1
|
La Charité-Harbec S, Lachance JFB, Ryan AK, Gupta IR. Claudin-3 regulates luminal fluid accumulation in the developing chick lung. Differentiation 2022; 124:52-59. [DOI: 10.1016/j.diff.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/03/2022]
|
2
|
Kim JG, Kim HH, Bae SJ. Akap12beta supports asymmetric heart development via modulating the Kupffer’s vesicle formation in zebrafish. BMB Rep 2019. [PMID: 31383248 PMCID: PMC6726206 DOI: 10.5483/bmbrep.2019.52.8.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The vertebrate body plan is accomplished by left-right asymmetric organ development and the heart is a representative asymmetric internal organ which jogs to the left-side. Kupffer’s vesicle (KV) is a spherical left-right organizer during zebrafish embryogenesis and is derived from a cluster of dorsal forerunner cells (DFCs). Cadherin1 is required for collective migration of a DFC cluster and failure of DFC collective migration by Cadherin1 decrement causes KV malformation which results in defective heart laterality. Recently, loss of function mutation of A-kinase anchoring protein 12 (AKAP12) is reported as a high-risk gene in congenital heart disease patients. In this study, we demonstrated the role of akap12β in asymmetric heart development. The akap12β, one of the akap12 isoforms, was expressed in DFCs which give rise to KV and akap12β-deficient zebrafish embryos showed defective heart laterality due to the fragmentation of DFC clusters which resulted in KV malformation. DFC-specific loss of akap12β also led to defective heart laterality as a consequence of the failure of collective migration by cadherin1 reduction. Exogenous akap12β mRNA not only restored the defective heart laterality but also increased cadherin1 expression in akap12β morphant zebrafish embryos. Taken together, these findings provide the first experimental evidence that akap12β regulates heart laterality via cadherin1.
Collapse
Affiliation(s)
- Jeong-gyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyun-Ho Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Biological and Medical Device Evaluation Team, Korea Testing & Research Institute, Gwacheon 13810, Korea
| | - Sung-Jin Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Korean Medicine Research Center for Healthy Aging, Pusan National Univerity, Yangsan 50612, Korea
| |
Collapse
|
3
|
Abstract
The claudin family of tetraspan transmembrane proteins is essential for tight junction formation and regulation of paracellular transport between epithelial cells. Claudins also play a role in apical-basal cell polarity, cell adhesion and link the tight junction to the actin cytoskeleton to exert effects on cell shape. The function of claudins in paracellular transport has been extensively studied through loss-of-function and gain-of-function studies in cell lines and in animal models, however, their role in morphogenesis has been less appreciated. In this review, we will highlight the importance of claudins during morphogenesis by specifically focusing on their critical functions in generating epithelial tubes, lumens, and tubular networks during organ formation.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada
| | - Indra R Gupta
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| | - Aimee K Ryan
- a Department of Human Genetics , McGill University , Montréal , Québec , Canada.,b The Research Institute of the McGill University Health Centre , Montréal , Québec , Canada.,c Department of Pediatrics , McGill University , Montréal , Québec , Canada
| |
Collapse
|
4
|
Baumholtz AI, Simard A, Nikolopoulou E, Oosenbrug M, Collins MM, Piontek A, Krause G, Piontek J, Greene NDE, Ryan AK. Claudins are essential for cell shape changes and convergent extension movements during neural tube closure. Dev Biol 2017; 428:25-38. [PMID: 28545845 PMCID: PMC5523803 DOI: 10.1016/j.ydbio.2017.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 11/29/2022]
Abstract
During neural tube closure, regulated changes at the level of individual cells are translated into large-scale morphogenetic movements to facilitate conversion of the flat neural plate into a closed tube. Throughout this process, the integrity of the neural epithelium is maintained via cell interactions through intercellular junctions, including apical tight junctions. Members of the claudin family of tight junction proteins regulate paracellular permeability, apical-basal cell polarity and link the tight junction to the actin cytoskeleton. Here, we show that claudins are essential for neural tube closure: the simultaneous removal of Cldn3, −4 and −8 from tight junctions caused folate-resistant open neural tube defects. Their removal did not affect cell type differentiation, neural ectoderm patterning nor overall apical-basal polarity. However, apical accumulation of Vangl2, RhoA, and pMLC were reduced, and Par3 and Cdc42 were mislocalized at the apical cell surface. Our data showed that claudins act upstream of planar cell polarity and RhoA/ROCK signaling to regulate cell intercalation and actin-myosin contraction, which are required for convergent extension and apical constriction during neural tube closure, respectively. Simultaneous removal of Cldn3, −4 and −8 causes open neural tube defects. Folic acid cannot rescue open NTDs caused by depletion of Cldn3, −4 and −8. Removal of Cldn3, −4 and −8 prevents convergent extension. Apical constriction to form the median hinge point requires Cldn3, −4 and −8. Claudins localize polarity complex components to the apical surface.
Collapse
Affiliation(s)
- Amanda I Baumholtz
- Department of Human Genetics, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Annie Simard
- Department of Experimental Medicine, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Evanthia Nikolopoulou
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| | - Marcus Oosenbrug
- Department of Anatomy and Cell Biology, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Michelle M Collins
- Department of Human Genetics, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Anna Piontek
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Berlin, Germany.
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Berlin, Germany.
| | - Jörg Piontek
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Nicholas D E Greene
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| | - Aimee K Ryan
- Department of Human Genetics, McGill University, Canada; Department of Experimental Medicine, McGill University, Canada; Department of Pediatrics, McGill University, Canada; The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Shinde V, Perumal Srinivasan S, Henry M, Rotshteyn T, Hescheler J, Rahnenführer J, Grinberg M, Meisig J, Blüthgen N, Waldmann T, Leist M, Hengstler JG, Sachinidis A. Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells. Stem Cell Res Ther 2016; 7:190. [PMID: 28038682 PMCID: PMC5203708 DOI: 10.1186/s13287-016-0449-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) partially recapitulate early embryonic three germ layer development, allowing testing of potential teratogenic hazards. Because use of hESCs is ethically debated, we investigated the potential for human induced pluripotent stem cells (hiPSCs) to replace hESCs in such tests. METHODS Three cell lines, comprising hiPSCs (foreskin and IMR90) and hESCs (H9) were differentiated for 14 days. Their transcriptome profiles were obtained on day 0 and day 14 and analyzed by comprehensive bioinformatics tools. RESULTS The transcriptomes on day 14 showed that more than 70% of the "developmental genes" (regulated genes with > 2-fold change on day 14 compared to day 0) exhibited variability among cell lines. The developmental genes belonging to all three cell lines captured biological processes and KEGG pathways related to all three germ layer embryonic development. In addition, transcriptome profiles were obtained after 14 days of exposure to teratogenic valproic acid (VPA) during differentiation. Although the differentially regulated genes between treated and untreated samples showed more than 90% variability among cell lines, VPA clearly antagonized the expression of developmental genes in all cell lines: suppressing upregulated developmental genes, while inducing downregulated ones. To quantify VPA-disturbed development based on developmental genes, we estimated the "developmental potency" (D p ) and "developmental index" (D i ). CONCLUSIONS Despite differences in genes deregulated by VPA, uniform D i values were obtained for all three cell lines. Given that the D i values for VPA were similar for hESCs and hiPSCs, D i can be used for robust hazard identification, irrespective of whether hESCs or hiPSCs are used in the test systems.
Collapse
Affiliation(s)
- Vaibhav Shinde
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Sureshkumar Perumal Srinivasan
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Margit Henry
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Tamara Rotshteyn
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Jörg Rahnenführer
- Department of Statistics, Technical University of Dortmund University, 44227, Dortmund, Germany
| | - Marianna Grinberg
- Department of Statistics, Technical University of Dortmund University, 44227, Dortmund, Germany
| | - Johannes Meisig
- Integrative Research Institute for the Life Sciences, Institute for Theoretical Biology, Humboldt University, 10115, Berlin, Germany
| | - Nils Blüthgen
- Integrative Research Institute for the Life Sciences, Institute for Theoretical Biology, Humboldt University, 10115, Berlin, Germany
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box: M657, 78457, Konstanz, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Box: M657, 78457, Konstanz, Germany
| | - Jan Georg Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), 44139, Dortmund, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany.
| |
Collapse
|
6
|
Claudin-3, claudin-7, and claudin-10 show different distribution patterns during decidualization and trophoblast invasion in mouse and human. Histochem Cell Biol 2015; 144:571-85. [PMID: 26340953 DOI: 10.1007/s00418-015-1361-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 12/18/2022]
Abstract
Implantation of the mammalian embryo requires profound endometrial changes for successful pregnancy, including epithelial-mesenchymal transition of the luminal epithelium and stromal-epithelial transition of the stromal cells resulting in decidualization. Claudins (Cldn) determine the variability in tight junction paracellular permeability and may play a role during these epithelial and decidual changes. We here localized Cldn3, Cldn7 and Cldn10 proteins in the different compartments of murine endometrium up to day 8.5 of pregnancy (dpc) as well as in human endometrium and first trimester decidua. In murine estrous endometrium, luminal and glandular epithelium exhibited Cldn3 and Cldn7, whereas Cldn10 was only detectable in glandular epithelium. At 4.5 dpc, Cldn3 protein shifted to an apical localization, whereas Cldn7 vanished in the epithelium of the implantation chamber. At this stage, there was no stromal signal for Cldn3 and Cldn7, but a strong induction of Cldn10 in the primary decidual zone. Cldn3 proteins emerged at 5.5 dpc spreading considerably from 6.5 dpc onward in the endothelial cells of the decidual blood sinusoids and in the decidual cells of the compact antimesometrial region. In addition to Cldn3, Cldn10 was identified in human endometrial epithelia. Both proteins were not detected in human first trimester decidual cells. Cldn3 was shown in murine trophoblast giant cells as well as in human extravillous trophoblast cells and thus may have an impact on trophoblast invasion in both species. We here showed a specific claudin signature during early decidualization pointing to a role in decidual angiogenesis and regulation of trophoblast invasion.
Collapse
|