1
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Kaufman S, Chang P, Pendleton E, Chandar N. MicroRNA26a Overexpression Hastens Osteoblast Differentiation Capacity in Dental Stem Cells. Cell Reprogram 2023; 25:109-120. [PMID: 37200520 DOI: 10.1089/cell.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are a source of mesenchymal stem cells with the potential to differentiate into several cell types. We initially isolated SHED cells and compared their osteogenic capacity with commercially available DPSCs. Both cells exhibited similar capacities of growth and osteogenic differentiation. A fourfold to sixfold increase in endogenous microRNA26a (miR26a) expression during osteogenic differentiation of preosteoblasts and a similar but attenuated increase (twofold to fourfold) in differentiating SHED was observed, suggesting a role in the process. We, therefore, overexpressed miR26a in SHED to determine if the osteogenic differentiation capacity can be potentiated in vitro. SHED with a threefold increase in miR26a expression showed increased growth rate when compared with parent cells. When exposed to an osteogenic differentiating promoting medium, the miR26a overexpressing cells showed 100-fold increases in the expression of bone marker genes such as type 1 collagen, alkaline phosphatase, and Runx2. The mineralization capacity of these cells was also increased 15-fold. As miR26a targets regulate several bone-specific genes, we evaluated the effect of miR26a overexpression on established targets. We found a moderate decrease in SMAD1 and a profound decrease in PTEN expression. miR26a could potentiate its effect on osteoblast differentiation by its ability to inhibit PTEN and increase the viability of cells and their numbers, a process essential in osteoblast differentiation. Our studies suggest that the upregulation of miR26a can increase bone formation and may serve as an important target to further investigate its potential in tissue engineering applications.
Collapse
Affiliation(s)
- Steven Kaufman
- Department of Biochemistry and Molecular Genetics, Midwestern University, Downers Grove, Illinois, USA
| | - Peter Chang
- Dental Institute, Midwestern University Clinics, Downers Grove, Illinois, USA
| | - Elisha Pendleton
- Department of Biochemistry and Molecular Genetics, Midwestern University, Downers Grove, Illinois, USA
| | - Nalini Chandar
- Department of Biochemistry and Molecular Genetics, Midwestern University, Downers Grove, Illinois, USA
| |
Collapse
|
3
|
A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response. Int J Mol Sci 2022; 23:ijms23147578. [PMID: 35886924 PMCID: PMC9323330 DOI: 10.3390/ijms23147578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic Brain Injury (TBI) is a global driver of disability, and we currently lack effective therapies to promote neural repair and recovery. TBI is characterized by an initial insult, followed by a secondary injury cascade, including inflammation, excitotoxicity, and glial cellular response. This cascade incorporates molecular mechanisms that represent potential targets of therapeutic intervention. In this study, we investigate the response to focal impact injury to the optic tectum of Xenopus laevis tadpoles. This injury disrupts the blood-brain barrier, causing edema, and produces deficits in visually-driven behaviors which are resolved within one week. Within 3 h, injured brains show a dramatic transcriptional activation of inflammatory cytokines, upregulation of genes associated with inflammation, and recruitment of microglia to the injury site and surrounding tissue. Shortly afterward, astrocytes undergo morphological alterations and accumulate near the injury site, and these changes persist for at least 48 h following injury. Genes associated with astrocyte reactivity and neuroprotective functions also show elevated levels of expression following injury. Since our results demonstrate that the response to focal impact injury in Xenopus resembles the cellular alterations observed in rodents and other mammalian models, the Xenopus tadpole offers a new, scalable vertebrate model for TBI.
Collapse
|
4
|
Shah S, Pendleton E, Couture O, Broachwalla M, Kusper T, Alt LAC, Fay MJ, Chandar N. P53 regulation of osteoblast differentiation is mediated through specific microRNAs. Biochem Biophys Rep 2021; 25:100920. [PMID: 33553686 PMCID: PMC7859171 DOI: 10.1016/j.bbrep.2021.100920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
In order to understand the role of the p53 tumor suppressor gene in microRNA expression during osteoblast differentiation, we used a screen to identify microRNAs that were altered in a p53-dependent manner. MicroRNAs from MC3T3-E1 preosteoblasts were isolated from day 0 (undifferentiated) and day 4 (differentiating) and compared to a p53 deficient MC3T3-E1 line treated similarly. Overall, one fourth of all the microRNAs tested showed a reduction of 0.6 fold, and a similar number of them were increased 1.7 fold with differentiation. P53 deficiency caused 40% reduction in expression of microRNAs in differentiating cells, while a small percent (0.03%) showed an increase. Changes in microRNAs were validated using real-time PCR and two microRNAs were selected for further analysis (miR-34b and miR-140). These two microRNAs were increased significantly during differentiation but showed a dramatic reduction in expression in a p53 deficient state. Stable expression of miR-34b and miR-140 in MC3T3-E1 cells resulted in decreases in cell proliferation rates when compared to control cells. There was a 4-fold increase in p53 levels with miR-34b expression and a less dramatic increase with miR-140. Putative target binding sites for bone specific transcription factors, Runx2 and Osterix, were found for miR-34b, while Runx2, beta catenin and type 1 collagen were found to be miR-140 targets. Western blot analyses and functional assays for the transcription factors Runx2, Osterix and Beta-catenin confirmed microRNA specific interactions. These studies provide evidence that p53 mediated regulation of osteoblast differentiation can also occur through specific microRNAs such as miR-34b and miR-140 that also directly target important bone specific genes. The p53 tumor suppressor gene regulates microRNA expression during in vitro osteoblast differentiation. miR34b and miR140 targets include several bone specific markers such as runx2, beta catenin, type 1 collagen and osterix. miR34b and miR140 overexpression inhibits osteoblast cell proliferation.
Collapse
Affiliation(s)
- Shivang Shah
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Elisha Pendleton
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Oliver Couture
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Mustafa Broachwalla
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Teresa Kusper
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Lauren A C Alt
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Michael J Fay
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA.,Department of Pharmacology, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| | - Nalini Chandar
- Department of Biochemistry, College of Graduate Studies, Midwestern University, 555, 31st, Street, Downers Grove, IL60515, USA
| |
Collapse
|
5
|
Ritter RA, Ulrich CH, Brzezinska BN, Shah VV, Zamora MJ, Kelly LE, El-Hodiri HM, Sater AK. miR-199 plays both positive and negative regulatory roles in Xenopus eye development. Genesis 2020; 58:e23354. [PMID: 31909537 DOI: 10.1002/dvg.23354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022]
Abstract
To investigate microRNA (miR) functions in early eye development, we asked whether eye field transcription factors (EFTFs) are targets of miR-dependent regulation in Xenopus embryos. Argonaute (AGO) ribonucleoprotein complexes, including miRs and targeted mRNAs, were coimmunoprecipitated from transgenic embryos expressing myc-tagged AGO under the control of the rax1 promoter; mRNAs for all EFTFs coimmunoprecipitated with Ago in late neurulae. Computational predictions of miR binding sites within EFTF 3'UTRs identified miR-199a-3p ("miR-199") as a candidate regulator of EFTFs, and miR-199 was shown to regulate rax1 in vivo. Targeted overexpression of miR-199 led to small eyes, a reduction in EFTF expression, and reduced cell proliferation. Inhibition of interactions between mir-199 and the rax1 3'UTR reversed the small eye phenotype. Although targeted knockdown of miR-199 left the eye field intact, it reduced optic cup outgrowth and disrupted eye formation. Computational identification of candidate miR-199 targets within the Xenopus transcriptome led to the identification of ptk7 as a candidate regulator. Targeted overexpression of ptk7 resulted in abnormal optic cup formation and a reduction or loss of eye development, recapitulating the range of eye phenotypes seen following miR-199 knockdown. Our results indicate that miR-199 plays both positive and negative regulatory roles in eye development.
Collapse
Affiliation(s)
- Ruth A Ritter
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Christina H Ulrich
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Bogna N Brzezinska
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Vrutant V Shah
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Melissa J Zamora
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Lisa E Kelly
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Heithem M El-Hodiri
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Amy K Sater
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| |
Collapse
|
6
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
7
|
Shah VV, Soibam B, Ritter RA, Benham A, Oomen J, Sater AK. Data on microRNAs and microRNA-targeted mRNAs in Xenopus ectoderm. Data Brief 2016; 9:699-703. [PMID: 27812534 PMCID: PMC5079235 DOI: 10.1016/j.dib.2016.09.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022] Open
Abstract
Small RNAs from early neural (i.e., Noggin-expressing, or NOG) and epidermal (expressing a constitutively active BMP4 receptor, CABR) ectoderm in Xenopus laevis were sequenced to identify microRNAs (miRs) expressed in each tissue. Argonaute-associated mRNAs were isolated and sequenced to identify genes that are regulated by microRNAs in these tissues. Interactions between these ectodermal miRs and selected miR-regulated mRNAs were predicted using the PITA algorithm; PITA predictions for over 600 mRNAs are presented. All sequencing data are available at NCBI (NCBI Bioproject Accession number: PRJNA325834). This article accompanies the manuscript “MicroRNAs and ectodermal specification I. Identification of miRs and miR-targeted mRNAs in early anterior neural and epidermal ectoderm” (V.V. Shah, B. Soibam, R.A. Ritter, A. Benham, J. Oomen, A.K. Sater, 2016) [1].
Collapse
Affiliation(s)
| | - Benjamin Soibam
- Texas Heart Institute, Houston, TX, USA; Department of Computer Science and Engineering technology, University of Houston-Downtown, Houston, TX, USA
| | | | | | | | | |
Collapse
|
8
|
Shah VV, Soibam B, Ritter RA, Benham A, Oomen J, Sater AK. MicroRNAs and ectodermal specification I. Identification of miRs and miR-targeted mRNAs in early anterior neural and epidermal ectoderm. Dev Biol 2016; 426:200-210. [PMID: 27623002 DOI: 10.1016/j.ydbio.2016.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 11/25/2022]
Abstract
The establishment of cell lineages occurs via a dynamic progression of gene regulatory networks (GRNs) that underlie developmental commitment and differentiation. To investigate how microRNAs (miRs) function in this process, we compared miRs and miR targets at the initiation of the two major ectodermal lineages in Xenopus. We used next-generation sequencing to identify over 170 miRs expressed in midgastrula ectoderm expressing either noggin or a constitutively active BMP receptor, reflecting anterior neural or epidermal ectoderm, respectively; 125 had not previously been identified in Xenopus. We identified the locations of the pre-miR sequences in the X. laevis genome. Neural and epidermal ectoderm express broadly similar sets of miRs. To identify targets of miR-dependent translational control, we co-immunoprecipitated Argonaute-Ribonucleoprotein (Ago-RNP) complexes from early neural and epidermal ectoderm and sequenced the associated RNA. The Ago-RNP RNAs from these tissues represent overlapping, yet distinct, subsets of genes. Moreover, the profile of Ago-RNP associated genes differs substantially from the profile of total RNAs in these tissues. We generated target predictions for the "high confidence" Ago-RNP RNAs using the identified ectodermal miRs; These RNAs generally had target sites for multiple miRs. Oct4 orthologues, as well as many of their previously identified transcriptional targets, are represented in the Ago-RNP pool in both tissues, suggesting that miR-dependent regulation contributes to the downregulation of the oct4 gene regulatory network and the reduction in ectodermal pluripotency.
Collapse
Affiliation(s)
- Vrutant V Shah
- Dept. of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | | | - Ruth A Ritter
- Dept. of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | | | - Jamina Oomen
- Program in Genetics, Stony Brook University, Stony Brook, NY, United States
| | - Amy K Sater
- Dept. of Biology and Biochemistry, University of Houston, Houston, TX, United States.
| |
Collapse
|