indexed: 01/01/2023] Open
Abstract
It has long been known that the resting potential of tumor cells is depolarized relative to their normal counterparts. More recent work has provided evidence that resting potential is not just a readout of cell state: it regulates cell behavior as well. Thus, the ability to control resting potential in vivo would provide a powerful new tool for the study and treatment of tumors, a tool capable of revealing living-state physiological information impossible to obtain using molecular tools applied to isolated cell components. Here we describe the first use of optogenetics to manipulate ion-flux mediated regulation of membrane potential specifically to prevent and cause regression of oncogene-induced tumors. Injection of mutant-KRAS mRNA induces tumor-like structures with many documented similarities to tumors, in Xenopus tadpoles. We show that expression and activation of either ChR2D156A, a blue-light activated cation channel, or Arch, a green-light activated proton pump, both of which hyperpolarize cells, significantly lowers the incidence of KRAS tumor formation. Excitingly, we also demonstrate that activation of co-expressed light-activated ion translocators after tumor formation significantly increases the frequency with which the tumors regress in a process called normalization. These data demonstrate an optogenetic approach to dissect the biophysics of cancer. Moreover, they provide proof-of-principle for a novel class of interventions, directed at regulating cell state by targeting physiological regulators that can over-ride the presence of mutations.
Collapse
|
20
|
Zahn N, Levin M, Adams DS. The Zahn drawings: new illustrations of Xenopus embryo and tadpole stages for studies of craniofacial development. Development 2017; 144:2708-2713. [PMID: 28765211 PMCID: PMC5560046 DOI: 10.1242/dev.151308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The embryos and tadpoles of the frog Xenopus are increasingly important subjects for studies of the development of the head and face - studies that are providing novel and crucial insight into the causes and prevention of a suite of devastating birth defects, as well as basic evolutionary and developmental biology. However, many studies are conducted on a range of embryonic stages that are not fully represented in the beloved Xenopus resource, Nieuwkoop and Faber's classic Normal Table of Xenopus laevis (Daudin) The lack of standardized images at these stages acts as a barrier to the efficient and accurate representation and communication of experimental methodology and expression data. To fill this gap, we have created 27 new high-quality illustrations. Like their oft-used predecessors from Nieuwkoop and Faber, these drawings can be freely downloaded and used, and will, we hope, serve as an essential resource for this important model system.
Collapse
Affiliation(s)
| | - Michael Levin
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA.,Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Dany Spencer Adams
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
21
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
22
|
Tandon P, Conlon F, Furlow JD, Horb ME. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev Biol 2017; 426:325-335. [PMID: 27109192 PMCID: PMC5074924 DOI: 10.1016/j.ydbio.2016.04.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations.
Collapse
Affiliation(s)
- Panna Tandon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States.
| | - Frank Conlon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States
| | - J David Furlow
- Deparment of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| |
Collapse
|
23
|
Tanaka T, Ochi H, Takahashi S, Ueno N, Taira M. Genes coding for cyclin-dependent kinase inhibitors are fragile in Xenopus. Dev Biol 2017; 426:291-300. [PMID: 27393661 DOI: 10.1016/j.ydbio.2016.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 11/27/2022]
Abstract
Cell proliferation is strictly regulated by the dosage balance among cell-cycle regulators such as CDK/cyclin complexes and CDK-Inhibitors. Even in the allotetraploid genome of Xenopus laevis, the dosage balance must be maintained for animals to stay alive, and the duplicated homeologous genes seem to have gradually changed, through evolution, resulting in the best genes for them to thrive. In the Xenopus laevis genome, while homeologous gene pairs of CDKs are fundamentally maintained and a few cyclin genes are amplified, homeologous gene pairs of the important CDK-Inhibitors, CDKn1c and CDKn2a, are deleted from chromosomes L and S. Although losses of CDKn1c and CDKn2a can lead to diseases in humans, their loss in X. laevis does not affect the animals' health. Also, another gene coding CDKn1b is lost besides CDKn1c and CDKn2a in the genome of Xenopus tropicalis. These findings suggest a high resistance of Xenopus to diseases. We also found that CDKn2c.S expression is higher than that of CDKn2c.L, and a conserved noncoding sequence (CNS) of CDKn2c genomic loci on X. laevis chromosome S and X. tropicalis has an enhancement activity in regulating the different expression. These findings together indicate a surprising fragility of CDK inhibitor gene loci in the Xenopus genome in spite of their importance, and may suggest that factors other than CDK-inhibitors decelerate cell-cycling in Xenopus.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Shuji Takahashi
- Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Naoto Ueno
- National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Sater AK, Moody SA. Using Xenopus to understand human disease and developmental disorders. Genesis 2017; 55. [PMID: 28095616 DOI: 10.1002/dvg.22997] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Model animals are crucial to biomedical research. Among the commonly used model animals, the amphibian, Xenopus, has had tremendous impact because of its unique experimental advantages, cost effectiveness, and close evolutionary relationship with mammals as a tetrapod. Over the past 50 years, the use of Xenopus has made possible many fundamental contributions to biomedicine, and it is a cornerstone of research in cell biology, developmental biology, evolutionary biology, immunology, molecular biology, neurobiology, and physiology. The prospects for Xenopus as an experimental system are excellent: Xenopus is uniquely well-suited for many contemporary approaches used to study fundamental biological and disease mechanisms. Moreover, recent advances in high throughput DNA sequencing, genome editing, proteomics, and pharmacological screening are easily applicable in Xenopus, enabling rapid functional genomics and human disease modeling at a systems level.
Collapse
Affiliation(s)
- Amy K Sater
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
25
|
Bermudez JG, Chen H, Einstein LC, Good MC. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts. Genesis 2017; 55. [PMID: 28132422 DOI: 10.1002/dvg.23013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/11/2022]
Abstract
Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery.
Collapse
Affiliation(s)
- Jessica G Bermudez
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Hui Chen
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Lily C Einstein
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Matthew C Good
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104.,Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
26
|
Naert T, Van Nieuwenhuysen T, Vleminckx K. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models. Genesis 2017; 55. [PMID: 28095622 DOI: 10.1002/dvg.23005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research.
Collapse
Affiliation(s)
- Thomas Naert
- Developmental Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Tom Van Nieuwenhuysen
- Developmental Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Kris Vleminckx
- Developmental Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Belgium
| |
Collapse
|
27
|
Hoogenboom WS, Klein Douwel D, Knipscheer P. Xenopus egg extract: A powerful tool to study genome maintenance mechanisms. Dev Biol 2017; 428:300-309. [PMID: 28427716 DOI: 10.1016/j.ydbio.2017.03.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
Abstract
DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands
| | - Daisy Klein Douwel
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands
| | - Puck Knipscheer
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands.
| |
Collapse
|
28
|
Madsen T, Arnal A, Vittecoq M, Bernex F, Abadie J, Labrut S, Garcia D, Faugère D, Lemberger K, Beckmann C, Roche B, Thomas F, Ujvari B. Cancer Prevalence and Etiology in Wild and Captive Animals. ECOLOGY AND EVOLUTION OF CANCER 2017. [PMCID: PMC7149733 DOI: 10.1016/b978-0-12-804310-3.00002-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neoplasia has been recorded in the vast majority of metazoans. The frequent occurrence of cancer in multicellular organisms suggests that neoplasia, similar to pathogens/parasites, may have a significant negative impact on host fitness in the wild. This is supported by the fact that wildlife cancers have recently been shown to result in significantly increased levels of mortality and concomitant reduction in fitness. By thorough searches of the available literature we provide a comprehensive and an updated list of cancer prevalence and etiology in the wild. We were, however, unable to find data on nontransmissible cancer prevalence in invertebrates and consequently this chapter focuses on cancer in wild vertebrates. Although single cases of cancer are frequently encountered in the wildlife, we were only able to retrieve robust data on cancer prevalence for 31 vertebrate species (12 fish, 3 amphibians, 2 reptiles, 2 birds, and 12 mammals). Cancer prevalence among these vertebrates ranged from as low as 0.2% observed in Canada geese (Branta canadensis) to more than 50% recorded in both Santa Catalina Island foxes (Urocyon littoralis catalinae) and Cape mountain zebras (Equus zebra zebra). The high prevalence recorded in some vertebrates strongly suggests that cancer in wildlife may indeed carry significant fitness costs. In spite of this, the low number of published comprehensive studies clearly shows that so far cancer in wildlife has received insufficient attention by biologists. We hope that this chapter will act as a catalyst for further studies focusing on the impact of cancer in wild animals. The chapter additionally compares cancer recorded in French zoological parks to those obtained at other zoological parks. Finally, we provide an updated list of cancer recorded as single cases in the wild, as well as in captive animals.
Collapse
Affiliation(s)
- Thomas Madsen
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Audrey Arnal
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), UMR IRD/CNRS/UM 5290, Montpellier, France,CREEC (Centre for Ecological and Evolutionary Research on Cancer), Montpellier, France
| | - Marion Vittecoq
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), UMR IRD/CNRS/UM 5290, Montpellier, France,CREEC (Centre for Ecological and Evolutionary Research on Cancer), Montpellier, France,Research Center of the Tour du Valat, Arles, France
| | - Florence Bernex
- CREEC (Centre for Ecological and Evolutionary Research on Cancer), Montpellier, France,Montpellier University, Montpellier, France,RHEM, IRCM, Institute of Cancer Research Montpellier, INSERM, Montpellier, France,ICM Regional Cancer Institute of Montpellier, Montpellier, France
| | | | | | - Déborah Garcia
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), UMR IRD/CNRS/UM 5290, Montpellier, France,CREEC (Centre for Ecological and Evolutionary Research on Cancer), Montpellier, France
| | - Dominique Faugère
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), UMR IRD/CNRS/UM 5290, Montpellier, France,CREEC (Centre for Ecological and Evolutionary Research on Cancer), Montpellier, France
| | | | - Christa Beckmann
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Benjamin Roche
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), UMR IRD/CNRS/UM 5290, Montpellier, France,CREEC (Centre for Ecological and Evolutionary Research on Cancer), Montpellier, France,UMMISCO (International Center for Mathematical and Computational Modeling of Complex Systems), UMI IRD/UPMC UMMISCO, Bondy, France
| | - Frédéric Thomas
- MIVEGEC (Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control), UMR IRD/CNRS/UM 5290, Montpellier, France,CREEC (Centre for Ecological and Evolutionary Research on Cancer), Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
29
|
Liu LS, Zhao LY, Wang SH, Jiang JP. Research proceedings on amphibian model organisms. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 37:237-45. [PMID: 27469255 PMCID: PMC4980064 DOI: 10.13918/j.issn.2095-8137.2016.4.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022]
Abstract
Model organisms have long been important in biology and medicine due to their specific characteristics. Amphibians, especially Xenopus, play key roles in answering fundamental questions on developmental biology, regeneration, genetics, and toxicology due to their large and abundant eggs, as well as their versatile embryos, which can be readily manipulated and developed in vivo. Furthermore, amphibians have also proven to be of considerable benefit in human disease research due to their conserved cellular developmental and genomic organization. This review gives a brief introduction on the progress and limitations of these animal models in biology and human disease research, and discusses the potential and challenge of Microhyla fissipes as a new model organism.
Collapse
Affiliation(s)
- Lu-Sha Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lan-Ying Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Hong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Ping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
30
|
Tanaka M, Kuriyama S, Itoh G, Kohyama A, Iwabuchi Y, Shibata H, Yashiro M, Aiba N. Identification of anti-cancer chemical compounds using Xenopus embryos. Cancer Sci 2016; 107:803-11. [PMID: 27019404 PMCID: PMC4968590 DOI: 10.1111/cas.12940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 01/23/2023] Open
Abstract
Cancer tissues have biological characteristics similar to those observed in embryos during development. Many types of cancer cells acquire pro-invasive ability through epithelial-mesenchymal transition (EMT). Similar processes (gastrulation and migration of cranial neural crest cells [CNCC]) are observed in the early stages of embryonic development in Xenopus during which cells that originate from epithelial sheets through EMT migrate to their final destinations. The present study examined Xenopus embryonic tissues to identify anti-cancer compounds that prevent cancer invasion. From the initial test of known anti-cancer drugs, AMD3100 (an inhibitor of CXCR4) and paclitaxel (a cytoskeletal drug targeting microtubules) effectively prevented migration during gastrulation or CNCC development. Blind-screening of 100 synthesized chemical compounds was performed, and nine candidates that inhibited migration of these embryonic tissues without embryonic lethality were selected. Of these, C-157 (an analog of podophyllotoxin) and D-572 (which is an indole alkaroid) prevented cancer cell invasion through disruption of interphase microtubules. In addition, these compounds affected progression of mitotic phase and induced apoptosis of SAS oral cancer cells. SAS tumors were reduced in size after intratumoral injection of C-157, and peritoneal dissemination of melanoma cells and intracranial invasion of glioma cells were inhibited by C-157 and D-572. When the other analogues of these chemicals were compared, those with subtle effect on embryos were not tumor suppressive. These results suggest that a novel chemical-screening approach based on Xenopus embryos is an effective method for isolating anti-cancer drugs and, in particular, targeting cancer cell invasion and proliferation.
Collapse
Affiliation(s)
- Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Aki Kohyama
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Akita University Graduate School of Medicine, Akita, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Namiko Aiba
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
31
|
Abstract
Despite important differences between infectious diseases and cancers, tumour development (neoplasia) can nonetheless be closely compared to infectious disease because of the similarity of their effects on the body. On this basis, we predict that many of the life-history (LH) responses observed in the context of host-parasite interactions should also be relevant in the context of cancer. Parasites are thought to affect LH traits of their hosts because of strong selective pressures like direct and indirect mortality effects favouring, for example, early maturation and reproduction. Cancer can similarly also affect LH traits by imposing direct costs and/or indirectly by triggering plastic adjustments and evolutionary responses. Here, we discuss how and why a LH focus is a potentially productive but under-exploited research direction for cancer research, by focusing our attention on similarities between infectious disease and cancer with respect to their effects on LH traits and their evolution. We raise the possibility that LH adjustments can occur in response to cancer via maternal/paternal effects and that these changes can be heritable to (adaptively) modify the LH traits of their offspring. We conclude that LH adjustments can potentially influence the transgenerational persistence of inherited oncogenic mutations in populations.
Collapse
|