1
|
Wiegering A, Anselme I, Brunetti L, Metayer-Derout L, Calderon D, Thomas S, Nedelec S, Eschstruth A, Serpieri V, Catala M, Antoniewski C, Schneider-Maunoury S, Stedman A. A differential requirement for ciliary transition zone proteins in human and mouse neural progenitor fate specification. Nat Commun 2025; 16:3258. [PMID: 40188187 PMCID: PMC11972330 DOI: 10.1038/s41467-025-58554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Studying ciliary genes in the context of the human central nervous system is crucial for understanding the underlying causes of neurodevelopmental ciliopathies. Here, we use pluripotent stem cell-derived spinal organoids to reveal distinct functions of the ciliopathy gene RPGRIP1L in humans and mice, and uncover an unexplored role for cilia in human axial patterning. Previous research has emphasized Rpgrip1l critical functions in mouse brain and spinal cord development through the regulation of SHH/GLI pathway. Here, we show that RPGRIP1L is not required for SHH activation or motoneuron lineage commitment in human spinal progenitors and that this feature is shared by another ciliopathy gene, TMEM67. Furthermore, human RPGRIP1L-mutant motoneurons adopt hindbrain and cervical identities instead of caudal brachial identity. Temporal transcriptome analysis reveals that this antero-posterior patterning defect originates in early axial progenitors and correlates with cilia loss. These findings provide important insights into the role of cilia in human neural development.
Collapse
Affiliation(s)
- Antonia Wiegering
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France.
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France.
| | - Isabelle Anselme
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | - Ludovica Brunetti
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | - Laura Metayer-Derout
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | - Damelys Calderon
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Sophie Thomas
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Stéphane Nedelec
- Sorbonne Université, Inserm, Institut du Fer à Moulin, UMR-S 1270, Paris, France
- Université Paris Cité, CNRS, Inserm U1340, Institut Jacques Monod, Paris, France
| | - Alexis Eschstruth
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | | | - Martin Catala
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France
| | | | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France.
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France.
| | - Aline Stedman
- Sorbonne Université, CNRS, Inserm, Development, Adaptation and Aging, Dev2A, Paris, France.
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris Seine, Paris, France.
| |
Collapse
|
2
|
Warns J, Kim YI, O'Rourke R, Sagerström CG. scMultiome analysis identifies a single caudal hindbrain compartment in the developing zebrafish nervous system. Neural Dev 2024; 19:12. [PMID: 38970093 PMCID: PMC11225431 DOI: 10.1186/s13064-024-00189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND A key step in nervous system development involves the coordinated control of neural progenitor specification and positioning. A long-standing model for the vertebrate CNS postulates that transient anatomical compartments - known as neuromeres - function to position neural progenitors along the embryonic anteroposterior neuraxis. Such neuromeres are apparent in the embryonic hindbrain - that contains six rhombomeres with morphologically apparent boundaries - but other neuromeres lack clear morphological boundaries and have instead been defined by different criteria, such as differences in gene expression patterns and the outcomes of transplantation experiments. Accordingly, the caudal hindbrain (CHB) posterior to rhombomere (r) 6 has been variably proposed to contain from two to five 'pseudo-rhombomeres', but the lack of comprehensive molecular data has precluded a detailed definition of such structures. METHODS We used single-cell Multiome analysis, which allows simultaneous characterization of gene expression and chromatin state of individual cell nuclei, to identify and characterize CHB progenitors in the developing zebrafish CNS. RESULTS We identified CHB progenitors as a transcriptionally distinct population, that also possesses a unique profile of accessible transcription factor binding motifs, relative to both r6 and the spinal cord. This CHB population can be subdivided along its dorsoventral axis based on molecular characteristics, but we do not find any molecular evidence that it contains multiple pseudo-rhombomeres. We further observe that the CHB is closely related to r6 at the earliest embryonic stages, but becomes more divergent over time, and that it is defined by a unique gene regulatory network. CONCLUSIONS We conclude that the early CHB represents a single neuromere compartment that cannot be molecularly subdivided into pseudo-rhombomeres and that it may share an embryonic origin with r6.
Collapse
Affiliation(s)
- Jessica Warns
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
- Department of Science and Math, Northern State University, 1200 S. Jay St, Aberdeen, SD, 57401, USA
| | - Yong-Ii Kim
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Rebecca O'Rourke
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Charles G Sagerström
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Medical School, 12801 E. 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
4
|
Saunders LM, Srivatsan SR, Duran M, Dorrity MW, Ewing B, Linbo TH, Shendure J, Raible DW, Moens CB, Kimelman D, Trapnell C. Embryo-scale reverse genetics at single-cell resolution. Nature 2023; 623:782-791. [PMID: 37968389 PMCID: PMC10665197 DOI: 10.1038/s41586-023-06720-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
The maturation of single-cell transcriptomic technologies has facilitated the generation of comprehensive cellular atlases from whole embryos1-4. A majority of these data, however, has been collected from wild-type embryos without an appreciation for the latent variation that is present in development. Here we present the 'zebrafish single-cell atlas of perturbed embryos': single-cell transcriptomic data from 1,812 individually resolved developing zebrafish embryos, encompassing 19 timepoints, 23 genetic perturbations and a total of 3.2 million cells. The high degree of replication in our study (eight or more embryos per condition) enables us to estimate the variance in cell type abundance organism-wide and to detect perturbation-dependent deviance in cell type composition relative to wild-type embryos. Our approach is sensitive to rare cell types, resolving developmental trajectories and genetic dependencies in the cranial ganglia neurons, a cell population that comprises less than 1% of the embryo. Additionally, time-series profiling of individual mutants identified a group of brachyury-independent cells with strikingly similar transcriptomes to notochord sheath cells, leading to new hypotheses about early origins of the skull. We anticipate that standardized collection of high-resolution, organism-scale single-cell data from large numbers of individual embryos will enable mapping of the genetic dependencies of zebrafish cell types, while also addressing longstanding challenges in developmental genetics, including the cellular and transcriptional plasticity underlying phenotypic diversity across individuals.
Collapse
Affiliation(s)
- Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tor H Linbo
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - David W Raible
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - David Kimelman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
5
|
Hawkins MR, Wingert RA. Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease. Biomedicines 2023; 11:biomedicines11041180. [PMID: 37189798 DOI: 10.3390/biomedicines11041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease. This makes the zebrafish a natural model for further interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well as human health. In this review, we explore both foundational and recent studies using zebrafish as a translational model for investigating RA from the molecular to the organismal scale.
Collapse
Affiliation(s)
- Matthew R Hawkins
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
7
|
Zebrafish Cdx4 regulates neural crest cell specification and migratory behaviors in the posterior body. Dev Biol 2021; 480:25-38. [PMID: 34389276 DOI: 10.1016/j.ydbio.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
The neural crest (NC) is a transient multipotent cell population that migrates extensively to produce a remarkable array of vertebrate cell types. NC cell specification progresses in an anterior to posterior fashion, resulting in distinct, axial-restricted subpopulations. The anterior-most, cranial, population of NC is specified as gastrulation concludes and neurulation begins, while more posterior populations become specified as the body elongates. The mechanisms that govern development of the more posterior NC cells remain incompletely understood. Here, we report a key role for zebrafish Cdx4, a homeodomain transcription factor, in the development of posterior NC cells. We demonstrate that cdx4 is expressed in trunk NC cell progenitors, directly binds NC cell-specific enhancers in the NC GRN, and regulates expression of the key NC development gene foxd3 in the posterior body. Moreover, cdx4 mutants show disruptions to the segmental pattern of trunk NC cell migration due to loss of normal leader/follower cell dynamics. Finally, using cell transplantation to generate chimeric specimens, we show that Cdx4 does not function in the paraxial mesoderm-the environment adjacent to which crest migrates-to influence migratory behaviors. We conclude that cdx4 plays a critical, and likely tissue autonomous, role in the establishment of trunk NC migratory behaviors. Together, our results indicate that cdx4 functions as an early NC specifier gene in the posterior body of zebrafish embryos.
Collapse
|
8
|
Henderson KW, Roche A, Menelaou E, Hale ME. Hindbrain and Spinal Cord Contributions to the Cutaneous Sensory Innervation of the Larval Zebrafish Pectoral Fin. Front Neuroanat 2020; 14:581821. [PMID: 33192344 PMCID: PMC7607007 DOI: 10.3389/fnana.2020.581821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Vertebrate forelimbs contain arrays of sensory neuron fibers that transmit signals from the skin to the nervous system. We used the genetic toolkit and optical clarity of the larval zebrafish to conduct a live imaging study of the sensory neurons innervating the pectoral fin skin. Sensory neurons in both the hindbrain and the spinal cord innervate the fin, with most cells located in the hindbrain. The hindbrain somas are located in rhombomere seven/eight, laterally and dorsally displaced from the pectoral fin motor pool. The spinal cord somas are located in the most anterior part of the cord, aligned with myomere four. Single cell reconstructions were used to map afferent processes and compare the distributions of processes to soma locations. Reconstructions indicate that this sensory system breaks from the canonical somatotopic organization of sensory systems by lacking a clear organization with reference to fin region. Arborizations from a single cell branch widely over the skin, innervating the axial skin, lateral fin surface, and medial fin surface. The extensive branching over the fin and the surrounding axial surface suggests that these fin sensory neurons report on general conditions of the fin area rather than providing fine location specificity, as has been demonstrated in other vertebrate limbs. With neuron reconstructions that span the full primary afferent arborization from the soma to the peripheral cutaneous innervation, this neuroanatomical study describes a system of primary sensory neurons and lays the groundwork for future functional studies.
Collapse
Affiliation(s)
- Katharine W Henderson
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| | - Alexander Roche
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| | - Evdokia Menelaou
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, College of the University of Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
The Cdx transcription factors and retinoic acid play parallel roles in antero-posterior position of the pectoral fin field during gastrulation. Mech Dev 2020; 164:103644. [PMID: 32911082 DOI: 10.1016/j.mod.2020.103644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
Abstract
The molecular regulators that determine the precise position of the vertebrate limb along the anterio-posterior axis have not been identified. One model suggests that a combination of hox genes in the lateral plate mesoderm (LPM) promotes formation of the limb field, however redundancy among duplicated paralogs has made this model difficult to confirm. In this study, we identify an optimal window during mid-gastrulation stages when transient mis-regulation of retinoic acid signaling or the caudal related transcription factor, Cdx4, both known regulators of hox genes, can alter the position of the pectoral fin field. We show that increased levels of either RA or Cdx4 during mid-gastrulation are sufficient to rostrally shift the position of the pectoral fin field at the expense of surrounding gene expression in the anterior lateral plate mesoderm (aLPM). Alternatively, embryos deficient for both Cdx4 and Cdx1a (Cdx-deficient) form pectoral fins that are shifted towards the posterior and reveal an additional effect on size of the pectoral fin buds. Prior to formation of the pectoral fin buds, the fin field in Cdx-deficient embryos is visibly expanded into the posterior LPM (pLPM) region at the expense of surrounding gene expression. The effects on gene expression immediately post-gastrulation and during somitogenesis support a model where RA and Cdx4 act in parallel to regulate the position of the pectoral fin. Our transient method is a potentially useful model for studying the mechanisms of limb positioning along the AP axis.
Collapse
|
10
|
Chen L, Wang Z, Gu W, Zhang XX, Ren H, Wu B. Single-Cell Sequencing Reveals Heterogeneity Effects of Bisphenol A on Zebrafish Embryonic Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9537-9546. [PMID: 32644799 DOI: 10.1021/acs.est.0c02428] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The embryonic period is a sensitive window for bisphenol A (BPA) exposure. However, embryonic development is a highly dynamic process with changing cell populations. The heterogeneity effects of BPA on fish embryo cells during development remain unclear. We applied single-cell RNA sequencing to analyze the impact of BPA exposure on transcriptome heterogeneity of 64 683 cells from zebrafish embryos at 8, 12, and 30 h postfertilization (hpf). Thirty-eight cell populations were identified and gene expression profiles of 16 cell populations were significantly altered by BPA. At 8 hpf, BPA mainly influenced the outer layer cell populations of embryos, such as neural plate border and enveloping layer cells. At 12 and 30 hpf, nervous system formation and heart morphogenesis were disturbed. The altered differential processes of the neural plate border, neural crest, and neuronal cells were found to lead to increased neurogenesis in zebrafish larvae. In the forebrain, midbrain, neurons, and optic cells, pathways related to cell division and DNA replication and repair were altered. Moreover, BPA also changed transforming growth factor (TGF) β signaling and heart tube morphogenesis in heart cells, leading to a decreased heartbeat in zebrafish larvae. Our study provides a comprehensive understanding of BPA toxicity on fish embryonic development at a single-cell level.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Zhizhi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Weiqing Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
12
|
Joshi P, Darr AJ, Skromne I. CDX4 regulates the progression of neural maturation in the spinal cord. Dev Biol 2019; 449:132-142. [PMID: 30825428 DOI: 10.1016/j.ydbio.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
The progression of cells down different lineage pathways is a collaborative effort between networks of extracellular signals and intracellular transcription factors. In the vertebrate spinal cord, FGF, Wnt and Retinoic Acid signaling pathways regulate the progressive caudal-to-rostral maturation of neural progenitors by regulating a poorly understood gene regulatory network of transcription factors. We have mapped out this gene regulatory network in the chicken pre-neural tube, identifying CDX4 as a dual-function core component that simultaneously regulates gradual loss of cell potency and acquisition of differentiation states: in a caudal-to-rostral direction, CDX4 represses the early neural differentiation marker Nkx1.2 and promotes the late neural differentiation marker Pax6. Significantly, CDX4 prevents premature PAX6-dependent neural differentiation by blocking Ngn2 activation. This regulation of CDX4 over Pax6 is restricted to the rostral pre-neural tube by Retinoic Acid signaling. Together, our results show that in the spinal cord, CDX4 is part of the gene regulatory network controlling the sequential and progressive transition of states from high to low potency during neural progenitor maturation. Given CDX well-known involvement in Hox gene regulation, we propose that CDX factors coordinate the maturation and axial specification of neural progenitor cells during spinal cord development.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, 600 5th St S, St. Petersburg, FL 33701, United States
| | - Andrew J Darr
- Department of Health Sciences Education, University of Illinois College of Medicine, 1 Illini Drive, Peoria, IL 61605, United States
| | - Isaac Skromne
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Department of Biology, University of Richmond, 138 UR Drive B322, Richmond, VA, 23173, United States.
| |
Collapse
|
13
|
Molecular specification of facial branchial motor neurons in vertebrates. Dev Biol 2018; 436:5-13. [PMID: 29391164 DOI: 10.1016/j.ydbio.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/27/2018] [Accepted: 01/28/2018] [Indexed: 02/02/2023]
Abstract
Orofacial muscles are critical for life-sustaining behaviors, such as feeding and breathing. Centuries of work by neuroanatomists and surgeons resulted in the mapping of bulbar motor neurons in the brainstem and the course of the cranial nerves that carry their axons. Despite the sophisticated understanding of the anatomy of the region, the molecular mechanisms that dictate the development and maturation of facial motor neurons remain poorly understood. This fundamental problem has been recently revisited by physiologists with novel techniques of studying the rhythmic contraction of orofacial muscles in relationship to breathing. The molecular understanding of facial motor neuron development will not only lead to the comprehension of the neural basis of facial expression but may also unlock new avenues to generate stem cell-derived replacements. This review summarizes the current understanding of molecular programs involved in facial motor neuron generation, migration, and maturation, including neural circuit assembly.
Collapse
|
14
|
Bakalenko NI, Poznyak AV, Novikova EL, Kulakova MA. Effect of retinoids on Post2 Нох gene expression in nereid polychaetes. Russ J Dev Biol 2017. [DOI: 10.1134/s106236041703002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Cunningham TJ, Colas A, Duester G. Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors. Biol Open 2016; 5:1821-1833. [PMID: 27793834 PMCID: PMC5200905 DOI: 10.1242/bio.020891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bipotent neuromesodermal progenitors (NMPs) residing in the caudal epiblast drive coordinated body axis extension by generating both posterior neuroectoderm and presomitic mesoderm. Retinoic acid (RA) is required for body axis extension, however the early molecular response to RA signaling is poorly defined, as is its relationship to NMP biology. As endogenous RA is first seen near the time when NMPs appear, we used WNT/FGF agonists to differentiate embryonic stem cells to NMPs which were then treated with a short 2-h pulse of 25 nM RA or 1 µM RA followed by RNA-seq transcriptome analysis. Differential expression analysis of this dataset indicated that treatment with 25 nM RA, but not 1 µM RA, provided physiologically relevant findings. The 25 nM RA dataset yielded a cohort of previously known caudal RA target genes including Fgf8 (repressed) and Sox2 (activated), plus novel early RA signaling targets with nearby conserved RA response elements. Importantly, validation of top-ranked genes in vivo using RA-deficient Raldh2-/- embryos identified novel examples of RA activation (Nkx1-2, Zfp503, Zfp703, Gbx2, Fgf15, Nt5e) or RA repression (Id1) of genes expressed in the NMP niche or progeny. These findings provide evidence for early instructive and permissive roles of RA in controlling differentiation of NMPs to neural and mesodermal lineages.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre Colas
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
17
|
Abstract
Morphogens were originally defined as secreted signaling molecules that diffuse from local sources to form concentration gradients, which specify multiple cell fates. More recently morphogen gradients have been shown to incorporate a range of mechanisms including short-range signal activation, transcriptional/translational feedback, and temporal windows of target gene induction. Many critical cell-cell signals implicated in both embryonic development and disease, such as Wnt, fibroblast growth factor (Fgf), hedgehog (Hh), transforming growth factor beta (TGFb), and retinoic acid (RA), are thought to act as morphogens, but key information on signal propagation and ligand distribution has been lacking for most. The zebrafish provides unique advantages for genetics and imaging to address gradients during early embryonic stages when morphogens help establish major body axes. This has been particularly informative for RA, where RA response elements (RAREs) driving fluorescent reporters as well as Fluorescence Resonance Energy Transfer (FRET) reporters of receptor binding have provided evidence for gradients, as well as regulatory mechanisms that attenuate noise and enhance gradient robustness in vivo. Here we summarize available tools in zebrafish and discuss their utility for studying dynamic regulation of RA morphogen gradients, through combined experimental and computational approaches.
Collapse
Affiliation(s)
| | - J Sosnik
- University of California, Irvine, CA, United States
| | - Q Nie
- University of California, Irvine, CA, United States
| |
Collapse
|