1
|
Avdeeva M, Chalifoux M, Joyce B, Shvartsman SY, Posfai E. Generative model for the first cell fate bifurcation in mammalian development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639895. [PMID: 40060535 PMCID: PMC11888292 DOI: 10.1101/2025.02.24.639895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The first cell fate bifurcation in mammalian development directs cells toward either the trophectoderm (TE) or inner cell mass (ICM) compartments in preimplantation embryos. This decision is regulated by the subcellular localization of a transcriptional co-activator YAP and takes place over several progressively asynchronous cleavage divisions. As a result of this asynchrony and variable arrangement of blastomeres, reconstructing the dynamics of the TE/ICM cell specification from fixed embryos is extremely challenging. To address this, we developed a live imaging approach and applied it to measure pairwise dynamics of nuclear YAP and its direct target genes, CDX2 and SOX2, key transcription factors of TE and ICM, respectively. Using these datasets, we constructed a generative model of the first cell fate bifurcation, which reveals the time-dependent statistics of the TE and ICM cell allocation. In addition to making testable predictions for the joint dynamics of the full YAP/CDX2/SOX2 motif, the model revealed the stochastic nature of the induction timing of the key cell fate determinants and identified the features of YAP dynamics that are necessary or sufficient for this induction. Notably, temporal heterogeneity was particularly prominent for SOX2 expression among ICM cells. As heterogeneities within the ICM have been linked to the initiation of the second cell fate decision in the embryo, understanding the origins of this variability is of key significance. The presented approach reveals the dynamics of the first cell fate choice and lays the groundwork for dissecting the next cell fate bifurcations in mouse development.
Collapse
Affiliation(s)
- Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Madeleine Chalifoux
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Stanislav Y Shvartsman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Zhao Y, Zhang M, Liu J, Hu X, Sun Y, Huang X, Li J, Lei L. Nr5a2 ensures inner cell mass formation in mouse blastocyst. Cell Rep 2024; 43:113840. [PMID: 38386558 DOI: 10.1016/j.celrep.2024.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Recent studies have elucidated Nr5a2's role in activating zygotic genes during early mouse embryonic development. Subsequent research, however, reveals that Nr5a2 is not critical for zygotic genome activation but is vital for the gene program between the 4- and 8-cell stages. A significant gap exists in experimental evidence regarding its function during the first lineage differentiation's pivotal period. In this study, we observed that approximately 20% of embryos developed to the blastocyst stage following Nr5a2 ablation. However, these blastocysts lacked inner cell mass (ICM), highlighting Nr5a2's importance in first lineage differentiation. Mechanistically, using RNA sequencing and CUT&Tag, we found that Nr5a2 transcriptionally regulates ICM-specific genes, such as Oct4, to establish the pluripotent network. Interference with or overexpression of Nr5a2 in single blastomeres of 2-cell embryos can alter the fate of daughter cells. Our results indicate that Nr5a2 works as a doorkeeper to ensure ICM formation in mouse blastocyst.
Collapse
Affiliation(s)
- Yanhua Zhao
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Meiting Zhang
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Jiqiang Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Yuchen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Xingwei Huang
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
3
|
Liu Y, Xin J, Zhang S, Li Q, Wang W, Chen J, Ming X, Wu X, Cao X, Cui W, Wang H, Li W. Expression patterns and biological function of BCL2L10 during mouse preimplantation development. Gene Expr Patterns 2022; 46:119285. [PMID: 36341977 DOI: 10.1016/j.gep.2022.119285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
BCL2-like 10 (BCL2L10) is abundantly expressed in mammalian oocytes and plays a crucial role in the completion of oocyte meiosis. However, the expression patterns of BCL2L10 and its biological functions during preimplantation development have not been well characterized. Here, we investigated the spatiotemporal expressions of Bcl2l10 during mouse preimplantation development using RT-qPCR and immunofluorescence and its biological function using siRNA and morpholino injection into pronuclear embryos. Results from RT-qPCR showed that Bcl2l10 was highly expressed in the metaphase Ⅱ-stage oocytes and pronuclear-stage embryos, but expression markedly decreased from the two-cell stage onwards and was no longer detected at the four-cell stage and beyond. Immunofluorescence staining showed that BCL2L10 was detectable throughout preimplantation development and localized in the cytoplasm and nuclei. Knocking down Bcl2l10 resulted in a reduced blastocyst formation rate (P < 0.01) and decreased expression of OCT4, NANOG, and SOX17 (P < 0.05). We concluded that the role of BCL2L10 is strongly associated with developmental competence of preimplantation mouse embryos.
Collapse
Affiliation(s)
- Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China; Department of Veterinary and Animal Sciences, Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA, 01002, United States
| | - Jing Xin
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Shengnan Zhang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Qingmei Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Wenying Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Ji Chen
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Xin Ming
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Xinyan Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No.4899 Juye Street, Jingyue District, Changchun, 130112, China
| | - Wei Cui
- Department of Veterinary and Animal Sciences, Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA, 01002, United States
| | - Hongcheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China; Linquan Modern Agricultural Technology Cooperation and Extension Service Center, The Anhui Agricultural University's Comprehensive Experimental Station in the Northwest of Anhui Province, Linquan, Anhui, 236400, China.
| | - Wenyong Li
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, College of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, China.
| |
Collapse
|
4
|
Krawczyk K, Wilczak K, Szczepańska K, Maleszewski M, Suwińska A. Paracrine interactions through FGFR1 and FGFR2 receptors regulate the development of preimplantation mouse chimaeric embryo. Open Biol 2022; 12:220193. [PMID: 36382369 PMCID: PMC9667143 DOI: 10.1098/rsob.220193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The preimplantation mammalian embryo has the potential to self-organize, allowing the formation of a correctly patterned embryo despite experimental perturbation. To better understand the mechanisms controlling the developmental plasticity of the early mouse embryo, we used chimaeras composed of an embryonic day (E)3.5 or E4.5 inner cell mass (ICM) and cleaving 8-cell embryo. We revealed that the restricted potential of the ICM can be compensated for by uncommitted 8-cell embryo-derived blastomeres, thus leading to the formation of a normal chimaeric blastocyst that can undergo full development. However, whether such chimaeras maintain developmental competence depends on the presence or specific orientation of the polarized primitive endoderm layer in the ICM component. We also demonstrated that downregulated FGFR1 and FGFR2 expression in 8-cell embryos disturbs intercellular interactions between both components and results in an inverse proportion of primitive endoderm and epiblast within the resulting ICM and abnormal embryo development. This finding suggests that FGF signalling is a key part of the regulatory mechanism that assigns cells to a given lineage and ensures the proper composition of the blastocyst, which is a prerequisite for its successful implantation in the uterus and for further development.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Wilczak
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Szczepańska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Marek Maleszewski
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Aneta Suwińska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
5
|
Sang L, Xiao Y, Jiang Z, Forde N, Tian XC, Lonergan P, Hansen PJ. Atlas of receptor genes expressed by the bovine morula and corresponding ligand-related genes expressed by uterine endometrium. Mol Reprod Dev 2021; 88:694-704. [PMID: 34596291 PMCID: PMC8558826 DOI: 10.1002/mrd.23534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/29/2023]
Abstract
Regulation of the mammalian embryo involves cell-signaling molecules produced by the maternal oviduct and endometrium. Here, datasets on the transcriptome of the gestational Days 5 and 6 bovine morula and Day 5 maternal endometrium were examined to identify receptor genes expressed by the morula and expression of the corresponding ligand-related genes in the endometrium. A total of 175 receptor genes were identified in the morula, including 48 encoding for growth factors or WNT signaling molecules, 25 for cytokines and chemokines, 35 involved in juxtacrine and matricellular signaling and 25 encoding for receptors for small molecules. Some of the highly-expressed pairs of endometrial ligand and embryo receptor genes included MDK and its receptors ITGB1, SDC4 and LRP2, WNT5A (RYK), VEGFA (ITGB1), GPI (AMFR), and the hedgehog proteins IHH and DHH (HHIP). The most highly expressed receptors for small molecules were GPRC5C (retinoic acid receptor), PGRMC1 (progesterone), and CHRNB2 (acetylcholine). There were also 84 genes encoding for cell signaling ligands expressed by the morula, with the most highly expressed being GPI, AIMP1, TIMP1, IK, and CCN2. The atlas of receptor and ligand genes should prove useful for understanding details of the communication between the embryo and mother that underlies optimal embryonic development.
Collapse
Affiliation(s)
- Lei Sang
- Institute of Animal Husbandry and Veterinary MedicineFujian Academy of Agricultural SciencesFuzhouFujianChina
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Yao Xiao
- Institute of Animal Science and Veterinary MedicineShandong Academy of Agricultural SciencesJinanShandongChina
| | - Zongliang Jiang
- School of Animal Sciences, AgCenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Niamh Forde
- Department of Discovery and Translational SciencesUniversity of LeedsLeedsUK
| | - Xiuchun Cindy Tian
- Department of Animal ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | - Patrick Lonergan
- School of Agriculture and Food ScienceUniversity CollegeDublinIreland
| | - Peter J. Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
6
|
Fan T, Huang Y. Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis. Sci Rep 2021; 11:7896. [PMID: 33846424 PMCID: PMC8042068 DOI: 10.1038/s41598-021-86919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate epigenetic landscape across multiple species and identify transcription factors (TFs) and their roles in controlling cell fate decision events during early embryogenesis. We made a comprehensively joint-research of chromatin accessibility of five species during embryogenesis by integration of ATAC-seq and RNA-seq datasets. Regulatory roles of candidate early embryonic TFs were investigated. Widespread accessible chromatin in early embryos overlapped with putative cis-regulatory sequences. Sets of cell-fate-determining TFs were identified. YOX1, a key cell cycle regulator, were found to homologous to clusters of TFs that are involved in neuron and epidermal cell-fate determination. Our research provides an intriguing insight into evolution of cell-fate decision during early embryogenesis among organisms.
Collapse
Affiliation(s)
- Tongqiang Fan
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| | - Youjun Huang
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
7
|
Tocci A. The unknown human trophectoderm: implication for biopsy at the blastocyst stage. J Assist Reprod Genet 2020; 37:2699-2711. [PMID: 32892265 DOI: 10.1007/s10815-020-01925-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022] Open
Abstract
Trophectoderm biopsy is increasingly performed for pre-implantation genetic testing of aneuploidies and considered a safe procedure on short-term clinical outcome, without strong assessment of long-term consequences. Poor biological information on human trophectoderm is available due to ethical restrictions. Therefore, most studies have been conducted in vitro (choriocarcinoma cell lines, embryonic and pluripotent stem cells) and on murine models that nevertheless poorly reflect the human counterpart. Polarization, compaction, and blastomere differentiation (e.g., the basis to ascertain trophectoderm origin) are poorly known in humans. In addition, the trophectoderm function is poorly known from a biological point of view, although a panoply of questionable and controversial microarray studies suggest that important genes overexpressed in trophectoderm are involved in pluripotency, metabolism, cell cycle, endocrine function, and implantation. The intercellular communication system between the trophectoderm cells and the inner cell mass, modulated by cell junctions and filopodia in the murine model, is obscure in humans. For the purpose of this paper, data mainly on primary cells from human and murine embryos has been reviewed. This review suggests that the trophectoderm origin and functions have been insufficiently ascertained in humans so far. Therefore, trophectoderm biopsy should be considered an experimental procedure to be undertaken only under approved rigorous experimental protocols in academic contexts.
Collapse
Affiliation(s)
- Angelo Tocci
- Reproductive Medicine Unit, Gruppo Donnamed, Via Giuseppe Silla 12, Rome, Italy.
| |
Collapse
|
8
|
Toyooka Y. Trophoblast lineage specification in the mammalian preimplantation embryo. Reprod Med Biol 2020; 19:209-221. [PMID: 32684820 PMCID: PMC7360972 DOI: 10.1002/rmb2.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The establishment of the trophectoderm (TE) and the inner cell mass (ICM) is the first cell lineage segregation that occurs in mammalian preimplantation development. TE will contribute to the placenta while ICM cells give rise to the epiblast (EPI) and primitive endoderm (PrE). There are two historical models for TE/ICM segregation: the positional (inside-outside) model and the polarity model, but both models alone cannot explain the mechanism of TE/ICM segregation. METHODS This article discusses a current possible model based on recent studies including the finding through live-cell imaging of the expression patterns of caudal type homeobox 2 (Cdx2), a key transcription factor of TE differentiation in the mouse embryo. RESULTS It was observed that a part of outer Cdx2-expressing blastomeres was internalized at the around 20- to 30-cell stage, downregulates Cdx2, ceases TE differentiation, and participates in ICM lineages. CONCLUSION The early blastomere, which starts differentiation toward the TE cell fate, still has plasticity and can change its fate. Differentiation potency of all blastomeres until approximately the 32-cell stage is presumably not irreversibly restricted even if they show heterogeneity in their epigenetic modifications or gene expression patterns.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| |
Collapse
|
9
|
Hu K. On Mammalian Totipotency: What Is the Molecular Underpinning for the Totipotency of Zygote? Stem Cells Dev 2020; 28:897-906. [PMID: 31122174 PMCID: PMC6648208 DOI: 10.1089/scd.2019.0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mammalian zygote is described as a totipotent cell in the literature, but this characterization is elusive ignoring the molecular underpinnings. Totipotency can connote genetic totipotency, epigenetic totipotency, or the reprogramming capacity of a cell to epigenetic totipotency. Here, the implications of these concepts are discussed in the context of the properties of the zygote. Although genetically totipotent as any diploid somatic cell is, a zygote seems not totipotent transcriptionally, epigenetically, or functionally. Yet, a zygote may retain most of the key factors from its parental oocyte to reprogram an implanted differentiated genome or the zygote genome toward totipotency. This totipotent reprogramming process may extend to blastomeres in the two-cell-stage embryo. Thus, a revised alternative model of mammalian cellular totipotency is proposed, in which an epigenetically totipotent cell exists after the major embryonic genome activation and before the separation of the first two embryonic lineages.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Menchero S, Rollan I, Lopez-Izquierdo A, Andreu MJ, Sainz de Aja J, Kang M, Adan J, Benedito R, Rayon T, Hadjantonakis AK, Manzanares M. Transitions in cell potency during early mouse development are driven by Notch. eLife 2019; 8:42930. [PMID: 30958266 PMCID: PMC6486152 DOI: 10.7554/elife.42930] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/07/2019] [Indexed: 12/11/2022] Open
Abstract
The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions. We start life as a single cell, which immediately begins to divide to form an embryo that will eventually contain all the different kinds of cells found in the adult body. During the first few rounds of cell division, embryonic cells can become any type of adult cells, but also form the placenta, the organ that sustains the embryo while in the womb. As cells keep on dividing, they lose this ability, called potency, and they take on more specific and inflexible roles. The first choice embryonic cells must make is whether to become part of the placenta or part of the future body. These types of decisions are controlled by molecular cascades known as signalling pathways, which relay information from the cells surface to its control centre. There, specific genes get turned on or off in response to an outside signal. Previous research showed that two signalling pathways, Hippo and Notch, help separate placenta cells from those that will form the rest of the body. However, it was not known whether the two pathways worked independently, or if they were overlapping. Menchero et al. therefore wanted to find out when exactly the Notch pathway started to be active, and examine how it helped cells to either become the placenta or part of the future body. Experiments with developing mouse embryos showed that the Notch pathway was activated after the very first two cell divisions, when the embryo consists of only four cells. Genetic manipulations combined with drug treatments that changed the activity of the Notch pathway confirmed that Notch and Hippo acted independently at this stage. Further, larger-scale analysis of gene activity in these embryos also revealed that Notch signalling was working in a previously unknown way: it turned off the genes that maintain potency, pushing the cells to become more specialised. Ultimately, identifying this new mode of action for the Notch pathway in the early embryo may help to understand how the signalling cascade acts in other types of processes. This knowledge could be useful, for example, to push embryonic cells grown in the laboratory towards a desired fate.
Collapse
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Javier Adan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
11
|
Marikawa Y, Alarcon VB. RHOA activity in expanding blastocysts is essential to regulate HIPPO-YAP signaling and to maintain the trophectoderm-specific gene expression program in a ROCK/actin filament-independent manner. Mol Hum Reprod 2019; 25:43-60. [PMID: 30395288 PMCID: PMC6497036 DOI: 10.1093/molehr/gay048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What molecular signals are required to maintain the functional trophectoderm (TE) during blastocyst expansion of the late stage of preimplantation development? SUMMARY ANSWER The activity of ras homology family member A (RHOA) GTPases is necessary to retain the expanded blastocyst cavity and also to sustain the gene expression program specific to TE. WHAT IS KNOWN ALREADY At the early stages of preimplantation development, the precursor of the TE lineage is generated through the molecular signals that integrate RHOA, RHO-associated coiled-coil containing protein kinase (ROCK), the apicobasal cell polarity, and the HIPPO-Yes-associated protein (YAP) signaling pathway. By contrast, molecular mechanisms regulating the maintenance of the TE characteristics at the later stage, which is crucial for blastocyst hatching and implantation, are scarcely understood. STUDY DESIGN, SIZE, DURATION Expanding mouse blastocysts, obtained from crosses of the F1 (C57BL6 × DBA/2) strain, were exposed to chemical agents that interfere with RHOA, ROCK, or the actin cytoskeleton for up to 8 h, and effects on the blastocyst cavity, HIPPO-YAP signaling, and cell lineage-specific gene expression profiles were examined. PARTICIPANTS/MATERIALS, SETTING, METHODS Mouse embryos at the embryonic stage E3.5 (expanding blastocysts) and E4.5 (fully expanded blastocysts) were treated with RHOA inhibitor (C3 exoenzyme), ROCK inhibitor (Y27632), or actin filament disruptors (cytochalasin B and latrunculin A). The integrity of the blastocyst cavity was evaluated based on the gross morphology. Effects on HIPPO-YAP signaling were assessed based on the presence of nuclearized YAP protein by immunofluorescence staining and the expression of YAP/TEA domain family member (TEAD) target genes by quantitative RT-PCR (qRT-PCR). The impact of these disruptors on cell lineages was evaluated based on expression of the TE-specific and inner cell mass-specific marker genes by qRT-PCR. The integrity of the apicobasal cell polarity was assessed by localization of protein kinase C zeta (PRKCZ; apical) and scribbled planar cell polarity (SCRIB; basal) proteins by immunofluorescence staining. For comparisons, cultured cell lines, NIH/3T3 (mouse fibroblast) and P19C5 (mouse embryonal carcinoma), were also treated with RHOA inhibitor, ROCK inhibitor, and actin filament disruptors for up to 8 h, and effects on HIPPO-YAP signaling were assessed based on expression of YAP/TEAD target genes by qRT-PCR. Each experiment was repeated using three independent batches of embryos (n = 40-80 per batch) or cell collections. Statistical analyses of data were performed, using one-way ANOVA and two-sample t-test. MAIN RESULTS AND THE ROLE OF CHANCE Inhibition of RHOA deflated the cavity, diminished nuclear YAP (P < 0.01), and down-regulated the YAP/TEAD target and TE-specific marker genes in both E3.5 and E4.5 blastocysts (P < 0.05), indicating that the maintenance of the key TE characteristics is dependent on RHOA activity. However, inhibition of ROCK or disruption of actin filament only deflated the blastocyst cavity, but did not alter HIPPO-YAP signaling or lineage-specific gene expressions, suggesting that the action of RHOA to sustain the TE-specific gene expression program is not mediated by ROCK or the actomyosin cytoskeleton. By contrast, ROCK inhibitor and actin filament disruptors diminished YAP/TEAD target gene expressions in cultured cells to a greater extent than RHOA inhibitor, implicating that the regulation of HIPPO-YAP signaling in expanding blastocysts is distinctly different from that in the cell lines. Furthermore, the apicobasal cell polarity proteins in the expanding blastocyst were mislocalized by ROCK inhibition but not by RHOA inhibition, indicating that cell polarity is not linked to regulation of HIPPO-YAP signaling. Taken together, our study suggests that RHOA activity is essential to maintain the TE lineage in the expanding blastocyst and it regulates HIPPO-YAP signaling and the lineage-specific gene expression program through mechanisms that are independent of ROCK or actomyosin cytoskeleton. LARGE-SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION This study was conducted using one species, the mouse. Direct translation of the experiments and findings to human fertility preservation and ART requires further investigations. WIDER IMPLICATIONS OF THE FINDINGS The elucidation of the mechanisms of TE formation is highly pertinent to fertility preservation in women. Our findings may raise awareness among providers of ART that the TE is sensitive to disturbance even in the late stage of blastocyst expansion and that rational approaches should be devised to avoid conditions that may impair the TE and its function. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by grants from the Ingeborg v.F. McKee Fund of the Hawaii Community Foundation (16ADVC-78882 to V.B.A.), and the National Institutes of Health (P20 GM103457 and R03 HD088839 to V.B.A.). The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Vernadeth B Alarcon
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
12
|
Huang TT, Huang DH, Ahn HJ, Arnett C, Huang CT. Early blastocyst expansion in euploid and aneuploid human embryos: evidence for a non-invasive and quantitative marker for embryo selection. Reprod Biomed Online 2019; 39:27-39. [PMID: 31130402 DOI: 10.1016/j.rbmo.2019.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
RESEARCH QUESTION How can the kinetics of human blastocyst expansion be used to evaluate an embryo's ploidy identified using preimplantation genetic testing for aneuploidy (PGT-A)? DESIGN This was a retrospective observational study of 188 autologous blastocysts from 34 sequential treatment cycles using PGT-A and blastocyst biopsy. Using time-lapse imaging, blastocyst expansion was evaluated using a quantitative standardized expansion assay (qSEA). Trophectoderm cell division was examined in selected, unbiopsied embryos (n = 7) to evaluate the contribution of mitosis to the expansion rate. RESULTS The averaged euploid blastocyst expansion rate was significantly (52.8%) faster than in aneuploid blastocysts (P = 0.0041). Scatterplots, representing 'expansion maps', revealed that both populations showed a similarly overlapping distribution of blastocyst formation times at 80-140 h from fertilization. Euploidy and aneuploidy were better distinguished in regions of higher and lower expansion, respectively, in expansion maps. Based upon the expansion slopes, rank-ordering of individual embryos within cohorts resulted in more than 90% euploid embryos in the first two ranks in patients less than 35 years of age. Additional detailed time-lapse image analysis provided evidence that rapid expansion was associated with robust, integrative cellular mitosis in trophectoderm cells. CONCLUSIONS The kinetics of human blastocyst expansion are related to an embryo's ploidy. These preliminary observations describe a new quantitative, non-invasive approach to embryo assessment that may be useful to identify single blastocysts for transfer, particularly in younger patient groups. However, this approach may also be useful for euploid embryo selection after PGT-A. The results support the hypothesis that aneuploidy universally impairs general cellular processes, including cell division, in differentiated cells.
Collapse
Affiliation(s)
- Thomas Tf Huang
- Department of Obstetrics and Gynecology and Women's Health, John A. Burns School of Medicine, Honolulu Hawaii, USA; Pacific In Vitro Fertilization Institute, Honolulu Hawaii, USA.
| | - David H Huang
- Pacific In Vitro Fertilization Institute, Honolulu Hawaii, USA
| | - Hyeong J Ahn
- Department of Complementary and Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu Hawaii, USA
| | - Christina Arnett
- Advanced Reproductive Center of Hawaii, Kapiolani Medical Center for Women and Children, Honolulu Hawaii, USA
| | - Christopher Tf Huang
- Advanced Reproductive Center of Hawaii, Kapiolani Medical Center for Women and Children, Honolulu Hawaii, USA
| |
Collapse
|
13
|
Iwasawa T, Takahashi K, Goto M, Anzai M, Shirasawa H, Sato W, Kumazawa Y, Terada Y. Human frozen-thawed blastocyst morphokinetics observed using time-lapse cinematography reflects the number of trophectoderm cells. PLoS One 2019; 14:e0210992. [PMID: 30650134 PMCID: PMC6334947 DOI: 10.1371/journal.pone.0210992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies reported morphokinetic indices for optimal selection of embryos in assisted reproductive technology (ART). The morphokinetics in blastocyst stage include the collapse and re-expansion rates after thawing. However, evaluation methods using these morphokinetics have not been established, mainly because the underlying molecular mechanisms remain unclarified. In this study, we focused on the relationship between these morphokinetic observation of the blastocyst behaviour and the number of cells constituting the blastocyst. We evaluated 38 surplus human frozen-thawed blastocysts using time-lapse cinematography and recorded their expansion, contraction, and hatching. A total of 28 blastocysts expanded in culture (cross-sectional area ≥ 5,000 π μm2). In comparison to the ones that did not, the expanded group presented significantly more number of inner cell mass (ICM) and trophectoderm (TE) cells, which eventually develop into the fetus and placenta, respectively (ICM: Expanded 10.2 ± 6.3 vs. Non-Expanded 6.0 ± 12.3, p < 0.05; TE: Expanded 165.7 ± 74.8 vs. Non-Expanded 57.0 ± 29.4, p < 0.05). Moreover, a positive correlation was found between the expansion rate (up to 4 h) and the number of TE cells (r = 0.558, p = 0.0021). Additionally, blastocysts that hatched had a significantly higher number of TE cells than those that did not (hatching 225.2 ± 61.2 vs. no hatching 121.1 ± 48.6, p < 0.0001). The number of TE cells per unit of cross-sectional area correlated negatively with the contraction time (r = –0.601, p = 0.0007). No correlation between the number of ICM cells and these morphokinetics was detected. In conclusion, our study demonstrates that different morphokinetics of frozen-thawed blastocysts reflect the number of TE cells. The differentiation of blastocysts containing sufficient TE cells would be beneficial for implantation and prognosis of a subsequent pregnancy. Thus, evaluation of these morphokinetics can be an effective method to screen good embryos for ART.
Collapse
Affiliation(s)
- Takuya Iwasawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita University, Akita, Japan
- * E-mail:
| | - Kazumasa Takahashi
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita University, Akita, Japan
| | - Mayumi Goto
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita University, Akita, Japan
| | - Mibuki Anzai
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita University, Akita, Japan
| | - Hiromitsu Shirasawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita University, Akita, Japan
| | - Wataru Sato
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita University, Akita, Japan
| | - Yukiyo Kumazawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita University, Akita, Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
14
|
Frum T, Ralston A. Visualizing HIPPO Signaling Components in Mouse Early Embryonic Development. Methods Mol Biol 2019; 1893:335-352. [PMID: 30565145 DOI: 10.1007/978-1-4939-8910-2_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The HIPPO signaling pathway plays an early and essential role in mammalian embryogenesis. The earliest known roles for HIPPO signaling during mouse development include segregating fetal and extraembryonic lineages and establishing the pluripotent progenitors of embryonic stem (ES) cells. In the mouse early embryo, HIPPO signaling responds to multiple cell biological inputs, including cell polarization, cytoskeleton, and cell environment, to influence gene expression and the first cell fate decisions in development. Methods to monitor and manipulate HIPPO signaling in the mouse early embryo are fundamental to discovering mechanisms regulating pluripotency in vivo, but properties of the early embryo, such as small cell number and spherical architecture, pose unique challenges for signaling pathway analysis. Here, we share approaches for visualizing HIPPO signaling in mouse early embryos. In addition, these methods can be applied to visualize HIPPO signaling in other spherical or cystic structures comprised of relatively few cells, such as organoids, or for the examination of other signaling pathways in these contexts.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Klimczewska K, Kasperczuk A, Suwińska A. The Regulative Nature of Mammalian Embryos. Curr Top Dev Biol 2018; 128:105-149. [DOI: 10.1016/bs.ctdb.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Our First Choice: Cellular and Genetic Underpinnings of Trophectoderm Identity and Differentiation in the Mammalian Embryo. Curr Top Dev Biol 2018; 128:59-80. [DOI: 10.1016/bs.ctdb.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Plasticity of the inner cell mass in mouse blastocyst is restricted by the activity of FGF/MAPK pathway. Sci Rep 2017; 7:15136. [PMID: 29123210 PMCID: PMC5680175 DOI: 10.1038/s41598-017-15427-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
In order to ensure successful development, cells of the early mammalian embryo must differentiate to either trophectoderm (TE) or inner cell mass (ICM), followed by epiblast (EPI) or primitive endoderm (PE) specification within the ICM. Here, we deciphered the mechanism that assures the correct order of these sequential cell fate decisions. We revealed that TE-deprived ICMs derived from 32-cell blastocysts are still able to reconstruct TE during in vitro culture, confirming totipotency of ICM cells at this stage. ICMs isolated from more advanced blastocysts no longer retain totipotency, failing to form TE and generating PE on their surface. We demonstrated that the transition from full potency to lineage priming is prevented by inhibition of the FGF/MAPK signalling pathway. Moreover, we found that after this first restriction step, ICM cells still retain fate flexibility, manifested by ability to convert their fate into an alternative lineage (PE towards EPI and vice versa), until peri-implantation stage.
Collapse
|
18
|
Jaber M, Sebban S, Buganim Y. Acquisition of the pluripotent and trophectoderm states in the embryo and during somatic nuclear reprogramming. Curr Opin Genet Dev 2017; 46:37-43. [DOI: 10.1016/j.gde.2017.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/08/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
|
19
|
Chen T, You Y, Jiang H, Wang ZZ. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 2017; 232:3261-3272. [PMID: 28079253 DOI: 10.1002/jcp.25797] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/14/2022]
Abstract
The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.
Collapse
Affiliation(s)
- Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanan You
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Posfai E, Petropoulos S, de Barros FRO, Schell JP, Jurisica I, Sandberg R, Lanner F, Rossant J. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 2017; 6:22906. [PMID: 28226240 PMCID: PMC5370188 DOI: 10.7554/elife.22906] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling. DOI:http://dx.doi.org/10.7554/eLife.22906.001 In female mammals, conception is a complex process that involves several stages. First, an egg is released from the ovary and travels along a tube called the oviduct, where sperm from a male may fertilize it. If the egg is fertilized, the newly formed embryo moves into the womb, where it will then implant into the walls. In mice, it takes around four days for the embryo to implant and during this time, the cells in the embryo divide several times and start to specialize to form distinct cell types called lineages. The first two lineages to form are known as the inner cell mass and the trophectoderm. The inner cell mass forms a ball of cells within the embryo and contains the precursors of all cells that build the animal’s body. The trophectoderm forms a layer that surrounds the inner cell mass and will become part of the placenta (the organ that supplies the embryo with nutrients while it is in the womb). The embryo can organize these lineages without any instructions from the mother. However, it is still not clear when the cells start to differ from each other, and when they ‘commit’ to stay in these lineages. Cells in the inner cell mass and trophectoderm have different gene expression profiles, meaning that many genes display different levels of activity in these two lineages. Posfai et al. use a technique called single-cell RNA sequencing to analyse gene activity as the inner cell mass and trophectoderm form in mouse embryos. By measuring changes in gene activity, it is possible to track their development and show which genes change expression levels when each lineage specifies and commits. The experiments reveal that the inner cell mass and trophectoderm lineages develop at different times. As the inner cell mass forms, cells adopt the inner cell mass ‘identity’ before they commit to remaining in this lineage, revealing a window of time where different signals could still change the fate of the cells. However, when the early trophectoderm cells show the first signs of specialization, they also commit to their new identity at the same time. These findings suggest that the different timings at which these cell lineages form might provide embryos with the means to organize their own cells. An important future challenge is to understand exactly how the cells commit to their fate. DOI:http://dx.doi.org/10.7554/eLife.22906.002
Collapse
Affiliation(s)
- Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.,Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | | | - John Paul Schell
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Rickard Sandberg
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: Linking cellular phenotypes to lineage decisions. Dev Dyn 2016; 246:245-261. [DOI: 10.1002/dvdy.24471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| |
Collapse
|