1
|
Fan J, Wang J, Ning J, Wu S, Wang C, Wang YC. Genome-wide identification and expression analysis of the Sox gene family in bivalves. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101489. [PMID: 40139063 DOI: 10.1016/j.cbd.2025.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Since the discovery of the Sox gene family in 1990, research on its distribution, classification, characterization, and function across various species has been significantly deepened. However, the Sox gene family has not yet been systematically and comprehensively analyzed in bivalves. In this study, 254 Sox genes were identified in 51 bivalves (covering 20 orders and 37 families). The Sox gene numbers ranged from 1 and 10 in most bivalves but no Sox gene was identified in the transcriptomes of Poromya illevis (Poromyoidea), Thracia phaseolina (Thracioidea), Solen vaginoides (Solenoidea), Lamychaena hians (Gastrochaenoidea), and Limopsis sp. and Solemya velesiana (Limopsoidea). The phylogenetic analyses revealed that Sox genes in bivalves are divided into 7 primary groups: SoxB1, SoxB2, SoxC, SoxD, SoxE, SoxF, and SoxH, with different groups exhibiting distinct conserved motif patterns. Notably, SoxA and SoxG found in most vertebrates were not identified in bivalves. Moreover, through spatiotemporal expression profiling in 6 distinct bivalve species, it was determined that the SoxH genes exhibit male-biased expression mainly in non-hermaphroditic bivalves, while SoxB1 and SoxC genes demonstrate female-biased expression, and these two Sox genes may serve a pivotal role in embryonic development stage and SoxB2, SoxC and SoxE may play a significant impact in neural development in bivalves. Sox family members also appear to possess disparate functions across different species and tissues. Overall, this study may provide a basis for future investigations into the functions and evolution of Sox genes in bivalves, and offer new perspectives on their roles in development in bivalves.
Collapse
Affiliation(s)
- Jiawei Fan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhao Ning
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shaoxuan Wu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chunde Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yin-Chu Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; National Basic Science Data Center, Beijing 100190, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Gu Y, Chen J, Wang Z, Shao Q, Li Z, Ye Y, Xiao X, Xiao Y, Liu W, Xie S, Tong L, Jiang J, Xiao X, Yu Y, Jin M, Wei Y, Young RS, Hou L, Chen D. Integrated analysis and systematic characterization of the regulatory network for human germline development. J Genet Genomics 2025; 52:204-219. [PMID: 39571792 DOI: 10.1016/j.jgg.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/06/2025]
Abstract
Primordial germ cells (PGCs) are the precursors of germline that are specified at the embryonic stage. Recent studies reveal that humans employ different mechanisms for PGC specification compared with model organisms such as mice. Moreover, the specific regulatory machinery remains largely unexplored, mainly due to the inaccessible nature of this complex biological process in humans. Here, we curate and integrate multi-omics data, including 581 RNA-seq, 54 ATAC-seq, 45 ChIP-seq, and 69 single-cell RNA-seq samples from different stages of human PGC development to recapitulate the precisely controlled and stepwise process, presenting an atlas in the human PGC database (hPGCdb). With these uniformly processed data and integrated analyses, we characterize the potential key transcription factors and regulatory networks governing human germ cell fate. We validate the important roles of some of the key factors in germ cell development by CRISPRi knockdown. We also identify the soma-germline interaction network and discover the involvement of SDC2 and LAMA4 for PGC development, as well as soma-derived NOTCH2 signaling for germ cell differentiation. Taken together, we have built a database for human PGCs (http://43.131.248.15:6882) and demonstrate that hPGCdb enables the identification of the missing pieces of mechanisms governing germline development, including both intrinsic and extrinsic regulatory programs.
Collapse
Affiliation(s)
- Yashi Gu
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jiayao Chen
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ziqi Wang
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Qizhe Shao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhekai Li
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yaxuan Ye
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xia Xiao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yitian Xiao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Wenyang Liu
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Sisi Xie
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Lingling Tong
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jin Jiang
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoying Xiao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ya Yu
- Center for Reproductive Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Min Jin
- Center for Reproductive Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, M5T3H7, Canada.
| | - Robert S Young
- Center for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, 5-7 Little France Road, Edinburgh BioQuarter - Gate 3, Edinburgh, EH16 4UX, UK; Zhejiang University - University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang 314400, China.
| | - Lei Hou
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States.
| | - Di Chen
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK; State Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang 314400, China.
| |
Collapse
|
3
|
Kirino S, Nakagawa R, Gau M, Takasawa K, Murakawa Y, Kawaji H, Hayashizaki Y, Morio T, Kashimada K. Analysis of Functional cis-Regulatory Elements Reveals Novel Transcriptional Regulatory Mechanisms in Gonadal Development. Sex Dev 2025; 18:14-26. [PMID: 39832493 DOI: 10.1159/000543594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Recent studies have demonstrated that the production of bidirectional enhancer-derived transcripts (eRNAs) is a characteristic of an active cis-regulatory element (CRE). Higher levels of eRNAs synthesis correlate with the activation of histone modifications, a potentially valuable tool for deciphering the complexity of the gene regulatory network. METHOD To understand the changes of CREs during gonadal development in mice, we collected gonadal WT1-positive cells from the piggyBac-Wt1-mCherry-2A-EGFP (PBWt1-RG) reporter strain at E13.5, E16.5, and P0 in both sexes and conducted cap analysis of gene expression (CAGE) analysis, which is capable to capture transcription start sites (TSSs). We compared the levels of intergenic bidirectional RNAs, i.e., potentially eRNAs, according to sex at each stage (testis somatic cells vs. ovary somatic cells at E13.5, E16.5, and P0) and stage in each sex (E13.5 vs. E16.5, E16.5 vs. P0, and E13.5 vs. P0 in testis somatic cells or ovary somatic cells). Intergenic RNAs with significant changes (|Log2FC| > 1, p < 0.05) were selected. RESULTS The TSS profile of intergenic RNAs changed more profoundly in testis somatic cells than in ovary somatic cells, suggesting that embryonic testicular development is driven by larger changes in the transcriptional regulatory network than ovarian development. Based on the profiles of the predicted transcription factors (TFs) that would bind to the active CREs during gonadal development, the NR4A, EGR, and TCF3 families would be novel TFs to play pivotal roles in gonadal development. CONCLUSION Identifying active CREs using eRNAs would provide a means to comprehensively understand the transcriptional regulatory system, leading to valuable insights into the gonadal development of male and female individuals.
Collapse
Affiliation(s)
- Shizuka Kirino
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Ryuichi Nakagawa
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Maki Gau
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
- Department of Life Science and Bioethics, Institute of Science Tokyo, Tokyo, Japan
| | - Kei Takasawa
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- RIKEN, Preventive Medicine and Diagnosis Innovation Program, Saitama, Japan
- Research Center for Genome and Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshihide Hayashizaki
- RIKEN, Preventive Medicine and Diagnosis Innovation Program, Saitama, Japan
- K.K. DNAFORM, Yokohama, Japan
| | - Tomohiro Morio
- Laboratory of Immunology and Molecular Medicine, Advanced Research Institute, Institute of Science Tokyo, Tokyo, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Schincariol-Manhe B, Campagnolo É, Spineli-Silva S, de Leeuw N, Correia-Costa GR, Pessoa A, de Souza CFM, Stevens C, Javaher P, Scallet HF, Mohr J, Biskup S, Herkert JC, Pfundt R, Mehta L, Rekab A, Elloumi HZ, Sanyoura M, Maciel-Guerra AT, Gil-da-Silva-Lopes VL, Dos Santos AM, Vieira TP. Novel variants in the SOX11 gene: clinical description of seven new patients. Eur J Hum Genet 2024; 32:1640-1646. [PMID: 39333428 PMCID: PMC11607427 DOI: 10.1038/s41431-024-01695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/05/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Pathogenic SOX11 variants have been associated with intellectual developmental disorder with microcephaly, and with or without ocular malformations or hypogonadotropic hypogonadism (HH) (IDDMOH, OMIM # 615866). In this article, we report seven new patients with de novo SOX11 variants. Five of the variants are missense, one nonsense, and one whole-gene deletion, most of them are novel variants. The main clinical features included neurodevelopmental delay (7/7) and intellectual disability (5/7), autism/attention deficit hyperactivity disorder (5/7), microcephaly (4/7), short stature (4/7), hypotonia (4/7), and clinodactyly of the 5th fingers (5/7). HH was confirmed in two female patients with primary amenorrhea, nonvisualized/prepubertal size of the uterus, and nonvisualized ovaries. Two of the male patients presented with micropenis, two had cryptorchidism, and one had decreased testicular size, which are suggestive findings of HH. This article contributes to the clinical characterization of patients with SOX11 variants and supports the role of this gene in HH.
Collapse
Affiliation(s)
- Beatriz Schincariol-Manhe
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | | | - Samira Spineli-Silva
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
| | - Gabriela Roldão Correia-Costa
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | - André Pessoa
- Hospital Infantil Albert Sabin - Fortaleza-Ce / Ceara State University - UECE, Ceará, Brazil
| | | | - Cathy Stevens
- University of Tennessee College of Medicine, Chattanooga, TN, USA
| | | | - Helena Fabbri Scallet
- Center for Molecular Biology and Genetic Engineering (CBMEG), Universidade Estadual de Campinas, Campinas, Brazil
| | - Julia Mohr
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | - Saskia Biskup
- CeGaT GmbH and Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | - Johanna C Herkert
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
| | - Lakshmi Mehta
- Division of Clinical Genetics, Morgan Stanley Children's Hospital - Columbia University Medical Center, New York, NY, USA
| | - Aisha Rekab
- Division of Clinical Genetics, Morgan Stanley Children's Hospital - Columbia University Medical Center, New York, NY, USA
| | | | | | - Andréa Trevas Maciel-Guerra
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | | | - Társis Paiva Vieira
- Department of Translational Medicine - Medical Genetics and Genomic Medicine, School of Medical Sciences, Universidade Estadual de Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Suen HC, Ou F, Miu KK, Wang Z, Chan WY, Liao J. The single-cell chromatin landscape in gonadal cell lineage specification. BMC Genomics 2024; 25:464. [PMID: 38741085 DOI: 10.1186/s12864-024-10376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.
Collapse
Affiliation(s)
- Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fanghong Ou
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kai-Kei Miu
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhangting Wang
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Yee Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jinyue Liao
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
6
|
Hong Q, Fan M, Cai R, Shi W, Xie F, Chen Y, Li C. SOX4 regulates proliferation and apoptosis of human ovarian granulosa-like tumor cell line KGN through the Hippo pathway. Biochem Biophys Res Commun 2024; 705:149738. [PMID: 38447391 DOI: 10.1016/j.bbrc.2024.149738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.
Collapse
Affiliation(s)
- Qiang Hong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Mengmeng Fan
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Rui Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenhui Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fenfen Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yuanhua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Cong Li
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
7
|
Kong Z, Zhu L, Liu Y, Liu Y, Chen G, Jiang T, Wang H. Effects of azithromycin exposure during pregnancy at different stages, doses and courses on testicular development in fetal mice. Biomed Pharmacother 2024; 170:116063. [PMID: 38154271 DOI: 10.1016/j.biopha.2023.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Azithromycin is a commonly used antibiotic during pregnancy, but some studies have suggested its potential developmental toxicity. Currently, the effects and mechanisms of prenatal azithromycin exposure (PAzE) on fetal testicular development are still unclear. The effects of prenatal exposure to the same drug on fetal testicular development could vary depending on different stages, doses, and courses. Hence, in this study, based on clinical medication characteristics, Kunming mice was administered intragastrically with azithromycin at different stages (mid-/late-pregnancy), doses (50, 100, 200 mg/kg·d), and courses (single-/multi-course). Fetal blood and testicular samples were collected on GD18 for relevant assessments. The results indicated that PAzE led to changes in fetal testicular morphology, reduced cell proliferation, increased apoptosis, and decreased expression of markers related to Leydig cells (Star), Sertoli cells (Wt1), and spermatogonia (Plzf). Further investigation revealed that the effects of PAzE on fetal testicular development were characterized by mid-pregnancy, high dose (clinical dose), and single course having more pronounced effects. Additionally, the TGFβ/Smad and Nrf2 signaling pathways may be involved in the changes in fetal testicular development induced by PAzE. In summary, this study confirmed that PAzE influences fetal testicular morphological development and multicellular function. It provided theoretical and experimental evidence for guiding the rational use of azithromycin during pregnancy and further exploring the mechanisms underlying its developmental toxicity on fetal testicles.
Collapse
Affiliation(s)
- Ziyu Kong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Wuhan University People's Hospital, Wuhan 430071, China
| | - Tao Jiang
- Suizhou Emergency Medical Center, Suizhou 441300, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
8
|
Kuo CY, Hsu YC, Liu CL, Li YS, Chang SC, Cheng SP. SOX4 is a pivotal regulator of tumorigenesis in differentiated thyroid cancer. Mol Cell Endocrinol 2023; 578:112062. [PMID: 37673293 DOI: 10.1016/j.mce.2023.112062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The SOX family consists of about 20 transcription factors involved in embryonic development, reprogramming, and cell fate determination. In this study, we demonstrated that SOX4 was significantly upregulated in differentiated thyroid cancer. Immunohistochemical analysis revealed that high SOX4 expression was associated with papillary histology, extrathyroidal extension, lymph node metastasis, and advanced disease stage. Patients whose tumors exhibited high SOX4 expression had a shorter recurrence-free survival, though significance was lost in multivariate Cox regression analysis. SOX4 silencing in thyroid cancer cells slowed cell growth, attenuated clonogenicity, and suppressed anoikis resistance. Additionally, SOX4 knockdown impeded xenograft tumor growth in nude mice. Knockdown of SOX4 expression was accompanied by reduced phosphorylation of AKT and ERK. Furthermore, CRABP2 expression correlated with SOX4 expression, and SOX4 silencing decreased CRABP2 expression and its downstream effectors such as integrin β1 and β4. These results indicate that SOX4 has both prognostic and therapeutic implications in differentiated thyroid cancer, and targeting SOX4 may modulate tumorigenic processes in the thyroid.
Collapse
Affiliation(s)
- Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ying-Syuan Li
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Bird AD, Frost ER, Bagheri-Fam S, Croft BM, Ryan JM, Zhao L, Koopman P, Harley VR. Somatic FGFR2 is Required for Germ Cell Maintenance in the Mouse Ovary. Endocrinology 2023; 164:7036407. [PMID: 36786658 DOI: 10.1210/endocr/bqad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023]
Abstract
During sex determination in the mouse, fibroblast growth factor 9 signals through the fibroblast growth factor receptor 2c isoform (FGFR2c) to trigger Sertoli cell and testis development from 11.5 days post coitum (dpc). In the XX gonad, the FOXL2 and WNT4/RSPO1 pathways drive granulosa cell and ovarian development. The function of FGFR2 in the developing ovary, and whether FGFR2 is required in the testis after sex determination, is not clear. In fetal mouse gonads from 12.5 dpc, FGFR2 shows sexually dimorphic expression. In XX gonads, FGFR2c is coexpressed with FOXL2 in pregranulosa cells, whereas XY gonads show FGFR2b expression in germ cells. Deletion of Fgfr2c in XX mice led to a marked decrease/absence of germ cells by 13.5 dpc in the ovary. This indicates that FGFR2c in the somatic pregranulosa cells is required for the maintenance of germ cells. Surprisingly, on the Fgfr2c-/- background, the germ cell phenotype could be rescued by ablation of Foxl2, suggesting a novel mechanism whereby FGFR2 and FOXL2 act antagonistically during germ cell development. Consistent with low/absent FGFR2 expression in the Sertoli cells of 12.5 and 13.5 dpc XY gonads, XY AMH:Cre; Fgfr2flox/flox mice showed normal testis morphology and structures during fetal development and in adulthood. Thus, FGFR2 is not essential for maintaining Sertoli cell fate after sex determination. Combined, these data show that FGFR2 is not necessary for Sertoli cell function after sex determination but does play an important role in the ovary.
Collapse
Affiliation(s)
- Anthony D Bird
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, 3010, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
| | - Emily R Frost
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Brittany M Croft
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Janelle M Ryan
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Vincent R Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
10
|
Developmental toxicity window of fetal testicular injury in offspring mice induced by prenatal amoxicillin exposure at different time, doses and courses. Toxicol Lett 2023; 374:85-95. [PMID: 36529298 DOI: 10.1016/j.toxlet.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Amoxicillin is widely used in the clinical treatment of syphilis, gonorrhea and other infectious diseases during pregnancy, but the effects of prenatal amoxicillin exposure (PAmE) on fetal testicular development have not been reported. Based on the characteristics of clinical medication, Kunming mice were orally gavaged with amoxicillin during pregnancy at different time (mid- or late-pregnancy), doses (75, 150 or 300 mg/kg·d) or courses (single- or multi-course). The results showed that compared with the control group, PAmE resulted in fetal testicular abnormal morphological development, cell proliferation inhibition and apoptosis enhancement, Leydig cell steroid synthase system (SF1, StAR, P450scc, CYP17a1) expression inhibition, and fetal blood testosterone levels decreased. Among them, the late-pregnancy and high-dose amoxicillin groups had severe damage, while the damage in different course groups was basically the same. Meanwhile, PAmE could damage the number and function of germ cells at all time, doses and courses, but had no obvious effect on Sertoli cells. It was further found that PAmE inhibited fetal testis AKT and ERK signaling pathways in late pregnancy and high dose, while the damage in different course groups was basically the same. In summary, this study proposed the developmental toxicity window of fetal testicular injury induced by PAmE in late-pregnancy and high-dose and its related mechanism of AKT and ERK signaling pathway, which provided a theoretical and experimental basis for guiding rational drug use during pregnancy and effectively evaluating the risk of fetal testicular developmental toxicity.
Collapse
|
11
|
Lee HJ, Hou Y, Maeng JH, Shah NM, Chen Y, Lawson HA, Yang H, Yue F, Wang T. Epigenomic analysis reveals prevalent contribution of transposable elements to cis-regulatory elements, tissue-specific expression, and alternative promoters in zebrafish. Genome Res 2022; 32:1424-1436. [PMID: 35649578 PMCID: PMC9341505 DOI: 10.1101/gr.276052.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/27/2022] [Indexed: 12/04/2022]
Abstract
Transposable elements (TEs) encode regulatory elements that impact gene expression in multiple species, yet a comprehensive analysis of zebrafish TEs in the context of gene regulation is lacking. Here, we systematically investigate the epigenomic and transcriptomic landscape of TEs across 11 adult zebrafish tissues using multidimensional sequencing data. We find that TEs contribute substantially to a diverse array of regulatory elements in the zebrafish genome and that 37% of TEs are positioned in active regulatory states in adult zebrafish tissues. We identify TE subfamilies enriched in highly specific regulatory elements among different tissues. We use transcript assembly to discover TE-derived transcriptional units expressed across tissues. Finally, we show that novel TE-derived promoters can initiate tissue-specific transcription of alternate gene isoforms. This work provides a comprehensive profile of TE activity across normal zebrafish tissues, shedding light on mechanisms underlying the regulation of gene expression in this widely used model organism.
Collapse
Affiliation(s)
- Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ju Heon Maeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nakul M Shah
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
12
|
Man L, Lustgarten Guahmich N, Kallinos E, Caiazza B, Khan M, Liu ZY, Patel R, Torres C, Pepin D, Yang HS, Bodine R, Zaninovic N, Schattman G, Rosenwaks Z, James D. Chronic superphysiologic AMH promotes premature luteinization of antral follicles in human ovarian xenografts. SCIENCE ADVANCES 2022; 8:eabi7315. [PMID: 35263130 PMCID: PMC8906729 DOI: 10.1126/sciadv.abi7315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
Anti-Müllerian hormone (AMH) is produced by growing ovarian follicles and provides a diagnostic measure of reproductive reserve in women; however, the impact of AMH on folliculogenesis is poorly understood. We cotransplanted human ovarian cortex with control or AMH-expressing endothelial cells in immunocompromised mice and recovered antral follicles for purification and downstream single-cell RNA sequencing of granulosa and theca/stroma cell fractions. A total of 38 antral follicles were observed (19 control and 19 AMH) at long-term intervals (>10 weeks). In the context of exogenous AMH, follicles exhibited a decreased ratio of primordial to growing follicles and antral follicles of increased diameter. Transcriptomic analysis and immunolabeling revealed a marked increase in factors typically noted at more advanced stages of follicle maturation, with granulosa and theca/stroma cells also displaying molecular hallmarks of luteinization. These results suggest that superphysiologic AMH alone may contribute to ovulatory dysfunction by accelerating maturation and/or luteinization of antral-stage follicles.
Collapse
Affiliation(s)
- Limor Man
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicole Lustgarten Guahmich
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eleni Kallinos
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Barbara Caiazza
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Monica Khan
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zong-Ying Liu
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ritaben Patel
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carmen Torres
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Pepin
- Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02214, USA
| | - He S. Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard Bodine
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
| | - Glenn Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daylon James
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
13
|
Wang Y, Luo X, Qu C, Xu T, Zou G, Liang H. The Important Role of Sex-Related Sox Family Genes in the Sex Reversal of the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). BIOLOGY 2022; 11:biology11010083. [PMID: 35053081 PMCID: PMC8773217 DOI: 10.3390/biology11010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 04/08/2023]
Abstract
The Chinese soft-shelled turtle Pelodiscus sinensis shows obvious sexual dimorphism. The economic and nutrition value of male individuals are significantly higher than those of female individuals. Pseudo-females which are base to all-male breeding have been obtained by estrogen induction, while the gene function and molecular mechanism of sex reversal remain unclear in P. sinensis. Here, comparative transcriptome analyses of female, male, and pseudo-female gonads were performed, and 14,430 genes differentially expressed were identified in the pairwise comparison of three groups. GO and KEGG analyses were performed on the differentially expressed genes (DEGs), which mainly concentrated on steroid hormone synthesis. Furthermore, the results of gonadal transcriptome analysis revealed that 10 sex-related sox genes were differentially expressed in males vs. female, male vs. pseudo-female, and female vs. pseudo-female. Through the differential expression analysis of these 10 sox genes in mature gonads, six sox genes related to sex reversal were further screened. The molecular mechanism of the six sox genes in the embryo were analyzed during sex reversal after E2 treatment. In mature gonads, some sox family genes, such as sox9sox12, and sox30 were highly expressed in the testis, while sox1, sox3, sox6, sox11, and sox17 were lowly expressed. In the male embryos, exogenous estrogen can activate the expression of sox3 and inhibit the expression of sox8, sox9, and sox11. In summary, sox3 may have a role in the process of sex reversal from male to pseudo-female, when sox8 and sox9 are inhibited. Sox family genes affect both female and male pathways in the process of sex reversal, which provides a new insight for the all-male breeding of the Chinese soft-shelled turtle.
Collapse
Affiliation(s)
- Yubin Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
| | - Xiangzhong Luo
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
| | - Chunjuan Qu
- Bengbu Aquatic Technology Promotion Center, Bengbu 233000, China;
| | - Tao Xu
- College of Biology & Pharmacy, China Three Gorges University, Yichang 443002, China;
| | - Guiwei Zou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
- Correspondence: (G.Z.); (H.L.)
| | - Hongwei Liang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
- Correspondence: (G.Z.); (H.L.)
| |
Collapse
|
14
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:2223-2235. [DOI: 10.1093/hmg/ddac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
|
15
|
Lecluze E, Rolland AD, Filis P, Evrard B, Leverrier-Penna S, Maamar MB, Coiffec I, Lavoué V, Fowler PA, Mazaud-Guittot S, Jégou B, Chalmel F. Dynamics of the transcriptional landscape during human fetal testis and ovary development. Hum Reprod 2021; 35:1099-1119. [PMID: 32412604 DOI: 10.1093/humrep/deaa041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Which transcriptional program triggers sex differentiation in bipotential gonads and downstream cellular events governing fetal testis and ovary development in humans? SUMMARY ANSWER The characterization of a dynamically regulated protein-coding and non-coding transcriptional landscape in developing human gonads of both sexes highlights a large number of potential key regulators that show an early sexually dimorphic expression pattern. WHAT IS KNOWN ALREADY Gonadal sex differentiation is orchestrated by a sexually dimorphic gene expression program in XX and XY developing fetal gonads. A comprehensive characterization of its non-coding counterpart offers promising perspectives for deciphering the molecular events underpinning gonad development and for a complete understanding of the etiology of disorders of sex development in humans. STUDY DESIGN, SIZE, DURATION To further investigate the protein-coding and non-coding transcriptional landscape during gonad differentiation, we used RNA-sequencing (RNA-seq) and characterized the RNA content of human fetal testis (N = 24) and ovaries (N = 24) from 6 to 17 postconceptional week (PCW), a key period in sex determination and gonad development. PARTICIPANTS/MATERIALS, SETTING, METHODS First trimester fetuses (6-12 PCW) and second trimester fetuses (13-14 and 17 PCW) were obtained from legally induced normally progressing terminations of pregnancy. Total RNA was extracted from whole human fetal gonads and sequenced as paired-end 2 × 50 base reads. Resulting sequences were mapped to the human genome, allowing for the assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE This RNA-seq analysis of human fetal testes and ovaries at seven key developmental stages led to the reconstruction of 22 080 transcripts differentially expressed during testicular and/or ovarian development. In addition to 8935 transcripts displaying sex-independent differential expression during gonad development, the comparison of testes and ovaries enabled the discrimination of 13 145 transcripts that show a sexually dimorphic expression profile. The latter include 1479 transcripts differentially expressed as early as 6 PCW, including 39 transcription factors, 40 long non-coding RNAs and 20 novel genes. Despite the use of stringent filtration criteria (expression cut-off of at least 1 fragment per kilobase of exon model per million reads mapped, fold change of at least 2 and false discovery rate adjusted P values of less than <1%), the possibility of assembly artifacts and of false-positive differentially expressed transcripts cannot be fully ruled out. LARGE-SCALE DATA Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI GEO under accession number GSE116278. LIMITATIONS, REASONS FOR CAUTION The intrinsic nature of this bulk analysis, i.e. the sequencing of transcripts from whole gonads, does not allow direct identification of the cellular origin(s) of the transcripts characterized. Potential cellular dilution effects (e.g. as a result of distinct proliferation rates in XX and XY gonads) may account for a few of the expression profiles identified as being sexually dimorphic. Finally, transcriptome alterations that would result from exposure to pre-abortive drugs cannot be completely excluded. Although we demonstrated the high quality of the sorted cell populations used for experimental validations using quantitative RT-PCR, it cannot be totally excluded that some germline expression may correspond to cell contamination by, for example, macrophages. WIDER IMPLICATIONS OF THE FINDINGS For the first time, this study has led to the identification of 1000 protein-coding and non-coding candidate genes showing an early, sexually dimorphic, expression pattern that have not previously been associated with sex differentiation. Collectively, these results increase our understanding of gonad development in humans, and contribute significantly to the identification of new candidate genes involved in fetal gonad differentiation. The results also provide a unique resource that may improve our understanding of the fetal origin of testicular and ovarian dysgenesis syndromes, including cryptorchidism and testicular cancers. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the French National Institute of Health and Medical Research (Inserm), the University of Rennes 1, the French School of Public Health (EHESP), the Swiss National Science Foundation [SNF n° CRS115_171007 to B.J.], the French National Research Agency [ANR n° 16-CE14-0017-02 and n° 18-CE14-0038-02 to F.C.], the Medical Research Council [MR/L010011/1 to P.A.F.] and the European Community's Seventh Framework Programme (FP7/2007-2013) [under grant agreement no 212885 to P.A.F.] and from the European Union's Horizon 2020 Research and Innovation Programme [under grant agreement no 825100 to P.A.F. and S.M.G.]. There are no competing interests related to this study.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Sabrina Leverrier-Penna
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.,Univ Poitiers, STIM, CNRS ERL7003, Poitiers Cedex 9, CNRS ERL7003, France
| | - Millissia Ben Maamar
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Isabelle Coiffec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Vincent Lavoué
- Service Gynécologie et Obstétrique, CHU Rennes, F-35000 Rennes, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
16
|
Whiteley SL, Holleley CE, Wagner S, Blackburn J, Deveson IW, Marshall Graves JA, Georges A. Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLoS Genet 2021; 17:e1009465. [PMID: 33857129 PMCID: PMC8049264 DOI: 10.1371/journal.pgen.1009465] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
How temperature determines sex remains unknown. A recent hypothesis proposes that conserved cellular mechanisms (calcium and redox; 'CaRe' status) sense temperature and identify genes and regulatory pathways likely to be involved in driving sexual development. We take advantage of the unique sex determining system of the model organism, Pogona vitticeps, to assess predictions of this hypothesis. P. vitticeps has ZZ male: ZW female sex chromosomes whose influence can be overridden in genetic males by high temperatures, causing male-to-female sex reversal. We compare a developmental transcriptome series of ZWf females and temperature sex reversed ZZf females. We demonstrate that early developmental cascades differ dramatically between genetically driven and thermally driven females, later converging to produce a common outcome (ovaries). We show that genes proposed as regulators of thermosensitive sex determination play a role in temperature sex reversal. Our study greatly advances the search for the mechanisms by which temperature determines sex.
Collapse
Affiliation(s)
- Sarah L. Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Clare E. Holleley
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Susan Wagner
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - James Blackburn
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Ira W. Deveson
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Jennifer A. Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Latrobe University, Melbourne, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
17
|
|
18
|
Cannarella R, Salemi M, Condorelli RA, Cimino L, Giurato G, Marchese G, Cordella A, Romano C, La Vignera S, Calogero AE. SOX13 gene downregulation in peripheral blood mononuclear cells of patients with Klinefelter syndrome. Asian J Androl 2021; 23:157-162. [PMID: 33109779 PMCID: PMC7991811 DOI: 10.4103/aja.aja_37_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Klinefelter syndrome (KS) is the most common sex chromosome disorder in men. It is characterized by germ cell loss and other variable clinical features, including autoimmunity. The sex-determining region of Y (SRY)-box 13 (Sox13) gene is expressed in mouse spermatogonia. In addition, it has been identified as islet cell autoantigen 12 (ICA12), which is involved in the pathogenesis of autoimmune diseases, including type 1 diabetes mellitus (DM) and primary biliary cirrhosis. Sox13 expression has never been investigated in patients with KS. In this age-matched, case-control study performed on ten patients with KS and ten controls, we found that SOX13 is significantly downregulated in peripheral blood mononuclear cells of patients with KS compared to controls. This finding might be consistent with the germ cell loss typical of patients with KS. However, the role of Sox13 in the pathogenesis of germ cell loss and humoral autoimmunity in patients with KS deserves to be further explored.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Giorgio Giurato
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Angela Cordella
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Corrado Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
19
|
Zhao ZH, Ma JY, Meng TG, Wang ZB, Yue W, Zhou Q, Li S, Feng X, Hou Y, Schatten H, Ou XH, Sun QY. Single-cell RNA sequencing reveals the landscape of early female germ cell development. FASEB J 2020; 34:12634-12645. [PMID: 32716582 DOI: 10.1096/fj.202001034rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 01/15/2023]
Abstract
Meiosis initiation is a crucial step for the production of haploid gametes, which occurs from anterior to posterior in fetal ovaries. The asynchrony of the transition from mitosis to meiosis results in heterogeneity in the female germ cell populations, which limits the studies of meiosis initiation and progression at a higher resolution level. To dissect the process of meiosis initiation, we investigated the transcriptional profiles of 19 363 single germ cells collected from E12.5, E14.5, and E16.5 mouse fetal ovaries. Clustering analysis identified seven groups and defined dozens of corresponding transcription factors, providing a global view of cellular differentiation from primordial germ cells toward meiocytes. Furthermore, we explored the dynamics of gene expression within the developmental trajectory with special focus on the critical state of meiosis. We found that meiosis initiation occurs as early as E12.5 and the cluster of oogonia_4 is the critical state between mitosis and meiosis. Our data provide key insights into the transcriptome features of peri-meiotic female germ cells, which offers new information not only on meiosis initiation and progression but also on screening pathogenic mutations in meiosis-associated diseases.
Collapse
Affiliation(s)
- Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xie Feng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
20
|
The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Sci Rep 2019; 9:17033. [PMID: 31745224 PMCID: PMC6864077 DOI: 10.1038/s41598-019-53370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
The chromobox homolog 2 (CBX2) was found to be important for human testis development, but its role in the human ovary remains elusive. We conducted a genome-wide analysis based on DNA adenine methyltransferase identification (DamID) and RNA sequencing strategies to investigate CBX2 in the human granulosa cells. Functional analysis revealed that CBX2 was upstream of genes contributing to ovarian function like folliculogenesis and steroidogenesis (i.e. ESR1, NRG1, AKR1C1, PTGER2, BMP15, BMP2, FSHR and NTRK1/2). We identified CBX2 regulated genes associated with polycystic ovary syndrome (PCOS) such as TGFβ, MAP3K15 and DKK1, as well as genes implicated in premature ovarian failure (POF) (i.e. POF1B, BMP15 and HOXA13) and the pituitary deficiency (i.e. LHX4 and KISS1). Our study provided an excellent opportunity to identify genes surrounding CBX2 in the ovary and might contribute to the understanding of ovarian physiopathology causing infertility in women.
Collapse
|
21
|
Wan H, Han K, Jiang Y, Zou P, Zhang Z, Wang Y. Genome-Wide Identification and Expression Profile of the Sox Gene Family During Embryo Development in Large Yellow Croaker, Larimichthys crocea. DNA Cell Biol 2019; 38:1100-1111. [DOI: 10.1089/dna.2018.4586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Kunhuang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Ziping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| |
Collapse
|
22
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Wang JH, Li Y, Deng SL, Liu YX, Lian ZX, Yu K. Recent Research Advances in Mitosis during Mammalian Gametogenesis. Cells 2019; 8:cells8060567. [PMID: 31185583 PMCID: PMC6628140 DOI: 10.3390/cells8060567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Mitosis is a highly sophisticated and well-regulated process during the development and differentiation of mammalian gametogenesis. The regulation of mitosis plays an essential role in keeping the formulation in oogenesis and gametogenesis. In the past few years, substantial research progress has been made by showing that cyclins/cyclin-dependent kinase (CDK) have roles in the regulation of meiosis. In addition, more functional signaling molecules have been discovered in mitosis. Growing evidence has also indicated that miRNAs influence cell cycling. In this review, we focus on specific genes, cyclins/Cdk, signaling pathways/molecules, and miRNAs to discuss the latest achievements in understanding their roles in mitosis during gametogenesis. Further elucidation of mitosis during gametogenesis may facilitate delineating all processes of mammalian reproduction and the development of disease treatments.
Collapse
Affiliation(s)
- Jia-Hao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Rep 2019; 22:1589-1599. [PMID: 29425512 DOI: 10.1016/j.celrep.2018.01.043] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
The gonad is a unique biological system for studying cell-fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time-series single-cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior to sex determination. A subset of these progenitors differentiates into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergoes significant transcriptional changes restricting their competence toward a steroidogenic fate required for the differentiation of fetal Leydig cells. Our findings confirm the presence of a unique multipotent progenitor population in the gonadal primordium that gives rise to both supporting and interstitial lineages. These also provide the most granular analysis of the transcriptional events occurring during testicular cell-fate commitment.
Collapse
|
25
|
Roumaud P, Martin LJ. Transcriptomic analysis of overexpressed SOX4 and SOX8 in TM4 Sertoli cells with emphasis on cell-to-cell interactions. Biochem Biophys Res Commun 2019; 512:678-683. [PMID: 30922563 DOI: 10.1016/j.bbrc.2019.03.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
Sertoli cells are localized in seminiferous tubules within the testis. They are the first testicular cells to differentiate during male sex determination. In the adult, Sertoli cells provide nutrients to germ cells, control factors for spermatogenesis and protection by establishing the blood-testis barrier (BTB). This BTB is composed of tight junctions, basal ectoplasmic specializations, adherent junctions and gap junctions. The transcription factor SOX8 is necessary for the maintenance of spermatogenesis during adult life whereas SOX4 is involved in developmental processes. These factors are highly expressed in Sertoli cells. However, few of their target genes in adult Sertoli cells are known. Hence, we compared the transcriptomes of TM4 Sertoli cells overexpressing or not SOX4 or SOX8 using RNA-Seq followed by pathways and networks analyses. We found that SOX4 overexpression leads to downregulated genes enriched for cell junction organization and positive regulation of cell-to-cell adhesion. Upregulated genes in response to SOX8 overexpression were enriched for Sertoli cell development and differentiation. However, downregulated genes were enriched for cell-to-cell adhesion, tight junction interactions, gap junctions' assembly, as well as extracellular matrix binding. Hence, our results confirm that SOX8 is an important mediator of Sertoli cell maturation, whereas SOX4 and SOX8 influence gene expression related to regulation of blood-testis barrier assembly. In addition, TM4 cells can be considered as a useful model to better define the regulatory mechanisms of SOX4 or SOX8 on gene transcription in Sertoli cells.
Collapse
Affiliation(s)
- Pauline Roumaud
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada.
| |
Collapse
|
26
|
Jiang L, Bi D, Ding H, Wu X, Zhu R, Zeng J, Yang X, Kan X. Systematic Identification and Evolution Analysis of Sox Genes in Coturnix japonica Based on Comparative Genomics. Genes (Basel) 2019; 10:genes10040314. [PMID: 31013663 PMCID: PMC6523956 DOI: 10.3390/genes10040314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 01/04/2023] Open
Abstract
Coturnix japonica (Japanese quail) has been extensively used as a model animal for biological studies. The Sox gene family, which was systematically characterized by a high-mobility group (HMG-box) in many animal species, encodes transcription factors that play central roles during multiple developmental processes. However, genome-wide investigations on the Sox gene family in birds are scarce. In the current study, we first performed a genome-wide study to explore the Sox gene family in galliform birds. Based on available genomic sequences retrieved from the NCBI database, we focused on the global identification of the Sox gene family in C. japonica and other species in Galliformes, and the evolutionary relationships of Sox genes. In our result, a total of 35 Sox genes in seven groups were identified in the C. japonica genome. Our results also revealed that dispersed gene duplications contributed the most to the expansion of the Sox gene family in Galliform birds. Evolutionary analyses indicated that Sox genes are an ancient gene family, and strong purifying selections played key roles in the evolution of CjSox genes of C. japonica. More interestingly, we observed that most Sox genes exhibited highly embryo-specific expression in both gonads. Our findings provided new insights into the molecular function and phylogeny of Sox gene family in birds.
Collapse
Affiliation(s)
- Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - De Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Hengwu Ding
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| | - Xuan Wu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Ran Zhu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Juhua Zeng
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Xiaojun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650000, China.
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu, 241000, China.
| |
Collapse
|
27
|
Nomura R, Kashimada K, Suzuki H, Zhao L, Tsuji-Hosokawa A, Yagita H, Takagi M, Kanai Y, Bowles J, Koopman P, Kanai-Azuma M, Morio T. Nr5a1 suppression during the murine fetal period optimizes ovarian development by fine-tuning Notch signaling. J Cell Sci 2019; 132:jcs.223768. [PMID: 30877223 DOI: 10.1242/jcs.223768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
Abstract
The nuclear receptor NR5A1 is equally expressed and required for development of the gonadal primordia of both sexes, but, after sex determination, it is upregulated in XY testes and downregulated in XX ovaries. We have recently demonstrated, in mice, that this downregulation is mediated by forkhead box L2 (FOXL2) and hypothesized that adequate suppression of Nr5a1 is essential for normal ovarian development. Further, analysis of human patients with disorders/differences of sex development suggests that overexpression of NR5A1 can result in XX (ovo)testicular development. Here, we tested the role of Nr5a1 by overexpression in fetal gonads using a Wt1-BAC (bacterial artificial chromosome) transgene system. Enforced Nr5a1 expression compromised ovarian development in 46,XX mice, resulting in late-onset infertility, but did not induce (ovo)testis differentiation. The phenotype was similar to that of XX mice lacking Notch signaling. The expression level of Notch2 was significantly reduced in Nr5a1 transgenic mice, and the ovarian phenotype was almost completely rescued by in utero treatment with a NOTCH2 agonist. We conclude that suppression of Nr5a1 during the fetal period optimizes ovarian development by fine-tuning Notch signaling.
Collapse
Affiliation(s)
- Risa Nomura
- Department of Pediatrics and Developmental Biology, Tokyo Medical Dental University, Tokyo 113-8510, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical Dental University, Tokyo 113-8510, Japan
| | - Hitomi Suzuki
- Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Atsumi Tsuji-Hosokawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical Dental University, Tokyo 113-8510, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical Dental University, Tokyo 113-8510, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
28
|
Planells B, Gómez-Redondo I, Pericuesta E, Lonergan P, Gutiérrez-Adán A. Differential isoform expression and alternative splicing in sex determination in mice. BMC Genomics 2019; 20:202. [PMID: 30871468 PMCID: PMC6419433 DOI: 10.1186/s12864-019-5572-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Alternative splicing (AS) may play an important role in gonadal sex determination (GSD) in mammals. The present study was designed to identify differentially expressed isoforms and AS modifications accompanying GSD in mice. Results Using deep RNA-sequencing, we performed a transcriptional analysis of XX and XY gonads during sex determination on embryonic days 11 (E11) and 12 (E12). Analysis of differentially expressed genes (DEG) identified hundreds of genes related to GSD and early sex differentiation that may represent good candidates for sex reversal. Expression at time point E11 in males was significantly enriched in RNA splicing and mRNA processing Gene Ontology terms. Differentially expressed isoform analysis identified hundreds of specific isoforms related to GSD, many of which showed no differences in the DEG analysis. Hundreds of AS events were identified as modified at E11 and E12. Female E11 gonads featured sex-biased upregulation of intron retention (in genes related to regulation of transcription, protein phosphorylation, protein transport and mRNA splicing) and exon skipping (in genes related to chromatin repression) suggesting AS as a post-transcription mechanism that controls sex determination of the bipotential fetal gonad. Conclusion Our data suggests an important role of splicing regulatory mechanisms for sex determination in mice. Electronic supplementary material The online version of this article (10.1186/s12864-019-5572-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamín Planells
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.,School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Isabel Gómez-Redondo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain.
| |
Collapse
|
29
|
Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns BR. The adult human testis transcriptional cell atlas. Cell Res 2018; 28:1141-1157. [PMID: 30315278 PMCID: PMC6274646 DOI: 10.1038/s41422-018-0099-2] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
Human adult spermatogenesis balances spermatogonial stem cell (SSC) self-renewal and differentiation, alongside complex germ cell-niche interactions, to ensure long-term fertility and faithful genome propagation. Here, we performed single-cell RNA sequencing of ~6500 testicular cells from young adults. We found five niche/somatic cell types (Leydig, myoid, Sertoli, endothelial, macrophage), and observed germline-niche interactions and key human-mouse differences. Spermatogenesis, including meiosis, was reconstructed computationally, revealing sequential coding, non-coding, and repeat-element transcriptional signatures. Interestingly, we identified five discrete transcriptional/developmental spermatogonial states, including a novel early SSC state, termed State 0. Epigenetic features and nascent transcription analyses suggested developmental plasticity within spermatogonial States. To understand the origin of State 0, we profiled testicular cells from infants, and identified distinct similarities between adult State 0 and infant SSCs. Overall, our datasets describe key transcriptional and epigenetic signatures of the normal adult human testis, and provide new insights into germ cell developmental transitions and plasticity.
Collapse
Affiliation(s)
- Jingtao Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.,Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT, 84122, USA
| | - Edward J Grow
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hana Mlcochova
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - Geoffrey J Maher
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Xichen Nie
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Yixuan Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robin Kim
- Section of Transplantation, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Douglas T Carrell
- Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT, 84122, USA
| | - Anne Goriely
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - James M Hotaling
- Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT, 84122, USA
| | - Bradley R Cairns
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
30
|
Rotgers E, Jørgensen A, Yao HHC. At the Crossroads of Fate-Somatic Cell Lineage Specification in the Fetal Gonad. Endocr Rev 2018; 39:739-759. [PMID: 29771299 PMCID: PMC6173476 DOI: 10.1210/er.2018-00010] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
The reproductive endocrine systems are vastly different between males and females. This sexual dimorphism of the endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. Most gonadal somatic cells arise from the adrenogonadal primordium. After separation of the adrenal and gonadal primordia, the gonadal somatic cells initiate sex-specific differentiation during gonadal sex determination with the specification of the supporting cell lineages: Sertoli cells in the testis vs granulosa cells in the ovary. The supporting cell lineages then facilitate the differentiation of the steroidogenic cell lineages, Leydig cells in the testis and theca cells in the ovary. Proper differentiation of these cell types defines the somatic cell environment that is essential for germ cell development, hormone production, and establishment of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modeled using genetically modified mouse models. In this review, we focus on the fate decision processes from the initial stage of formation of the adrenogonadal primordium in the embryo to the maintenance of the somatic cell identities in the gonads when they become fully differentiated in adulthood.
Collapse
Affiliation(s)
- Emmi Rotgers
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, Denmark
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
31
|
Dong X, Chen R, Lin H, Lin T, Pan S. lncRNA BG981369 Inhibits Cell Proliferation, Migration, and Invasion, and Promotes Cell Apoptosis by SRY-Related High-Mobility Group Box 4 (SOX4) Signaling Pathway in Human Gastric Cancer. Med Sci Monit 2018; 24:718-726. [PMID: 29398692 PMCID: PMC5810617 DOI: 10.12659/msm.905965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Human gastric cancer (GC) is a leading primary cause of cancer-associated deaths in both males and females worldwide. However, there are few effective diagnostic and therapeutic measures for GC patients due to the complicated underlying mechanisms of GC. Recently, increasing research has indicated that lncRNAs may play a critical role in the progression of GC. Material/Methods AI769947, AK054978, DB077273, BG981369, AK054588, and AF131784 expressions were analyzed by qRT-PCR assay in GC tissues and corresponding normal tissues (n=44). BG981369 expression was detected by qRT-PCR assay in GC cells. BG981369 was overexpressed and silenced in AGS and SNU-5 cells. The proliferation ability was detected by MTT and colony formation assays. Cell cycle distribution and cell apoptosis rate were analyzed by flow cytometry. The migration and invasion abilities were measured by Transwell assay. In addition, SOX4 expression was analyzed by qRT-PCR in GC tissues. The correlation between SOX4 and BG981369 was analyzed by Pearson analysis. Results The results indicated that lncRNA BG981369 was significantly higher in GC tissues than in normal tissues. Overexpression of BG981369 inhibited the proliferation, migration, and invasion and promoted apoptosis of gastric adenocarcinoma (AGS) cells, and silencing of BG981369 promoted proliferation, migration, and invasion, and inhibited cell apoptosis of SNU-5 cells. Furthermore, we found that SOX4 may act as a downstream mediator of BG981369, suggesting that BG981369 inhibits proliferation, migration, and invasion, and promotes apoptosis by targeting SOX4 in the GC cell lines. Conclusions Our results suggest that BG981369 and SOX4 are potentially effective therapeutic targets for GC.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Renpin Chen
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Haihua Lin
- Department of Pediatrics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Tiesu Lin
- Department of Gastroenterology and Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Shuang Pan
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
32
|
Roumaud P, Haché J, Martin LJ. Expression profiles of Sox transcription factors within the postnatal rodent testes. Mol Cell Biochem 2018; 447:175-187. [PMID: 29383560 DOI: 10.1007/s11010-018-3302-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/25/2018] [Indexed: 12/22/2022]
Abstract
SRY-related box (Sox) transcription factors are conserved among vertebrate species. These proteins regulate multiple processes including sex determination and testis differentiation of the male embryo. Members of the Sox family have been identified in pre- and postnatal testis and are known to play an important role in sex determination (Sry, Sox9), male gonadal development, and fertility (Sox4, Sox8, Sox30). However, their expression profiles per cell types remain elusive. The objectives of this research were to characterize the expression profiles of Sox family members within adult testes using publically available datasets and to determine whether these findings are consistent with literature as well as immunofluorescence and in situ hybridization results. We have found that Sox4, Sox8, Sox9, and Sox12 are highly expressed in Sertoli cells, whereas Sox5, Sox6, and Sox30 were typically expressed in spermatocytes and spermatids. Spermatogonia were characterized by the expressions of Sox3, Sox4, Sox12, Sox13, and Sox18. Hence, these results suggest that Sox transcription factors may play different roles according to cell types of the adult mammalian testis.
Collapse
Affiliation(s)
- Pauline Roumaud
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Josée Haché
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
33
|
Boström J, Sramkova Z, Salašová A, Johard H, Mahdessian D, Fedr R, Marks C, Medalová J, Souček K, Lundberg E, Linnarsson S, Bryja V, Sekyrova P, Altun M, Andäng M. Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS One 2017; 12:e0188772. [PMID: 29228002 PMCID: PMC5724894 DOI: 10.1371/journal.pone.0188772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development.
Collapse
Affiliation(s)
- Johan Boström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Sramkova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alena Salašová
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helena Johard
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Diana Mahdessian
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics CAS, v.v.i., Královopolská 135, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, Brno, Czech Republic
| | - Carolyn Marks
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jiřina Medalová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics CAS, v.v.i., Královopolská 135, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Emma Lundberg
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Sekyrova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (PS); (MAl); (MAn)
| | - Mikael Altun
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (PS); (MAl); (MAn)
| | - Michael Andäng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (PS); (MAl); (MAn)
| |
Collapse
|