1
|
Sun Y, Zhao G, Zhang Y, Lu Z, Kang Z, Sun J, Feng X, Guo J, Liao Y, Guo L, Yang Y, Zhang D, Bi W, Chen R, Yue W. Multitrait GWAS of non-suicidal self-injury and the polygenetic effects on child psychopathology and brain structures. Cell Rep Med 2025:102119. [PMID: 40347941 DOI: 10.1016/j.xcrm.2025.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/15/2024] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Non-suicidal self-injury (NSSI) is highly prevalent in recent years, but the genetic architecture remains unknown. We perform a multitrait analysis of genome-wide association study on NSSI, incorporating self-harm and suicide attempt. Common genetic variants account for 6.03% of NSSI variance. Three risk loci are associated with NSSI at 7q31.2 (rs62474683), DCC (rs4372758), and LCA5L/GET1/GET1-SH3BGR (rs2837022). Increased expression levels of GET1/SH3BGR in hippocampus relates to NSSI risk. Fine-mapping identifies seven likely causal variants, and colocalization with rs4281987 and rs2837022 evidences SH3BGR/GET1 expression in hippocampus to NSSI. In an independent sample, polygenic risk score for NSSI is associated with children's NSSI behavior, suicidal ideation, and suicide attempt (odds ratios [ORs]: 1.14-1.37). Reduction in right temporal pole volume mediates NSSI genetic liability for children's NSSI behavior. Walking for pleasure and exercises like swimming and bowling reduces NSSI risk, whereas smoking increases it. This study elucidates the NSSI genetic basis and its impact on children's emotions, behavior, and brain structure.
Collapse
Affiliation(s)
- Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guorui Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhe Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhewei Kang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Junyuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaoyang Feng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jing Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yundan Liao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Liangkun Guo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yang Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China.
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
2
|
Shi W, Chen R, Zhou M, Li Y, Zhang Y, Wang J, Hao B, Liao S. Methyltransferase METTL3 governs the modulation of SH3BGR expression through m6A methylation modification, imparting influence on apoptosis in the context of Down syndrome-associated cardiac development. Cell Death Discov 2024; 10:396. [PMID: 39237501 PMCID: PMC11377721 DOI: 10.1038/s41420-024-02164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Down syndrome (DS), caused by an additional chromosome 21, has a high risk of congenital heart defects (CHD), one of the primary causes of mortality in DS newborns. To elucidate the pathogenetic mechanisms underlying this condition, we explored the role of RNA m6A methylation, regulated by METTL3, in DS cardiac development and its impact on the expression of SH3BGR, a gene located at Down syndrome congenital heart disease (DS-CHD) minimal region. We analyzed DS fetal cardiac tissues to assess RNA m6A methylation levels and identify potential contributors. RNA sequencing was performed to detect differentially expressed genes in the same tissues. To further understand METTL3's function in heart development, we inactivated Mettl3 in the developing mouse heart to mimic the significantly reduced METTL3 observed in DS cardiac development. Additionally, human cardiomyocyte AC16 cells were used to investigate the molecular mechanism by which METTL3 regulates SH3BGR expression. Apoptosis was analyzed to evaluate METTL3's effect on heart development through SH3BGR regulation. Reduced m6A modification and decreased METTL3 expression were observed in human DS fetal hearts, along with a significant increase of SH3BGR expression. METTL3, through m6A modification, was found to regulate SH3BGR expression, by influencing mRNA stability. METTL3-deficient mouse embryos exhibited heart malformation with increased apoptosis, emphasizing its role in heart development. In DS hearts, METTL3 downregulation and SH3BGR upregulation, potentially orchestrated by abnormal m6A modification, contribute to gene dysregulation and apoptosis. This study reveals novel insights into DS cardiac pathology, highlighting the intricate role of METTL3 in DS congenital heart defects and presenting the m6A modification of SH3BGR as a potential therapeutic target.
Collapse
Affiliation(s)
- Weili Shi
- Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Rui Chen
- Henan Provincial People's Hospital, Department of Obstetrics, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingjie Zhou
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yunian Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuwei Zhang
- Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Jikui Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Bingtao Hao
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Shixiu Liao
- Henan Provincial People's Hospital, Medical Genetics Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, People's Hospital of Zhengzhou University, Zhengzhou, China.
- National Health Commission Key Laboratory of Birth Defect Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China.
| |
Collapse
|
3
|
Yang X, Tang H, He L, Peng T, Li J, Zhang J, Liu L, Zhou H, Chen Z, Zhao J, Zhang Y, Zhong M, Han M, Zhang M, Niu H, Xu K. Proteomic changes of botulinum neurotoxin injection on muscle growth in children with spastic cerebral palsy. Proteomics Clin Appl 2024; 18:e2300070. [PMID: 38456375 DOI: 10.1002/prca.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE The study aims to explore the proteomic profile and specific target proteins associated with muscle growth in response to botulinum neurotoxin A (BoNT-A) treatment, in order to improve spasticity management in children with cerebral palsy (CP). EXPERIMENTAL DESIGN A total of 54 participants provided 60 plasma samples for proteomic analysis. Among them, six children were sampled before and after receiving their first BoNT-A injection. In addition, 48 unrelated children were enrolled, among whom one group had never received BoNT-A injections and another group was sampled after their first BoNT-A injection. Differentially expressed proteins were identified using the data-independent acquisition (DIA) mass spectrometry approach. Gene Ontology (GO), protein-protein interaction network, and Kyoto Encyclopedia of Genes and Genome analysis were conducted to explore the function and relationship among differentially expressed proteins. The expression levels of target proteins were verified by quantitative real-time PCR and western blotting. RESULTS Analysis identified significant differential expression of 90 proteins across two time points, including 48 upregulated and 42 downregulated proteins. The upregulated thioredoxin, α-actinin-1, and aggrecan, and the downregulated integrin beta-1 may affect the growth of muscles affected by spasticity 3 months after BoNT-A injection. This effect is potentially mediated through the activation or inhibition of PI3K-Akt, focal adhesion, and regulation of actin cytoskeleton signaling pathways. CONCLUSION AND CLINICAL RELEVANCE BoNT-A injection could lead to a disruption of protein levels and signaling pathways, a condition subsequently associated with muscle growth. This finding might aid clinicians in optimizing the management of spasticity in children with CP.
Collapse
Affiliation(s)
- Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingbo Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingyi Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Sport Rehabilitation, Shanghai University of Sport, shanghai, China
| | - Yage Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingshan Han
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mengqing Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiran Niu
- Genechem Biotechnology Co., Ltd, Shanghai, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Wang S, Shi M, Zhang Y, Niu J, Li W, Yuan J, Cai C, Yang Y, Gao P, Guo X, Li B, Lu C, Cao G. Construction of LncRNA-Related ceRNA Networks in Longissimus Dorsi Muscle of Jinfen White Pigs at Different Developmental Stages. Curr Issues Mol Biol 2024; 46:340-354. [PMID: 38248324 PMCID: PMC10814722 DOI: 10.3390/cimb46010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
The development of skeletal muscle in pigs might determine the quality of pork. In recent years, long non-coding RNAs (lncRNAs) have been found to play an important role in skeletal muscle growth and development. In this study, we investigated the whole transcriptome of the longissimus dorsi muscle (LDM) of Jinfen White pigs at three developmental stages (1, 90, and 180 days) and performed a comprehensive analysis of lncRNAs, mRNAs, and micro-RNAs (miRNAs), aiming to find the key regulators and interaction networks in Jinfen White pigs. A total of 2638 differentially expressed mRNAs (DE mRNAs) and 982 differentially expressed lncRNAs (DE lncRNAs) were identified. Compared with JFW_1d, there were 497 up-regulated and 698 down-regulated DE mRNAs and 212 up-regulated and 286 down-regulated DE lncRNAs in JFW_90d, respectively. In JFW_180d, there were 613 up-regulated and 895 down-regulated DE mRNAs and 184 up-regulated and 131 down-regulated DE lncRNAs compared with JFW_1d. There were 615 up-regulated and 477 down-regulated DE mRNAs and 254 up-regulated and 355 down-regulated DE lncRNAs in JFW_180d compared with JFW_90d. Compared with mRNA, lncRNA has fewer exons, fewer ORFs, and a shorter length. We performed GO and KEGG pathway functional enrichment analysis for DE mRNAs and the potential target genes of DE lncRNAs. As a result, several pathways are involved in muscle growth and development, such as the PI3K-Akt, MAPK, hedgehog, and hippo signaling pathways. These are among the pathways through which mRNA and lncRNAs function. As part of this study, bioinformatic screening was used to identify miRNAs and DE lncRNAs that could act as ceRNAs. Finally, we constructed an lncRNA-miRNA-mRNA regulation network containing 26 mRNAs, 7 miRNAs, and 17 lncRNAs; qRT-PCR was used to verify the key genes in these networks. Among these, XLOC_022984/miR-127/ENAH and XLOC_016847/miR-486/NRF1 may function as key ceRNA networks. In this study, we obtained transcriptomic profiles from the LDM of Jinfen White pigs at three developmental stages and screened out lncRNA-miRNA-mRNA regulatory networks that may provide crucial information for the further exploration of the molecular mechanisms during skeletal muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu 030801, China; (S.W.); (M.S.); (Y.Z.); (J.N.); (W.L.); (J.Y.); (C.C.); (Y.Y.); (P.G.); (X.G.); (B.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu 030801, China; (S.W.); (M.S.); (Y.Z.); (J.N.); (W.L.); (J.Y.); (C.C.); (Y.Y.); (P.G.); (X.G.); (B.L.)
| |
Collapse
|
5
|
Brandt KJ, Burger F, Baptista D, Roth A, Fernandes da Silva R, Montecucco F, Mach F, Miteva K. Single-Cell Analysis Uncovers Osteoblast Factor Growth Differentiation Factor 10 as Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation Associated with Plaque Rupture in Human Carotid Artery Disease. Int J Mol Sci 2022; 23:1796. [PMID: 35163719 PMCID: PMC8836240 DOI: 10.3390/ijms23031796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Vascular smooth muscle cells (VSMCs) undergo a complex phenotypic switch in response to atherosclerosis environmental triggers, contributing to atherosclerosis disease progression. However, the complex heterogeneity of VSMCs and how VSMC dedifferentiation affects human carotid artery disease (CAD) risk has not been clearly established. (2) Method: A single-cell RNA sequencing analysis of CD45- cells derived from the atherosclerotic aorta of Apolipoprotein E-deficient (Apoe-/-) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the site-specific predisposition to atherosclerosis was performed. Growth Differentiation Factor 10 (GDF10) role in VSMCs phenotypic switch was investigated via flow cytometry, immunofluorescence in human atherosclerotic plaques. (3) Results: scRNAseq analysis revealed the transcriptomic profile of seven clusters, five of which showed disease-relevant gene signature of VSMC macrophagic calcific phenotype, VSMC mesenchymal chondrogenic phenotype, VSMC inflammatory and fibro-phenotype and VSMC inflammatory phenotype. Osteoblast factor GDF10 involved in ossification and osteoblast differentiation emerged as a hallmark of VSMCs undergoing phenotypic switch. Under hypercholesteremia, GDF10 triggered VSMC osteogenic switch in vitro. The abundance of GDF10 expressing osteogenic-like VSMCs cells was linked to the occurrence of carotid artery disease (CAD) events. (4) Conclusions: Taken together, these results provide evidence about GDF10-mediated VSMC osteogenic switch, with a likely detrimental role in atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Karim J. Brandt
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Rafaela Fernandes da Silva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 6627, Brazil
- Swiss Institute for Translational and Entrepreneurial Medicine, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Fabrizio Montecucco
- Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy;
- First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Francois Mach
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| |
Collapse
|
6
|
Li DD, Deng L, Hu SY, Zhang FL, Li DQ. SH3BGRL2 exerts a dual function in breast cancer growth and metastasis and is regulated by TGF-β1. Am J Cancer Res 2020; 10:1238-1254. [PMID: 32368399 PMCID: PMC7191107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023] Open
Abstract
SH3 domain-binding glutamic acid-rich-like protein 2 (SH3BGRL2) is a poorly defined member of the SH3BGR gene family with potential roles in cell differentiation and tissue development. Here, we report for the first time that SH3BGRL2 exerts a dual function in breast tumor growth and metastasis. SH3BGRL2 was downregulated in a subset of primary breast tumors, and suppressed breast cancer cell proliferation and colony formation in vitro and xenograft tumor growth in vivo. Strikingly, SH3BGRL2 enhanced breast cancer cell migratory, invasive, and lung metastatic capacity. Mechanistic investigations revealed that SH3BGRL2 interacted with and transcriptionally repressed spectrin alpha, non-erythrocytic 1 (SPTAN1) and spectrin beta, non-erythrocytic 1 (SPTBN1), two important cytoskeletal proteins. Functional rescue assays further demonstrated that depletion of SH3BGRL2 reduced breast cancer cell invasive potential, which was partially rescued by knockdown of SPTAN1 and SPTBN1 using specific small interfering RNA. Moreover, transforming growth factor-β1 (TGF-β1) transcriptionally activated SH3BGRL2 expression in breast cancer cells through the canonical TGF-β receptor-Smad pathway. Collectively, these results establish a dual function of SH3BGRL2 in breast cancer growth and metastasis and uncover SH3BGRL2 as a downstream target of the TGF-β1 signaling pathway in breast cancer cells.
Collapse
Affiliation(s)
- Dou-Dou Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan UniversityShanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Ling Deng
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan UniversityShanghai 200032, China
| | - Shu-Yuan Hu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan UniversityShanghai 200032, China
| | - Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan UniversityShanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan UniversityShanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| |
Collapse
|
7
|
Nel M, Mulder N, Europa TA, Heckmann JM. Using Whole Genome Sequencing in an African Subphenotype of Myasthenia Gravis to Generate a Pathogenetic Hypothesis. Front Genet 2019; 10:136. [PMID: 30881381 PMCID: PMC6406016 DOI: 10.3389/fgene.2019.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Myasthenia gravis (MG) is a rare, treatable antibody-mediated disease which is characterized by muscle weakness. The pathogenic antibodies are most frequently directed at the acetylcholine receptors (AChRs) at the skeletal muscle endplate. An ophthalmoplegic subphenotype of MG (OP-MG), which is characterized by treatment resistant weakness of the extraocular muscles (EOMs), occurs in a proportion of myasthenics with juvenile symptom onset and African genetic ancestry. Since the pathogenetic mechanism(s) underlying OP-MG is unknown, the aim of this study was to use a hypothesis-generating genome-wide analysis to identify candidate OP-MG susceptibility genes and pathways. Whole genome sequencing (WGS) was performed on 25 AChR-antibody positive myasthenic individuals of African genetic ancestry sampled from the phenotypic extremes: 15 with OP-MG and 10 individuals with control MG (EOM treatment-responsive). Variants were called according to the Genome Analysis Toolkit (GATK) best practice guidelines using the hg38 reference genome. In addition to single variant association analysis, variants were mapped to genes (±200 kb) using VEGAS2 to calculate gene-based test statistics and HLA allele group assignment was inferred through "best-match" alignment of reads against the IMGT/HLA database. While there were no single variant associations that reached genome-wide significance in this exploratory sample, several genes with significant gene-based test statistics and known to be expressed in skeletal muscle had biological functions which converge on muscle atrophy signaling and myosin II function. The closely linked HLA-DPA1 and HLA-DPB1 genes were associated with OP-MG subjects (gene-based p < 0.05) and the frequency of a functional A > G SNP (rs9277534) in the HLA-DPB1 3'UTR, which increases HLA-DPB1 expression, differed between the two groups (G-allele 0.30 in OP-MG vs. 0.60 in control MG; p = 0.04). Furthermore, we show that rs9277534 is an HLA-DBP1 expression quantitative trait locus in patient-derived myocytes (p < 1 × 10-3). The application of a SNP to gene to pathway approach to this exploratory WGS dataset of African myasthenic individuals, and comparing dichotomous subphenotypes, resulted in the identification of candidate genes and pathways that may contribute to OP-MG susceptibility. Overall, the hypotheses generated by this work remain to be verified by interrogating candidate gene and pathway expression in patient-derived extraocular muscle.
Collapse
Affiliation(s)
- Melissa Nel
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicola Mulder
- Computational Biology Division, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Tarin A Europa
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jeannine M Heckmann
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Pearl E, Morrow S, Noble A, Lerebours A, Horb M, Guille M. An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 2017; 92:149-155. [PMID: 28237331 PMCID: PMC5340284 DOI: 10.1016/j.theriogenology.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/26/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Cryogenic storage of sperm from genetically altered Xenopus improves cost effectiveness and animal welfare associated with their use in research; currently it is routine for X. tropicalis but not reliable for X. laevis. Here we compare directly the three published protocols for Xenopus sperm freeze-thaw and determine whether sperm storage temperature, method of testes maceration and delays in the freezing protocols affect successful fertilisation and embryo development in X. laevis. We conclude that the protocol is robust and that the variability observed in fertilisation rates is due to differences between individuals. We show that the embryos made from the frozen-thawed sperm are normal and that the adults they develop into are reproductively indistinguishable from others in the colony. This opens the way for using cryopreserved sperm to distribute dominant genetically altered (GA) lines, potentially saving travel-induced stress to the male frogs, reducing their numbers used and making Xenopus experiments more cost effective. Xenopus cryopreservation is robust using an optimized method. Success is dependent on the quality of animals from which the sperm are taken. Frozen sperm may now be used to distribute lines and wild-type male gametes around the world.
Collapse
Affiliation(s)
- Esther Pearl
- National Xenopus Resource, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Sean Morrow
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Anna Noble
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Adelaide Lerebours
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Marko Horb
- National Xenopus Resource, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Matthew Guille
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK; School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK.
| |
Collapse
|
9
|
DeLaughter DM, Bick AG, Wakimoto H, McKean D, Gorham JM, Kathiriya IS, Hinson JT, Homsy J, Gray J, Pu W, Bruneau BG, Seidman JG, Seidman CE. Single-Cell Resolution of Temporal Gene Expression during Heart Development. Dev Cell 2016; 39:480-490. [PMID: 27840107 PMCID: PMC5198784 DOI: 10.1016/j.devcel.2016.10.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/30/2016] [Accepted: 09/30/2016] [Indexed: 12/29/2022]
Abstract
Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease.
Collapse
Affiliation(s)
| | - Alexander G. Bick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - David McKean
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Irfan S. Kathiriya
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco
| | - John T. Hinson
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jesse Gray
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - William Pu
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA
- Cardiovascular Research Institute and Department of Pediatrics, University of California, San Francisco
| | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute and Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Tong F, Zhang M, Guo X, Shi H, Li L, Guan W, Wang H, Yang S. Expression patterns of SH3BGR family members in zebrafish development. Dev Genes Evol 2016; 226:287-95. [PMID: 27233781 DOI: 10.1007/s00427-016-0552-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 05/20/2016] [Indexed: 11/25/2022]
Abstract
SH3 domain-binding glutamic acid-rich (SH3BGR) gene family is composed of SH3BGR, SH3BGRL, SH3BGRL2, and SH3BGRL3 which encodes a cluster of small thioredoxin-like proteins and shares a Src homology 3 (SH3) domain. However, biological functions of SH3BGR family members are largely elusive. Given that zebrafish (Danio rerio) sh3bgrl, sh3bgrl2, sh3bgrl3, and sh3bgr are evolutionally identical to their corresponding human orthologues, we analyzed the spatiotemporal expression of SH3BGR family members in zebrafish embryonic development stages by in situ hybridization. Our results revealed that except sh3bgrl, other members are all maternally expressed, especially for sh3bgrl3 that is strongly expressed from one-cell stage to juvenile fishes. In situ expression patterns of SH3BGR members are similar in the very early developmental stages, including with commonly strong expression in intestines, olfactory bulbs, and neuromasts for neural system building up. Organ-specific expressions are also demonstrated, of which sh3bgr is uniquely expressed in sarcomere, and sh3bgrl3 in liver. sh3bgrl and sh3bgrl2 are similarly expressed in intestines, notochords, and neuromasts after 12-h post-fertilization of embryos. Eventually, messenger RNAs (mRNAs) of all sh3bgr members are mainly constrained into intestines of juvenile fishes. Collectively, our study clarified the expression patterns of sh3bgr family members in diverse organogenesis in embryonic development and indicates that SH3BGR members may play predominant roles in neural system development and in maintenance of normal function of digestive organs, especially for intestine homeostasis. However, their expression patterns are varied with the development stages and organ types, suggesting that the aberrant expression of these members would result in multiple diseases.
Collapse
Affiliation(s)
- Fang Tong
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2nd, Guangzhou, 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingming Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Guo
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2nd, Guangzhou, 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongshun Shi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2nd, Guangzhou, 510080, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, No. 74 Zhonshan Road 2nd, Guangzhou, 510080, China.
| | - Shulan Yang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2nd, Guangzhou, 510080, China.
| |
Collapse
|