1
|
Pla‐Prats C, Cavadini S, Kempf G, Thomä NH. Recognition of the CCT5 di-Glu degron by CRL4 DCAF12 is dependent on TRiC assembly. EMBO J 2023; 42:e112253. [PMID: 36715408 PMCID: PMC9929631 DOI: 10.15252/embj.2022112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Assembly Quality Control (AQC) E3 ubiquitin ligases target incomplete or incorrectly assembled protein complexes for degradation. The CUL4-RBX1-DDB1-DCAF12 (CRL4DCAF12 ) E3 ligase preferentially ubiquitinates proteins that carry a C-terminal double glutamate (di-Glu) motif. Reported CRL4DCAF12 di-Glu-containing substrates include CCT5, a subunit of the TRiC chaperonin. How DCAF12 engages its substrates and the functional relationship between CRL4DCAF12 and CCT5/TRiC is currently unknown. Here, we present the cryo-EM structure of the DDB1-DCAF12-CCT5 complex at 2.8 Å resolution. DCAF12 serves as a canonical WD40 DCAF substrate receptor and uses a positively charged pocket at the center of the β-propeller to bind the C-terminus of CCT5. DCAF12 specifically reads out the CCT5 di-Glu side chains, and contacts other visible degron amino acids through Van der Waals interactions. The CCT5 C-terminus is inaccessible in an assembled TRiC complex, and functional assays demonstrate that DCAF12 binds and ubiquitinates monomeric CCT5, but not CCT5 assembled into TRiC. Our biochemical and structural results suggest a previously unknown role for the CRL4DCAF12 E3 ligase in overseeing the assembly of a key cellular complex.
Collapse
Affiliation(s)
- Carlos Pla‐Prats
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
2
|
Hu Y, Liu C, Han W, Wang P. A theoretical framework of immune cell phenotypic classification and discovery. Front Immunol 2023; 14:1128423. [PMID: 36936975 PMCID: PMC10018129 DOI: 10.3389/fimmu.2023.1128423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Immune cells are highly heterogeneous and show diverse phenotypes, but the underlying mechanism remains to be elucidated. In this study, we proposed a theoretical framework for immune cell phenotypic classification based on gene plasticity, which herein refers to expressional change or variability in response to conditions. The system contains two core points. One is that the functional subsets of immune cells can be further divided into subdivisions based on their highly plastic genes, and the other is that loss of phenotype accompanies gain of phenotype during phenotypic conversion. The first point suggests phenotypic stratification or layerability according to gene plasticity, while the second point reveals expressional compatibility and mutual exclusion during the change in gene plasticity states. Abundant transcriptome data analysis in this study from both microarray and RNA sequencing in human CD4 and CD8 single-positive T cells, B cells, natural killer cells and monocytes supports the logical rationality and generality, as well as expansibility, across immune cells. A collection of thousands of known immunophenotypes reported in the literature further supports that highly plastic genes play an important role in maintaining immune cell phenotypes and reveals that the current classification model is compatible with the traditionally defined functional subsets. The system provides a new perspective to understand the characteristics of dynamic, diversified immune cell phenotypes and intrinsic regulation in the immune system. Moreover, the current substantial results based on plasticitomics analysis of bulk and single-cell sequencing data provide a useful resource for big-data-driven experimental studies and knowledge discoveries.
Collapse
Affiliation(s)
- Yuzhe Hu
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Wenling Han
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
- *Correspondence: Pingzhang Wang,
| |
Collapse
|
3
|
Nong W, Huang F, Mao F, Lao D, Gong Z, Huang W. DCAF12 and HSPA1A May Serve as Potential Diagnostic Biomarkers for Myasthenia Gravis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8587273. [PMID: 35655486 PMCID: PMC9155969 DOI: 10.1155/2022/8587273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Background Myasthenia gravis (MG) is an autoimmune disease that severely affects the life quality of patients. This study explores the differences in immune cell types between MG and healthy control and the role of immune-related genes in the diagnosis of MG. Methods The GSE85452 dataset was downloaded from the Gene Expression Omnibus (GEO) database and analyzed using the limma package to determine differentially expressed genes (DEGs) between patients with MG and the control group. Differentially expressed immune cells were analyzed using single-sample gene set enrichment analysis (GSEA), while immune cell-associated modules were identified by weighted gene coexpression network analysis (WGCNA). Then, the expression of the identified hub genes was confirmed by RT-PCR in peripheral blood mononuclear cells (PBMCs) of MG patients. The R package pROC was used to plot the receiver operating characteristics (ROC) curves. Results The modules related to CD56bright natural killer cells were identified by GSEA and WGCNA. The proportion of CD56bright natural killer cells in the peripheral blood of MG patients is low. The results of RT-PCR showed that the levels of DDB1- and CUL4-associated factor 12 (DCAF12) and heat shock protein family A member 1A (HSPA1A) were significantly decreased in peripheral blood mononuclear cells of MG patients compared with healthy controls. The ROC curve results of DCAF12 and HSPA1A mRNA in MG diagnosis were 0.780 and 0.830, respectively. Conclusions CD56bright NK cell is lower in MG patients and may affect MG occurrence. DCAF12 and HSPA1A are lowly expressed in PBMCs of MG patients and may serve as the diagnostic biomarkers of MG.
Collapse
Affiliation(s)
- Weidong Nong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fang Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fengping Mao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Dayuan Lao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Zhuowei Gong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Wen Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| |
Collapse
|
4
|
Jiao D, Chen Y, Wang Y, Sun H, Shi Q, Zhang L, Zhao X, Liu Y, He H, Lv Z, Liu C, Zhang P, Gao K, Huang Y, Li Y, Li L, Wang C. DCAF12 promotes apoptosis and inhibits NF-κB activation by acting as an endogenous antagonist of IAPs. Oncogene 2022; 41:3000-3010. [PMID: 35459779 DOI: 10.1038/s41388-022-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Members of the Inhibitor of Apoptosis Protein (IAP) family are essential for cell survival and appear to neutralize the cell death machinery by binding pro-apoptotic caspases. dcaf12 was recently identified as an apoptosis regulator in Drosophila. However, the underlying molecular mechanisms are unknown. Here we revealed that human DCAF12 homolog binds multiple IAPs, including XIAP, cIAP1, cIAP2, and BRUCE, through recognition of BIR domains in IAPs. The pro-apoptotic function of DCAF12 is dependent on its capacity to bind IAPs. In response to apoptotic stimuli, DCAF12 translocates from the nucleus to the cytoplasm, where it blocks the interaction between XIAP and pro-apoptotic caspases to facilitate caspase activation and apoptosis execution. Similarly, DCAF12 suppresses NF-κB activation in an IAP binding-dependent manner. Moreover, DCAF12 acts as a tumor suppressor to restrict the malignant phenotypes of cancer cells. Together, our results suggest that DCAF12 is an evolutionarily conserved IAP antagonist.
Collapse
Affiliation(s)
- Dongyue Jiao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yingji Chen
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yalan Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huiru Sun
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qing Shi
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liang Zhang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaying Zhao
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yajuan Liu
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huiying He
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chuan Liu
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Huang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yao Li
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liang Li
- Department of Thyroid and Breast Surgery, Zibo Central Hospital, Zibo, 255036, China.
| | - Chenji Wang
- Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Lai E, Danner AL, Famula TR, Oberbauer AM. Genome-Wide Association Studies Reveal Susceptibility Loci for Noninfectious Claw Lesions in Holstein Dairy Cattle. Front Genet 2021; 12:657375. [PMID: 34122511 PMCID: PMC8194352 DOI: 10.3389/fgene.2021.657375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
Sole ulcers (SUs) and white line disease (WLD) are two common noninfectious claw lesions (NICL) that arise due to a compromised horn production and are frequent causes of lameness in dairy cattle, imposing welfare and profitability concerns. Low to moderate heritability estimates of SU and WLD susceptibility indicate that genetic selection could reduce their prevalence. To identify the susceptibility loci for SU, WLD, SU and/or WLD, and any type of noninfectious claw lesion, genome-wide association studies (GWAS) were performed using generalized linear mixed model (GLMM) regression, chunk-based association testing (CBAT), and a random forest (RF) approach. Cows from five commercial dairies in California were classified as controls having no lameness records and ≥6 years old (n = 102) or cases having SU (n = 152), WLD (n = 117), SU and/or WLD (SU + WLD, n = 198), or any type of noninfectious claw lesion (n = 217). The top single nucleotide polymorphisms (SNPs) were defined as those passing the Bonferroni-corrected suggestive and significance thresholds in the GLMM analysis or those that a validated RF model considered important. Effects of the top SNPs were quantified using Bayesian estimation. Linkage disequilibrium (LD) blocks defined by the top SNPs were explored for candidate genes and previously identified, functionally relevant quantitative trait loci. The GLMM and CBAT approaches revealed the same regions of association on BTA8 for SU and BTA13 common to WLD, SU + WLD, and NICL. These SNPs had effects significantly different from zero, and the LD blocks they defined explained a significant amount of phenotypic variance for each dataset (6.1-8.1%, p < 0.05), indicating the small but notable contribution of these regions to susceptibility. These regions contained candidate genes involved in wound healing, skin lesions, bone growth and mineralization, adipose tissue, and keratinization. The LD block defined by the most significant SNP on BTA8 for SU included a SNP previously associated with SU. The RF models were overfitted, indicating that the SNP effects were very small, thereby preventing meaningful interpretation of SNPs and any downstream analyses. These findings suggested that variants associated with various physiological systems may contribute to susceptibility for NICL, demonstrating the complexity of genetic predisposition.
Collapse
Affiliation(s)
- Ellen Lai
- Animal Science Department, University of California, Davis, Davis, CA, United States
| | - Alexa L Danner
- Animal Science Department, University of California, Davis, Davis, CA, United States
| | - Thomas R Famula
- Animal Science Department, University of California, Davis, Davis, CA, United States
| | - Anita M Oberbauer
- Animal Science Department, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Lidak T, Baloghova N, Korinek V, Sedlacek R, Balounova J, Kasparek P, Cermak L. CRL4-DCAF12 Ubiquitin Ligase Controls MOV10 RNA Helicase during Spermatogenesis and T Cell Activation. Int J Mol Sci 2021; 22:5394. [PMID: 34065512 PMCID: PMC8161014 DOI: 10.3390/ijms22105394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an "ancient" RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.
Collapse
Affiliation(s)
- Tomas Lidak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Nikol Baloghova
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| | - Vladimir Korinek
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| |
Collapse
|
7
|
Lee G, Park JH. Programmed cell death reshapes the central nervous system during metamorphosis in insects. CURRENT OPINION IN INSECT SCIENCE 2021; 43:39-45. [PMID: 33065339 PMCID: PMC10754214 DOI: 10.1016/j.cois.2020.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Metamorphosis is fascinating and dramatic stage of postembryonic development in insects [1]. The most prominent metamorphic changes seen in holometabolous insects involve destruction of most larval structures and concomitant generation of adult ones. Such diverse cellular events are orchestrated by ecdysone. The central nervous system (CNS) is also extensively remodeled to process new sensory inputs; to coordinate new types of locomotion; and to perform higher-order decision making [2]. Programmed cell death (PCD) is an integral part of the metamorphic development. It eliminates obsolete larval tissues and extra cells that are generated from the morphogenesis of adult tissues. In the CNS, PCD of selected neurons and glial cells as well as reshaping of persistent larval cells are essential for establishing the adult CNS. In this review, we summarize the ecdysone signaling, and then molecular and cellular events associated with PCD primarily in the metamorphosing CNS of Drosophila melanogaster.
Collapse
Affiliation(s)
- Gyunghee Lee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville TN 37996, United States
| | - Jae H Park
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville TN 37996, United States.
| |
Collapse
|
8
|
Lau LY, Reverter A, Hudson NJ, Naval-Sanchez M, Fortes MRS, Alexandre PA. Dynamics of Gene Co-expression Networks in Time-Series Data: A Case Study in Drosophila melanogaster Embryogenesis. Front Genet 2020; 11:517. [PMID: 32528531 PMCID: PMC7264403 DOI: 10.3389/fgene.2020.00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/28/2020] [Indexed: 01/28/2023] Open
Abstract
Co-expression networks tightly coordinate the spatiotemporal patterns of gene expression unfolding during development. Due to the dynamic nature of developmental processes simply overlaying gene expression patterns onto static representations of co-expression networks may be misleading. Here, we aim to formally quantitate topological changes of co-expression networks during embryonic development using a publicly available Drosophila melanogaster transcriptome data set comprising 14 time points. We deployed a network approach which inferred 10 discrete co-expression networks by smoothly sliding along from early to late development using 5 consecutive time points per window. Such an approach allows changing network structure, including the presence of hubs, modules and other topological parameters to be quantitated. To explore the dynamic aspects of gene expression captured by our approach, we focused on regulator genes with apparent influence over particular aspects of development. Those key regulators were selected using a differential network algorithm to contrast the first 7 (early) with the last 7 (late) developmental time points. This assigns high scores to genes whose connectivity to abundant differentially expressed target genes has changed dramatically between states. We have produced a list of key regulators – some increasing (e.g., Tusp, slbo, Sidpn, DCAF12, and chinmo) and some decreasing (Rfx, bap, Hmx, Awh, and mld) connectivity during development – which reflects their role in different stages of embryogenesis. The networks we have constructed can be explored and interpreted within Cytoscape software and provide a new systems biology approach for the Drosophila research community to better visualize and interpret developmental regulation of gene expression.
Collapse
Affiliation(s)
- Li Yieng Lau
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, St Lucia, QLD, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Pâmela A Alexandre
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, St Lucia, QLD, Australia
| |
Collapse
|
9
|
Shu B, Zhang J, Veeran S, Zhong G. Pro-Apoptotic Function Analysis of the Reaper Homologue IBM1 in Spodoptera frugiperda. Int J Mol Sci 2020; 21:ijms21082729. [PMID: 32326478 PMCID: PMC7215429 DOI: 10.3390/ijms21082729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
As an important type of programmed cell death, apoptosis plays a critical role in lepidopteran insects in response to various internal and external stresses. It is controlled by a network of genes such as those encoding the inhibitor of apoptosis proteins. However, there are few studies on apoptosis-related genes in Spodoptera frugiperda. In this study, an orthologue to the Drosophila reaper gene, named Sf-IBM1, was identified from S. frugiperda, and a full-length sequence was obtained by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends PCR (RACE-PCR). The expression pattern of Sf-IBM1 was determined in different developmental stages and various tissues. Apoptotic stimuli including azadirachtin, camptothecin, and ultraviolet radiation (UV) induced the expression of Sf-IBM1 at both transcript and protein levels. Overexpression of Sf-IBM1 induced apoptosis in Sf9 cells, and the Sf-IBM1 protein was localized in mitochondria. The apoptosis induced by Sf-IBM1 could be blocked by the caspase universal inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) and Sf-IAP1. Our results provide valuable information that should contribute to a better understanding of the molecular events that lead to apoptosis in lepidopterans.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Sethuraman Veeran
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-0308; Fax: +86-20-8528-0203
| |
Collapse
|
10
|
Lu Y, Kweon SS, Cai Q, Tanikawa C, Shu XO, Jia WH, Xiang YB, Huyghe JR, Harrison TA, Kim J, Shin A, Kim DH, Matsuo K, Jee SH, Guo X, Wen W, Shi J, Li B, Wang N, Shin MH, Li HL, Ren Z, Oh JH, Oze I, Ahn YO, Jung KJ, Gao J, Gao YT, Pan ZZ, Kamatani Y, Chan AT, Gsur A, Hampe J, Le Marchand L, Li L, Lindblom A, Moreno V, Newcomb PA, Offit K, Pharoah PDP, van Duijnhoven FJB, Van Guelpen B, Vodicka P, Weinstein SJ, Wolk A, Wu AH, Hsu L, Zeng YX, Long J, Peters U, Matsuda K, Zheng W. Identification of Novel Loci and New Risk Variant in Known Loci for Colorectal Cancer Risk in East Asians. Cancer Epidemiol Biomarkers Prev 2020; 29:477-486. [PMID: 31826910 PMCID: PMC7571256 DOI: 10.1158/1055-9965.epi-19-0755] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 12/04/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Risk variants identified so far for colorectal cancer explain only a small proportion of familial risk of this cancer, particularly in Asians. METHODS We performed a genome-wide association study (GWAS) of colorectal cancer in East Asians, including 23,572 colorectal cancer cases and 48,700 controls. To identify novel risk loci, we selected 60 promising risk variants for replication using data from 58,131 colorectal cancer cases and 67,347 controls of European descent. To identify additional risk variants in known colorectal cancer loci, we performed conditional analyses in East Asians. RESULTS An indel variant, rs67052019 at 1p13.3, was found to be associated with colorectal cancer risk at P = 3.9 × 10-8 in Asians (OR per allele deletion = 1.13, 95% confidence interval = 1.08-1.18). This association was replicated in European descendants using a variant (rs2938616) in complete linkage disequilibrium with rs67052019 (P = 7.7 × 10-3). Of the remaining 59 variants, 12 showed an association at P < 0.05 in the European-ancestry study, including rs11108175 and rs9634162 at P < 5 × 10-8 and two variants with an association near the genome-wide significance level (rs60911071, P = 5.8 × 10-8; rs62558833, P = 7.5 × 10-8) in the combined analyses of Asian- and European-ancestry data. In addition, using data from East Asians, we identified 13 new risk variants at 11 loci reported from previous GWAS. CONCLUSIONS In this large GWAS, we identified three novel risk loci and two highly suggestive loci for colorectal cancer risk and provided evidence for potential roles of multiple genes and pathways in the etiology of colorectal cancer. In addition, we showed that additional risk variants exist in many colorectal cancer risk loci identified previously. IMPACT Our study provides novel data to improve the understanding of the genetic basis for colorectal cancer risk.
Collapse
Affiliation(s)
- Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nan Wang
- General Surgery Department, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Hong-Lan Li
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Isao Oze
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keum Ji Jung
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Jing Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Andrew T Chan
- Division of Gastroenterology, and Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, and Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | | | - Li Li
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, California
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
11
|
Abstract
Cullin-RING ligase 4 (CRL4), a member of the cullin-RING ligase family, orchestrates a variety of critical cellular processes and pathophysiological events. Recent results from mouse genetics, clinical analyses, and biochemical studies have revealed the impact of CRL4 in development and cancer etiology and elucidated its in-depth mechanism on catalysis of ubiquitination as a ubiquitin E3 ligase. Here, we summarize the versatile roles of the CRL4 E3 ligase complexes in tumorigenesis dependent on the evidence obtained from knockout and transgenic mouse models as well as biochemical and pathological studies.
Collapse
|
12
|
Hillen MR, Pandit A, Blokland SLM, Hartgring SAY, Bekker CPJ, van der Heijden EHM, Servaas NH, Rossato M, Kruize AA, van Roon JAG, Radstake TRDJ. Plasmacytoid DCs From Patients With Sjögren's Syndrome Are Transcriptionally Primed for Enhanced Pro-inflammatory Cytokine Production. Front Immunol 2019; 10:2096. [PMID: 31552042 PMCID: PMC6736989 DOI: 10.3389/fimmu.2019.02096] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic auto-immune disease typified by dryness of the mouth and eyes. A majority of patients with pSS have a type-I interferon (IFN)-signature, which is defined as the increased expression of IFN-induced genes in circulating immune cells and is associated with increased disease activity. As plasmacytoid dendritic cells (pDC) are the premier type-I IFN-producing cells and are present at the site of inflammation, they are thought to play a significant role in pSS pathogenesis. Considering the lack of data on pDC regulation and function in pSS patients, we here provided the first in-depth molecular characterization of pSS pDCs. In addition, a group of patients with non-Sjögren's sicca (nSS) was included; these poorly studied patients suffer from complaints similar to pSS patients, but are not diagnosed with Sjögren's syndrome. We isolated circulating pDCs from two independent cohorts of patients and controls (each n = 31) and performed RNA-sequencing, after which data-driven networks and modular analysis were used to identify robustly reproducible transcriptional “signatures” of differential and co-expressed genes. Four signatures were identified, including an IFN-induced gene signature and a ribosomal protein gene-signature, that indicated pDC activation. Comparison with a dataset of in vitro activated pDCs showed that pSS pDCs have higher expression of many genes also upregulated upon pDC activation. Corroborating this transcriptional profile, pSS pDCs produced higher levels of pro-inflammatory cytokines, including type-I IFN, upon in vitro stimulation with endosomal Toll-like receptor ligands. In this setting, cytokine production was associated with expression of hub-genes from the IFN-induced and ribosomal protein gene-signatures, indicating that the transcriptional profile of pSS pDCs underlies their enhanced cytokine production. In all transcriptional analyses, nSS patients formed an intermediate group in which some patients were molecularly similar to pSS patients. Furthermore, we used the identified transcriptional signatures to develop a discriminative classifier for molecular stratification of patients with sicca. Altogether, our data provide in-depth characterization of the aberrant regulation of pDCs from patients with nSS and pSS and substantiate their perceived role in the immunopathology of pSS, supporting studies that target pDCs, type-I IFNs, or IFN-signaling in pSS.
Collapse
Affiliation(s)
- Maarten R Hillen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sarita A Y Hartgring
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cornelis P J Bekker
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eefje H M van der Heijden
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nila H Servaas
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Aike A Kruize
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Ravichandran R, Kodali K, Peng J, Potts PR. Regulation of MAGE-A3/6 by the CRL4-DCAF12 ubiquitin ligase and nutrient availability. EMBO Rep 2019; 20:e47352. [PMID: 31267705 PMCID: PMC6607007 DOI: 10.15252/embr.201847352] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Melanoma antigen genes (MAGEs) are emerging as important oncogenic drivers that are normally restricted to expression in male germ cells but are aberrantly expressed in cancers and promote tumorigenesis. Mechanistically, MAGEs function as substrate specifying subunits of E3 ubiquitin ligases. Thus, the activation of germline-specific genes in cancer can drive metabolic and signaling pathways through altered ubiquitination to promote tumorigenesis. However, the mechanisms regulating MAGE expression and activity are unclear. Here, we describe how the MAGE-A3/6 proteins that function as repressors of autophagy are downregulated in response to nutrient deprivation. Short-term cellular starvation promotes rapid MAGE-A3/6 degradation in a proteasome-dependent manner. Proteomic analysis reveals that degradation of MAGE-A3/6 is controlled by the CRL4-DCAF12 E3 ubiquitin ligase. Importantly, the degradation of MAGE-A3/6 by CRL4-DCAF12 is required for starvation-induced autophagy. These findings suggest that oncogenic MAGEs can be dynamically controlled in response to stress to allow cellular adaptation, autophagy regulation, and tumor growth and that CRL4-DCAF12 activity is responsive to nutrient status.
Collapse
Affiliation(s)
- Ramya Ravichandran
- Department of Cell and Molecular BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Kiran Kodali
- Departments of Structural Biology and Developmental NeurobiologyCenter for Proteomics and MetabolomicsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Junmin Peng
- Departments of Structural Biology and Developmental NeurobiologyCenter for Proteomics and MetabolomicsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Patrick Ryan Potts
- Department of Cell and Molecular BiologySt. Jude Children's Research HospitalMemphisTNUSA
| |
Collapse
|
14
|
Patrón LA, Nagatomo K, Eves DT, Imad M, Young K, Torvund M, Guo X, Rogers GC, Zinsmaier KE. Cul4 ubiquitin ligase cofactor DCAF12 promotes neurotransmitter release and homeostatic plasticity. J Cell Biol 2019; 218:993-1010. [PMID: 30670470 PMCID: PMC6400570 DOI: 10.1083/jcb.201805099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Patrón et al. show that presynaptic Drosophila DCAF12 is required for neurotransmitter release and homeostatic synaptic plasticity at neuromuscular junctions. Postsynaptic nuclear DCAF12 controls the expression of glutamate receptor IIA subunits in cooperation with Cullin4 ubiquitin ligase. We genetically characterized the synaptic role of the Drosophila homologue of human DCAF12, a putative cofactor of Cullin4 (Cul4) ubiquitin ligase complexes. Deletion of Drosophila DCAF12 impairs larval locomotion and arrests development. At larval neuromuscular junctions (NMJs), DCAF12 is expressed presynaptically in synaptic boutons, axons, and nuclei of motor neurons. Postsynaptically, DCAF12 is expressed in muscle nuclei and facilitates Cul4-dependent ubiquitination. Genetic experiments identified several mechanistically independent functions of DCAF12 at larval NMJs. First, presynaptic DCAF12 promotes evoked neurotransmitter release. Second, postsynaptic DCAF12 negatively controls the synaptic levels of the glutamate receptor subunits GluRIIA, GluRIIC, and GluRIID. The down-regulation of synaptic GluRIIA subunits by nuclear DCAF12 requires Cul4. Third, presynaptic DCAF12 is required for the expression of synaptic homeostatic potentiation. We suggest that DCAF12 and Cul4 are critical for normal synaptic function and plasticity at larval NMJs.
Collapse
Affiliation(s)
- Lilian A Patrón
- Department of Neuroscience, University of Arizona, Tucson, AZ.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ
| | - Kei Nagatomo
- Department of Neuroscience, University of Arizona, Tucson, AZ
| | | | - Mays Imad
- Department of Neuroscience, University of Arizona, Tucson, AZ
| | - Kimberly Young
- Department of Neuroscience, University of Arizona, Tucson, AZ
| | - Meaghan Torvund
- Department of Neuroscience, University of Arizona, Tucson, AZ.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ
| | - Xiufang Guo
- Department of Neuroscience, University of Arizona, Tucson, AZ
| | - Gregory C Rogers
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Konrad E Zinsmaier
- Department of Neuroscience, University of Arizona, Tucson, AZ .,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
15
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
16
|
Jain BP, Pandey S, Saleem N, Tanti GK, Mishra S, Goswami SK. SG2NA is a regulator of endoplasmic reticulum (ER) homeostasis as its depletion leads to ER stress. Cell Stress Chaperones 2017; 22:853-866. [PMID: 28634818 PMCID: PMC5655373 DOI: 10.1007/s12192-017-0816-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023] Open
Abstract
SG2NA belongs to a three-member striatin subfamily of WD40 repeat superfamily of proteins. It has multiple protein-protein interaction domains involved in assembling supramolecular signaling complexes. Earlier, we had demonstrated that there are at least five variants of SG2NA generated by alternative splicing, intron retention, and RNA editing. Such versatile and dynamic mode of regulation implicates it in tissue development. In order to shed light on its role in cell physiology, total proteome analysis was performed in NIH3T3 cells depleted of 78 kDa SG2NA, the only isoform expressing therein. A number of ER stress markers were among those modulated after knockdown of SG2NA. In cells treated with the ER stressors thapsigargin and tunicamycin, expression of SG2NA was increased at both mRNA and protein levels. The increased level of SG2NA was primarily in the mitochondria and the microsomes. A mouse injected with thapsigargin also had an increase in SG2NA in the liver but not in the brain. Cell cycle analysis suggested that while loss of SG2NA reduces the level of cyclin D1 and retains a population of cells in the G1 phase, concurrent ER stress facilitates their exit from G1 and traverse through subsequent phases with concomitant cell death. Thus, SG2NA is a component of intrinsic regulatory pathways that maintains ER homeostasis.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Nikhat Saleem
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Goutam K Tanti
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Neuro-Kopf-Zentrum, Department of Neurology, Klinikumrechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str.22, 81675, Muenchen, Germany
| | - Shalini Mishra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, New Delhi, -110054, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|