1
|
Deng Z, Ran Q, Chang W, Li C, Li B, Huang S, Huang J, Zhang K, Li Y, Liu X, Liang Y, Guo Z, Huang S. Cdon is essential for organ left-right patterning by regulating dorsal forerunner cells clustering and Kupffer's vesicle morphogenesis. Front Cell Dev Biol 2024; 12:1429782. [PMID: 39239564 PMCID: PMC11374761 DOI: 10.3389/fcell.2024.1429782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Cdon and boc are members of the cell adhesion molecule subfamily III Ig/fibronectin. Although they have been reported to be involved in muscle and neural development at late developmental stage, their early roles in embryonic development remain unknown. Here, we discovered that in zebrafish, cdon, but not boc, is expressed in dorsal forerunner cells (DFCs) and the epithelium of Kupffer's vesicle (KV), suggesting a potential role for cdon in organ left-right (LR) patterning. Further data showed that liver and heart LR patterning were disrupted in cdon morphants and cdon mutants. Mechanistically, we found that loss of cdon function led to defect in DFCs clustering, reduced KV lumen, and defective cilia, resulting in randomized Nodal/spaw signaling and subsequent organ LR patterning defects. Additionally, predominant distribution of a cdon morpholino (MO) in DFCs caused defects in DFC clustering, KV morphogenesis, cilia number/length, Nodal/spaw signaling, and organ LR asymmetry, similar to those observed in cdon morphants and cdon -/- embryos, indicating a cell-autonomous role for cdon in regulating KV formation during LR patterning. In conclusion, our data demonstrate that during gastrulation and early somitogenesis, cdon is essential for proper DFC clustering, KV formation, and normal cilia, thereby playing a critical role in establishing organ LR asymmetry.
Collapse
Affiliation(s)
- Zhilin Deng
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Ultrasound, Luzhou People's Hospital, Luzhou, China
| | - Qin Ran
- Department of Cardiology, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Wenqi Chang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Chengni Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Botong Li
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Shuying Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingtong Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ke Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yuanyuan Li
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Xingdong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Yundan Liang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Zhenhua Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College, (China National Nuclear Corporation 416 Hospital), Chengdu, China
| |
Collapse
|
2
|
Abdel-Razek O, Marzouk A, MacKinnon M, Guy ET, Pohar SA, Zhushma E, Liu J, Sia I, Gokey JJ, Tay HG, Amack JD. Calcium signaling mediates proliferation of the precursor cells that give rise to the ciliated left-right organizer in the zebrafish embryo. Front Mol Biosci 2023; 10:1292076. [PMID: 38152112 PMCID: PMC10751931 DOI: 10.3389/fmolb.2023.1292076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023] Open
Abstract
Several of our internal organs, including heart, lungs, stomach, and spleen, develop asymmetrically along the left-right (LR) body axis. Errors in establishing LR asymmetry, or laterality, of internal organs during early embryonic development can result in birth defects. In several vertebrates-including humans, mice, frogs, and fish-cilia play a central role in establishing organ laterality. Motile cilia in a transient embryonic structure called the "left-right organizer" (LRO) generate a directional fluid flow that has been proposed to be detected by mechanosensory cilia to trigger asymmetric signaling pathways that orient the LR axis. However, the mechanisms that control the form and function of the ciliated LRO remain poorly understood. In the zebrafish embryo, precursor cells called dorsal forerunner cells (DFCs) develop into a transient ciliated structure called Kupffer's vesicle (KV) that functions as the LRO. DFCs can be visualized and tracked in the embryo, thereby providing an opportunity to investigate mechanisms that control LRO development. Previous work revealed that proliferation of DFCs via mitosis is a critical step for developing a functional KV. Here, we conducted a targeted pharmacological screen to identify mechanisms that control DFC proliferation. Small molecule inhibitors of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) were found to reduce DFC mitosis. The SERCA pump is involved in regulating intracellular calcium ion (Ca2+) concentration. To visualize Ca2+ in living embryos, we generated transgenic zebrafish using the fluorescent Ca2+ biosensor GCaMP6f. Live imaging identified dynamic cytoplasmic Ca2+ transients ("flux") that occur unambiguously in DFCs. In addition, we report Ca2+ flux events that occur in the nucleus of DFCs. Nuclear Ca2+ flux occurred in DFCs that were about to undergo mitosis. We find that SERCA inhibitor treatments during DFC proliferation stages alters Ca2+ dynamics, reduces the number of ciliated cells in KV, and alters embryo laterality. Mechanistically, SERCA inhibitor treatments eliminated both cytoplasmic and nuclear Ca2+ flux events, and reduced progression of DFCs through the S/G2 phases of the cell cycle. These results identify SERCA-mediated Ca2+ signaling as a mitotic regulator of the precursor cells that give rise to the ciliated LRO.
Collapse
Affiliation(s)
- Osama Abdel-Razek
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Amanda Marzouk
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Madison MacKinnon
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Edward T. Guy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Emily Zhushma
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Junjie Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Isabel Sia
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jason J. Gokey
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Hwee Goon Tay
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
3
|
Morleo M, Vieira HL, Pennekamp P, Palma A, Bento-Lopes L, Omran H, Lopes SS, Barral DC, Franco B. Crosstalk between cilia and autophagy: implication for human diseases. Autophagy 2023; 19:24-43. [PMID: 35613303 PMCID: PMC9809938 DOI: 10.1080/15548627.2022.2067383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is a self-degradative process necessary for cells to maintain their energy balance during development and in response to nutrient deprivation. Autophagic processes are tightly regulated and have been found to be dysfunctional in several pathologies. Increasing experimental evidence points to the existence of an interplay between autophagy and cilia. Cilia are microtubule-based organelles protruding from the cell surface of mammalian cells that perform a variety of motile and sensory functions and, when dysfunctional, result in disorders known as ciliopathies. Indeed, selective autophagic degradation of ciliary proteins has been shown to control ciliogenesis and, conversely, cilia have been reported to control autophagy. Moreover, a growing number of players such as lysosomal and mitochondrial proteins are emerging as actors of the cilia-autophagy interplay. However, some of the published data on the cilia-autophagy axis are contradictory and indicate that we are just starting to understand the underlying molecular mechanisms. In this review, the current knowledge about this axis and challenges are discussed, as well as the implication for ciliopathies and autophagy-associated disorders.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Helena L.A. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children’s Hospital - IRCCS, Rome, Italy
| | - Liliana Bento-Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Münster, University of Münster, Münster48149, Germany,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal,Member of the European Reference Networks ERN-LUNG, Lisbon, Portugal
| | - Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy,Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy,Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy,CONTACT Brunella Franco CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa1169-056, Portugal
| |
Collapse
|
4
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
5
|
Xu Y, Jang J, Gye MC. The Xenopus laevis teratogenesis assay for developmental toxicity of phthalate plasticizers and alternatives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118985. [PMID: 35167930 DOI: 10.1016/j.envpol.2022.118985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Contamination of phthalate ester plasticizers threatens the wildlife as well as human health. To evaluate the developmental toxicity of commonly used phthalate esters and emerging alternatives, the frog embryo teratogenesis assay-Xenopus (FETAX) was conducted for dibutyl-phthalate (DBP), benzyl-butyl-phthalate (BBP), dioctyl-terephthalate (DOTP), di(2-propylheptyl)-phthalate (DPHP), diisononyl-phthalate (DINP), diisodecyl-phthalate (DIDP), diethyl hexyl cyclohexane (DEHCH), and diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). The 96-hrs LC50 for DBP, BBP, DOTP, DIDP, DINCH, DINP, DPHP, and DEHCH were 18.3, 20.1, 588.7, 718.0, 837.5, 859.3, 899.0, and 899.0 mg/L, respectively. The 96-hrs EC50 of developmental abnormality of DBP, BBP, DPHP, DOTP, DINP, DEHCH, DINCH, and DIDP were 7.5, 18.2, 645.1, 653.6, 664.4, 745.6, 813.7, and 944.5 mg/L, respectively. The lowest observed effective concentration for embryonic survival, malformation, and growth was DINP, DBP, BBP, DIDP, DPHP, DINCH, DEHCH, and DOTP in increasing order. In tadpoles, DBP, BBP, DEHCH, DINP, and DIDP caused inositol-requiring enzyme 1 or protein kinase R-like endoplasmic reticulum kinase pathway endoplasmic reticulum stress (ERS) in order, and BBP, DBP, DOTP, DPHP, DINP, and DIDP caused long term ERS-related apoptosis or mitochondrial apoptosis in order. Together, in Xenopus embryos, the developmental toxicity and the cellular stress-inducing potential of tested plasticizers were DEHCH, DINCH, DPHP, DIDP, DINP, DOTP, BBP, and DBP in increasing order. In consideration of public as well as environmental health this information would be helpful for industrial choice of phthalate ester plasticizers and their alternatives.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jihyun Jang
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
6
|
Stark BC, Gao Y, Sepich DS, Belk L, Culver MA, Hu B, Mekel M, Ferris W, Shin J, Solnica-Krezel L, Lin F, Cooper JA. CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Dev Biol 2022; 481:148-159. [PMID: 34599906 PMCID: PMC8781030 DOI: 10.1016/j.ydbio.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins. Previous studies of CARMIL3, one of the three highly conserved CARMIL genes in vertebrates, have largely been limited to cells in culture. Towards understanding CARMIL function during embryogenesis in vivo, we analyzed zebrafish lines carrying mutations of carmil3. Maternal-zygotic mutants showed impaired endodermal migration during gastrulation, along with defects in dorsal forerunner cell (DFC) cluster formation, which affected the morphogenesis of Kupffer's vesicle (KV). Mutant KVs were smaller, contained fewer cells and displayed decreased numbers of cilia, leading to defects in left/right (L/R) patterning with variable penetrance and expressivity. The penetrance and expressivity of the KV phenotype in carmil3 mutants correlated well with the L/R heart positioning defect at the end of embryogenesis. This in vivo animal study of CARMIL3 reveals its new role during morphogenesis of the vertebrate embryo. This role involves migration of endodermal cells and DFCs, along with subsequent morphogenesis of the KV and L/R asymmetry.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Diane S. Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lakyn Belk
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Matthew A. Culver
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Wyndham Ferris
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| |
Collapse
|
7
|
Santra P, Amack JD. Loss of vacuolar-type H+-ATPase induces caspase-independent necrosis-like death of hair cells in zebrafish neuromasts. Dis Model Mech 2021; 14:dmm048997. [PMID: 34296747 PMCID: PMC8319552 DOI: 10.1242/dmm.048997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that regulates cellular pH. V-ATPase activity modulates several cellular processes, but cell-type-specific functions remain poorly understood. Patients with mutations in specific V-ATPase subunits can develop sensorineural deafness, but the underlying mechanisms are unclear. Here, we show that V-ATPase mutations disrupt the formation of zebrafish neuromasts, which serve as a model to investigate hearing loss. V-ATPase mutant neuromasts are small and contain pyknotic nuclei that denote dying cells. Molecular markers and live imaging show that loss of V-ATPase induces mechanosensory hair cells in neuromasts, but not neighboring support cells, to undergo caspase-independent necrosis-like cell death. This is the first demonstration that loss of V-ATPase can lead to necrosis-like cell death in a specific cell type in vivo. Mechanistically, loss of V-ATPase reduces mitochondrial membrane potential in hair cells. Modulating the mitochondrial permeability transition pore, which regulates mitochondrial membrane potential, improves hair cell survival. These results have implications for understanding the causes of sensorineural deafness, and more broadly, reveal functions for V-ATPase in promoting survival of a specific cell type in vivo.
Collapse
Affiliation(s)
- Peu Santra
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY 13244, USA
| |
Collapse
|
8
|
Srivastava P, Kane A, Harrison C, Levin M. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity 2021; 3:42-67. [PMID: 34476377 DOI: 10.1089/bioe.2019.0034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.
Collapse
Affiliation(s)
- Pranjal Srivastava
- Rye High School, Rye, New York, USA; Current Affiliation: College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anna Kane
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Christina Harrison
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
9
|
Moreno-Ayala R, Olivares-Chauvet P, Schäfer R, Junker JP. Variability of an Early Developmental Cell Population Underlies Stochastic Laterality Defects. Cell Rep 2021; 34:108606. [PMID: 33440143 PMCID: PMC7809618 DOI: 10.1016/j.celrep.2020.108606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/28/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Embryonic development seemingly proceeds with almost perfect precision. However, it is largely unknown how much underlying microscopic variability is compatible with normal development. Here, we quantify embryo-to-embryo variability in vertebrate development by studying cell number variation in the zebrafish endoderm. We notice that the size of a sub-population of the endoderm, the dorsal forerunner cells (DFCs, which later form the left-right organizer), exhibits significantly more embryo-to-embryo variation than the rest of the endoderm. We find that, with incubation of the embryos at elevated temperature, the frequency of left-right laterality defects is increased drastically in embryos with a low number of DFCs. Furthermore, we observe that these fluctuations have a large stochastic component among fish of the same genetic background. Hence, a stochastic variation in early development leads to a remarkably strong macroscopic phenotype. These fluctuations appear to be associated with maternal effects in the specification of the DFCs. High embryo-to-embryo variability of dorsal forerunner cell numbers Fluctuations of dorsal forerunner cells have a large stochastic component Embryos with fewer dorsal forerunner cells frequently develop laterality defects Variability of dorsal forerunner cell numbers is associated to maternal effects
Collapse
Affiliation(s)
- Roberto Moreno-Ayala
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Hannoversche Strasse 28, 10115 Berlin, Germany
| | - Pedro Olivares-Chauvet
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Hannoversche Strasse 28, 10115 Berlin, Germany
| | - Ronny Schäfer
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Hannoversche Strasse 28, 10115 Berlin, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Hannoversche Strasse 28, 10115 Berlin, Germany.
| |
Collapse
|
10
|
Fillatre J, Fauny JD, Fels JA, Li C, Goll M, Thisse C, Thisse B. TEADs, Yap, Taz, Vgll4s transcription factors control the establishment of Left-Right asymmetry in zebrafish. eLife 2019; 8:45241. [PMID: 31513014 PMCID: PMC6759317 DOI: 10.7554/elife.45241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
In many vertebrates, establishment of Left-Right (LR) asymmetry results from the activity of a ciliated organ functioning as the LR Organizer (LRO). While regulation of the formation of this structure by major signaling pathways has been described, the transcriptional control of LRO formation is poorly understood. Using the zebrafish model, we show that the transcription factors and cofactors mediating or regulating the transcriptional outcome of the Hippo signaling pathway play a pivotal role in controlling the expression of genes essential to the formation of the LRO including ligands and receptors of signaling pathways involved in this process and most genes required for motile ciliogenesis. Moreover, the transcription cofactor, Vgll4l regulates epigenetic programming in LRO progenitors by controlling the expression of writers and readers of DNA methylation marks. Altogether, our study uncovers a novel and essential role for the transcriptional effectors and regulators of the Hippo pathway in establishing LR asymmetry.
Collapse
Affiliation(s)
- Jonathan Fillatre
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Jean-Daniel Fauny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France.,Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | - Cheng Li
- Department of Genetics, University of Georgia, Athens, United States
| | - Mary Goll
- Department of Genetics, University of Georgia, Athens, United States
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
11
|
Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to biomedical opportunities. Curr Opin Genet Dev 2019; 57:61-69. [PMID: 31442749 DOI: 10.1016/j.gde.2019.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
Abstract
Cell-to-cell communication is a cornerstone of multicellular existence. The ancient mechanism of sharing information between cells using the conductance of ions across cell membranes and the propagation of electrical signals through tissue space is a powerful means of efficiently controlling cell decisions and behaviors. Our understanding of how cells use changes in 'bioelectrical' signals to elicit systems-level responses has dramatically improved in recent years. We are now in a position to not just describe these changes, but to also predictively alter them to learn more about their importance for developmental biology and regenerative medicine. Recent work is helping researchers construct a more integrative view of how these simple controls can orchestrate downstream changes in protein signaling pathways and gene regulatory networks. In this review, we highlight experiments and analyses that have led to new insights in bioelectrical controls, specifically as key modulators of complex pattern formation and tissue regeneration. We also discuss opportunities for the development of new therapeutic approaches in regenerative medicine applications by exploiting this fundamental biological phenomenon.
Collapse
|
12
|
Liu J, Zhu C, Ning G, Yang L, Cao Y, Huang S, Wang Q. Chemokine signaling links cell-cycle progression and cilia formation for left-right symmetry breaking. PLoS Biol 2019; 17:e3000203. [PMID: 31430272 PMCID: PMC6716676 DOI: 10.1371/journal.pbio.3000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/30/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022] Open
Abstract
Zebrafish dorsal forerunner cells (DFCs) undergo vigorous proliferation during epiboly and then exit the cell cycle to generate Kupffer's vesicle (KV), a ciliated organ necessary for establishing left-right (L-R) asymmetry. DFC proliferation defects are often accompanied by impaired cilia elongation in KV, but the functional and molecular interaction between cell-cycle progression and cilia formation remains unknown. Here, we show that chemokine receptor Cxcr4a is required for L-R laterality by controlling DFC proliferation and KV ciliogenesis. Functional analysis revealed that Cxcr4a accelerates G1/S transition in DFCs and stabilizes forkhead box j1a (Foxj1a), a master regulator of motile cilia, by stimulating Cyclin D1 expression through extracellular regulated MAP kinase (ERK) 1/2 signaling. Mechanistically, Cyclin D1-cyclin-dependent kinase (CDK) 4/6 drives G1/S transition during DFC proliferation and phosphorylates Foxj1a, thereby disrupting its association with proteasome 26S subunit, non-ATPase 4b (Psmd4b), a 19S regulatory subunit. This prevents the ubiquitin (Ub)-independent proteasomal degradation of Foxj1a. Our study uncovers a role for Cxcr4 signaling in L-R patterning and provides fundamental insights into the molecular linkage between cell-cycle progression and ciliogenesis.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengke Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, College of Animal Science in Rongchang Campus, Southwest University, Chongqing, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liping Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China
- * E-mail: (SH); (QW)
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SH); (QW)
| |
Collapse
|
13
|
Schmitz J, Güntürkün O, Ocklenburg S. Building an Asymmetrical Brain: The Molecular Perspective. Front Psychol 2019; 10:982. [PMID: 31133928 PMCID: PMC6524718 DOI: 10.3389/fpsyg.2019.00982] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
The brain is one of the most prominent examples for structural and functional differences between the left and right half of the body. For handedness and language lateralization, the most widely investigated behavioral phenotypes, only a small fraction of phenotypic variance has been explained by molecular genetic studies. Due to environmental factors presumably also playing a role in their ontogenesis and based on first molecular evidence, it has been suggested that functional hemispheric asymmetries are partly under epigenetic control. This review article aims to elucidate the molecular factors underlying hemispheric asymmetries and their association with inner organ asymmetries. While we previously suggested that epigenetic mechanisms might partly account for the missing heritability of handedness, this article extends this idea by suggesting possible alternatives for transgenerational transmission of epigenetic states that do not require germ line epigenetic transmission. This is in line with a multifactorial model of hemispheric asymmetries, integrating genetic, environmental, and epigenetic influencing factors in their ontogenesis.
Collapse
Affiliation(s)
- Judith Schmitz
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | | | |
Collapse
|
14
|
Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Videira PA, Morava E, Jaeken J, Dos Reis Ferreira V. CDG Therapies: From Bench to Bedside. Int J Mol Sci 2018; 19:ijms19051304. [PMID: 29702557 PMCID: PMC5983582 DOI: 10.3390/ijms19051304] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of genetic disorders that affect protein and lipid glycosylation and glycosylphosphatidylinositol synthesis. More than 100 different disorders have been reported and the number is rapidly increasing. Since glycosylation is an essential post-translational process, patients present a large range of symptoms and variable phenotypes, from very mild to extremely severe. Only for few CDG, potentially curative therapies are being used, including dietary supplementation (e.g., galactose for PGM1-CDG, fucose for SLC35C1-CDG, Mn2+ for TMEM165-CDG or mannose for MPI-CDG) and organ transplantation (e.g., liver for MPI-CDG and heart for DOLK-CDG). However, for the majority of patients, only symptomatic and preventive treatments are in use. This constitutes a burden for patients, care-givers and ultimately the healthcare system. Innovative diagnostic approaches, in vitro and in vivo models and novel biomarkers have been developed that can lead to novel therapeutic avenues aiming to ameliorate the patients’ symptoms and lives. This review summarizes the advances in therapeutic approaches for CDG.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Dorinda Marques-da-Silva
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare-Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy.
| | - Paula A Videira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Eva Morava
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaak Jaeken
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Center for Metabolic Diseases, Universitaire Ziekenhuizen (UZ) and Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
15
|
Xue C, Wang HH, Zhu J, Zhou J. The expression patterns of vestigial like family member 4 genes in zebrafish embryogenesis. Gene Expr Patterns 2018; 28:34-41. [PMID: 29454044 DOI: 10.1016/j.gep.2018.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 02/05/2018] [Indexed: 11/30/2022]
Abstract
Transcriptional cofactor Vestigial-like 4 (VGLL4) was considered to take part in the early stage of development. Different from human, three paralogs of vgll4 were found in zebrafish, which were vgll4a, vgll4b and vgll4l. However, the expression patterns of the three paralogs during zebrafish development remains unknown. In this study, we used in situ hybridization to elucidate the temporal and spatial expression of zebrafish vgll4 paralogs during normal embryonic and larval development. Similar expression was shown in certain areas at similar stages for the three paralogs. Expression of vgll4a, vgll4b and vgll4l were all found in pectoral fins and otic vesicles during the early developmental stages. On the other hand, a few differences of the three paralogs expression were found in eyes, pharynx, pharyngeal arches and brain tissues. The expression of vgll4a was weak and ubiquitous, while vgll4b was obviously expressed in brain tissues and vgll4l was clearly restricted to each pair of pharyngeal pouches. What's more, vgll4b and vgll4l had unique expression at mature lateral line neuromasts and forerunner cells respectively. Despite the conservativeness of functional domains, the three paralogs of zebrafish vgll4 shared several similarities and displayed some distinctions in the expression patterns, indicating that they may still have different and exclusive functions, which need to be further explored.
Collapse
Affiliation(s)
- Chang Xue
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hai Hong Wang
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhu
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Zhou
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Cowan JR, Tariq M, Shaw C, Rao M, Belmont JW, Lalani SR, Smolarek TA, Ware SM. Copy number variation as a genetic basis for heterotaxy and heterotaxy-spectrum congenital heart defects. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0406. [PMID: 27821535 DOI: 10.1098/rstb.2015.0406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Genomic disorders and rare copy number abnormalities are identified in 15-25% of patients with syndromic conditions, but their prevalence in individuals with isolated birth defects is less clear. A spectrum of congenital heart defects (CHDs) is seen in heterotaxy, a highly heritable and genetically heterogeneous multiple congenital anomaly syndrome resulting from failure to properly establish left-right (L-R) organ asymmetry during early embryonic development. To identify novel genetic causes of heterotaxy, we analysed copy number variants (CNVs) in 225 patients with heterotaxy and heterotaxy-spectrum CHDs using array-based genotyping methods. Clinically relevant CNVs were identified in approximately 20% of patients and encompassed both known and putative heterotaxy genes. Patients were carefully phenotyped, revealing a significant association of abdominal situs inversus with pathogenic or likely pathogenic CNVs, while d-transposition of the great arteries was more frequently associated with common CNVs. Identified cytogenetic abnormalities ranged from large unbalanced translocations to smaller, kilobase-scale CNVs, including a rare, single exon deletion in ZIC3, a gene known to cause X-linked heterotaxy. Morpholino loss-of-function experiments in Xenopus support a role for one of these novel candidates, the platelet isoform of phosphofructokinase-1 (PFKP) in heterotaxy. Collectively, our results confirm a high CNV yield for array-based testing in patients with heterotaxy, and support use of CNV analysis for identification of novel biological processes relevant to human laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Jason R Cowan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Muhammad Tariq
- Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Clinical Biochemistry, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Chad Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mitchell Rao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teresa A Smolarek
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229, USA
| | - Stephanie M Ware
- Department of Pediatrics and Medical and Molecular Genetics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Dasgupta A, Amack JD. Cilia in vertebrate left-right patterning. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150410. [PMID: 27821522 PMCID: PMC5104509 DOI: 10.1098/rstb.2015.0410] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 01/10/2023] Open
Abstract
Understanding how left-right (LR) asymmetry is generated in vertebrate embryos is an important problem in developmental biology. In humans, a failure to align the left and right sides of cardiovascular and/or gastrointestinal systems often results in birth defects. Evidence from patients and animal models has implicated cilia in the process of left-right patterning. Here, we review the proposed functions for cilia in establishing LR asymmetry, which include creating transient leftward fluid flows in an embryonic 'left-right organizer'. These flows direct asymmetric activation of a conserved Nodal (TGFβ) signalling pathway that guides asymmetric morphogenesis of developing organs. We discuss the leading hypotheses for how cilia-generated asymmetric fluid flows are translated into asymmetric molecular signals. We also discuss emerging mechanisms that control the subcellular positioning of cilia and the cellular architecture of the left-right organizer, both of which are critical for effective cilia function during left-right patterning. Finally, using mosaic cell-labelling and time-lapse imaging in the zebrafish embryo, we provide new evidence that precursor cells maintain their relative positions as they give rise to the ciliated left-right organizer. This suggests the possibility that these cells acquire left-right positional information prior to the appearance of cilia.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
18
|
Gokey JJ, Ji Y, Tay HG, Litts B, Amack JD. Kupffer's vesicle size threshold for robust left-right patterning of the zebrafish embryo. Dev Dyn 2015; 245:22-33. [PMID: 26442502 DOI: 10.1002/dvdy.24355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/21/2015] [Accepted: 09/27/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Motile cilia in the "organ of asymmetry" create directional fluid flows that are vital for left-right (LR) asymmetric patterning of vertebrate embryos. Organ function often depends on tightly regulated organ size control, but the role of organ of asymmetry size in LR patterning has remained unknown. Observations of the organ of asymmetry in the zebrafish, called Kupffer's vesicle (KV), have suggested significant variations in KV size in wild-type embryos, raising questions about the impact of KV organ size on LR patterning. RESULTS To understand the relationship between organ of asymmetry size and its function, we characterized variations in KV at several developmental stages and in several different zebrafish strains. We found that the number of KV cilia and the size of the KV lumen were highly variable, whereas the length of KV cilia showed less variation. These variabilities were similar among different genetic backgrounds. By specifically modulating KV size and analyzing individual embryos, we identified a size threshold that is necessary for KV function. CONCLUSIONS Together these results indicate the KV organ of asymmetry size is not tightly controlled during development, but rather must only exceed a threshold to direct robust LR patterning of the zebrafish embryo.
Collapse
Affiliation(s)
- Jason J Gokey
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Yongchang Ji
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Hwee Goon Tay
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Bridget Litts
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York
| |
Collapse
|