1
|
Greenlaw AC, Alavattam KG, Tsukiyama T. Post-transcriptional regulation shapes the transcriptome of quiescent budding yeast. Nucleic Acids Res 2024; 52:1043-1063. [PMID: 38048329 PMCID: PMC10853787 DOI: 10.1093/nar/gkad1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
To facilitate long-term survival, cells must exit the cell cycle and enter quiescence, a reversible non-replicative state. Budding yeast cells reprogram their gene expression during quiescence entry to silence transcription, but how the nascent transcriptome changes in quiescence is unknown. By investigating the nascent transcriptome, we identified over a thousand noncoding RNAs in quiescent and G1 yeast cells, and found noncoding transcription represented a larger portion of the quiescent transcriptome than in G1. Additionally, both mRNA and ncRNA are subject to increased post-transcriptional regulation in quiescence compared to G1. We found that, in quiescence, the nuclear exosome-NNS pathway suppresses over one thousand mRNAs, in addition to canonical noncoding RNAs. RNA sequencing through quiescent entry revealed two distinct time points at which the nuclear exosome controls the abundance of mRNAs involved in protein production, cellular organization, and metabolism, thereby facilitating efficient quiescence entry. Our work identified a previously unknown key biological role for the nuclear exosome-NNS pathway in mRNA regulation and uncovered a novel layer of gene-expression control in quiescence.
Collapse
Affiliation(s)
- Alison C Greenlaw
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA 98195, USA
| | - Kris G Alavattam
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
2
|
Khanbabei A, Segura L, Petrossian C, Lemus A, Cano I, Frazier C, Halajyan A, Ca D, Loza-Coll M. Experimental validation and characterization of putative targets of Escargot and STAT, two master regulators of the intestinal stem cells in Drosophila melanogaster. Dev Biol 2024; 505:148-163. [PMID: 37952851 DOI: 10.1016/j.ydbio.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Many organs contain adult stem cells (ASCs) to replace cells due to damage, disease, or normal tissue turnover. ASCs can divide asymmetrically, giving rise to a new copy of themselves (self-renewal) and a sister that commits to a specific cell type (differentiation). Decades of research have led to the identification of pleiotropic genes whose loss or gain of function affect diverse aspects of normal ASC biology. Genome-wide screens of these so-called genetic "master regulator" (MR) genes, have pointed to hundreds of putative targets that could serve as their downstream effectors. Here, we experimentally validate and characterize the regulation of several putative targets of Escargot (Esg) and the Signal Transducer and Activator of Transcription (Stat92E, a.k.a. STAT), two known MRs in Drosophila intestinal stem cells (ISCs). Our results indicate that regardless of bioinformatic predictions, most experimentally validated targets show a profile of gene expression that is consistent with co-regulation by both Esg and STAT, fitting a rather limited set of co-regulatory modalities. A bioinformatic analysis of proximal regulatory sequences in specific subsets of co-regulated targets identified additional transcription factors that might cooperate with Esg and STAT in modulating their transcription. Lastly, in vivo manipulations of validated targets rarely phenocopied the effects of manipulating Esg and STAT, suggesting the existence of complex genetic interactions among downstream targets of these two MR genes during ISC homeostasis.
Collapse
Affiliation(s)
- Armen Khanbabei
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Lina Segura
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Cynthia Petrossian
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Aaron Lemus
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Ithan Cano
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Courtney Frazier
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Armen Halajyan
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Donnie Ca
- Department of Biology, California State University, Northridge (CSUN), USA
| | - Mariano Loza-Coll
- Department of Biology, California State University, Northridge (CSUN), USA.
| |
Collapse
|
3
|
Imp interacts with Lin28 to regulate adult stem cell proliferation in the Drosophila intestine. PLoS Genet 2022; 18:e1010385. [PMID: 36070313 PMCID: PMC9484684 DOI: 10.1371/journal.pgen.1010385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/19/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Stem cells are essential for the development and long-term maintenance of tissues and organisms. Preserving tissue homeostasis requires exquisite control of all aspects of stem cell function: cell potency, proliferation, fate decision and differentiation. RNA binding proteins (RBPs) are essential components of the regulatory network that control gene expression in stem cells to maintain self-renewal and long-term homeostasis in adult tissues. While the function of many RBPs may have been characterized in various stem cell populations, how these interact and are organized in genetic networks remains largely elusive. In this report, we show that the conserved RNA binding protein IGF2 mRNA binding protein (Imp) is expressed in intestinal stem cells (ISCs) and progenitors in the adult Drosophila midgut. We demonstrate that Imp is required cell autonomously to maintain stem cell proliferative activity under normal epithelial turnover and in response to tissue damage. Mechanistically, we show that Imp cooperates and directly interacts with Lin28, another highly conserved RBP, to regulate ISC proliferation. We found that both proteins bind to and control the InR mRNA, a critical regulator of ISC self-renewal. Altogether, our data suggests that Imp and Lin28 are part of a larger gene regulatory network controlling gene expression in ISCs and required to maintain epithelial homeostasis. Stem cells are essential to maintain healthy organs. However, dysregulation of their function is a potential major driver of diseases, including cancer and neurodegeneration, and significantly contributes to the aging process. For these reasons, numerous mechanisms control the ability of stem cells to divide and give rise to functional daughter cells. In this study, we used the Drosophila fruitfly as a genetically amenable experimental model to characterize the function of a conserved protein, the IGF2 mRNA binding protein, in the regulation of adult intestinal stem cells. We found that it is essential for stem cell proliferation under normal conditions and in response to tissue damage. We also report that it interacts with another known regulator, Lin28. Importantly, these two factors largely control stem cell biology and development in mammals, including humans, and are often dysregulated in cancer. This suggests that our work is shedding new light on the conserved mechanisms that maintain long-term stem cell function across organisms.
Collapse
|
4
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Buddika K, Xu J, Ariyapala IS, Sokol NS. I-KCKT allows dissection-free RNA profiling of adult Drosophila intestinal progenitor cells. Development 2021; 148:dev196568. [PMID: 33246929 PMCID: PMC7803463 DOI: 10.1242/dev.196568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
The adult Drosophila intestinal epithelium is a model system for stem cell biology, but its utility is limited by current biochemical methods that lack cell type resolution. Here, we describe a new proximity-based profiling method that relies upon a GAL4 driver, termed intestinal-kickout-GAL4 (I-KCKT-GAL4), that is exclusively expressed in intestinal progenitor cells. This method uses UV crosslinked whole animal frozen powder as its starting material to immunoprecipitate the RNA cargoes of transgenic epitope-tagged RNA binding proteins driven by I-KCKT-GAL4 When applied to the general mRNA-binder, poly(A)-binding protein, the RNA profile obtained by this method identifies 98.8% of transcripts found after progenitor cell sorting, and has low background noise despite being derived from whole animal lysate. We also mapped the targets of the more selective RNA binder, Fragile X mental retardation protein (FMRP), using enhanced crosslinking and immunoprecipitation (eCLIP), and report for the first time its binding motif in Drosophila cells. This method will therefore enable the RNA profiling of wild-type and mutant intestinal progenitor cells from intact flies exposed to normal and altered environments, as well as the identification of RNA-protein interactions crucial for stem cell function.
Collapse
Affiliation(s)
- Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jingjing Xu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Rodriguez-Fernandez IA, Tauc HM, Jasper H. Hallmarks of aging Drosophila intestinal stem cells. Mech Ageing Dev 2020; 190:111285. [DOI: 10.1016/j.mad.2020.111285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
|
7
|
Liu YL, Guo SG, Xie CY, Niu K, De Jonge H, Wu X. Uridine inhibits the stemness of intestinal stem cells in 3D intestinal organoids and mice. RSC Adv 2020; 10:6377-6387. [PMID: 35496025 PMCID: PMC9049648 DOI: 10.1039/c9ra07742a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
The activity of intestinal stem cells (ISCs) is foremost in maintaining homeostasis and repair of intestines.
Collapse
Affiliation(s)
- Yi-Lin Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process
| | - Song-Ge Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process
| | - Chun-yan Xie
- College of Resources and Environment
- College of Bioscience and Biotechnology
- Hunan Agricultural University
- Changsha
- China
| | - Kaimin Niu
- Institute of Biological Resources
- Jiangxi Academy of Sciences
- Nanchang 330096
- China
| | - Hugo De Jonge
- Department of Gastroenterology and Hepatology
- Erasmus MC University Medical Center
- Rotterdam
- Netherlands
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process
| |
Collapse
|
8
|
Tracy Cai X, Li H, Safyan A, Gawlik J, Pyrowolakis G, Jasper H. AWD regulates timed activation of BMP signaling in intestinal stem cells to maintain tissue homeostasis. Nat Commun 2019; 10:2988. [PMID: 31278345 PMCID: PMC6611797 DOI: 10.1038/s41467-019-10926-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
Precise control of stem cell (SC) proliferation ensures tissue homeostasis. In the Drosophila intestine, injury-induced regeneration involves initial activation of intestinal SC (ISC) proliferation and subsequent return to quiescence. These two phases of the regenerative response are controlled by differential availability of the BMP type I receptor Thickveins (Tkv), yet how its expression is dynamically regulated remains unclear. Here we show that during homeostasis, the E3 ubiquitin ligase Highwire and the ubiquitin-proteasome system maintain low Tkv protein expression. After ISC activation, Tkv is stabilized by proteasome inhibition and undergoes endocytosis due to the induction of the nucleoside diphosphate kinase Abnormal Wing Disc (AWD). Tkv internalization is required for the activation of the Smad protein Mad, and for the return to quiescence after a regenerative episode. Our data provide insight into the mechanisms ensuring tissue homeostasis by dynamic control of somatic stem cell activity. Regeneration after injury in the Drosophila intestine involves early activation of intestinal stem cells (ISCs) and subsequent return to quiescence. Here the authors show that return to quiescence by ISCs involves BMP Type I receptor Tkv protein stabilization along with AWD mediated internalization into endocytic vesicles.
Collapse
Affiliation(s)
- Xiaoyu Tracy Cai
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Abu Safyan
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.,Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Jennifer Gawlik
- Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - George Pyrowolakis
- Institute for Biology I, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centre BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA. .,Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA. .,Leibniz Institute on Aging - Fritz Lipmann Institute, 07745, Jena, Germany.
| |
Collapse
|
9
|
NetR and AttR, Two New Bioinformatic Tools to Integrate Diverse Datasets into Cytoscape Network and Attribute Files. Genes (Basel) 2019; 10:genes10060423. [PMID: 31159440 PMCID: PMC6628208 DOI: 10.3390/genes10060423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
High-throughput technologies have allowed researchers to obtain genome-wide data from a wide array of experimental model systems. Unfortunately, however, new data generation tends to significantly outpace data re-utilization, and most high throughput datasets are only rarely used in subsequent studies or to generate new hypotheses to be tested experimentally. The reasons behind such data underutilization include a widespread lack of programming expertise among experimentalist biologists to carry out the necessary file reformatting that is often necessary to integrate published data from disparate sources. We have developed two programs (NetR and AttR), which allow experimental biologists with little to no programming background to integrate publicly available datasets into files that can be later visualized with Cytoscape to display hypothetical networks that result from combining individual datasets, as well as a series of published attributes related to the genes or proteins in the network. NetR also allows users to import protein and genetic interaction data from InterMine, which can further enrich a network model based on curated information. We expect that NetR/AttR will allow experimental biologists to mine a largely unexploited wealth of data in their fields and facilitate their integration into hypothetical models to be tested experimentally.
Collapse
|
10
|
Andriatsilavo M, Stefanutti M, Siudeja K, Perdigoto CN, Boumard B, Gervais L, Gillet-Markowska A, Al Zouabi L, Schweisguth F, Bardin AJ. Spen limits intestinal stem cell self-renewal. PLoS Genet 2018; 14:e1007773. [PMID: 30452449 PMCID: PMC6277126 DOI: 10.1371/journal.pgen.1007773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/03/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022] Open
Abstract
Precise regulation of stem cell self-renewal and differentiation properties is essential for tissue homeostasis. Using the adult Drosophila intestine to study molecular mechanisms controlling stem cell properties, we identify the gene split-ends (spen) in a genetic screen as a novel regulator of intestinal stem cell fate (ISC). Spen family genes encode conserved RNA recognition motif-containing proteins that are reported to have roles in RNA splicing and transcriptional regulation. We demonstrate that spen acts at multiple points in the ISC lineage with an ISC-intrinsic function in controlling early commitment events of the stem cells and functions in terminally differentiated cells to further limit the proliferation of ISCs. Using two-color cell sorting of stem cells and their daughters, we characterize spen-dependent changes in RNA abundance and exon usage and find potential key regulators downstream of spen. Our work identifies spen as an important regulator of adult stem cells in the Drosophila intestine, provides new insight to Spen-family protein functions, and may also shed light on Spen's mode of action in other developmental contexts.
Collapse
Affiliation(s)
- Maheva Andriatsilavo
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Marine Stefanutti
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Katarzyna Siudeja
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Carolina N. Perdigoto
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Benjamin Boumard
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Louis Gervais
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | | | - Lara Al Zouabi
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - François Schweisguth
- Institut Pasteur, Dept of Developmental and Stem Cell Biology, Paris, France
- CNRS, UMR3738, Paris, France
| | - Allison J. Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| |
Collapse
|