1
|
Hanne N, Hu D, Vidal-García M, Allen C, Shakir MB, Liu W, Hallgrímsson B, Marcucio R. Downstream branches of receptor tyrosine kinase signaling act interdependently to shape the face. Dev Dyn 2025. [PMID: 40391979 DOI: 10.1002/dvdy.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Previously we found that increasing fibroblast growth factor (FGF) signaling in the neural crest cells within the frontonasal process (FNP) of the chicken embryo caused dysmorphology that was correlated with reduced proliferation, disrupted cellular orientation, and lower MAPK activation but no change in PLCγ and PI3K activation. This suggests RTK signaling may drive craniofacial morphogenesis through specific downstream effectors that affect cellular activities. In this study we inhibited three downstream branches of RTK signaling to determine their role in regulating cellular activities and how these changes affect morphogenesis of the FNP. RESULTS Small molecule inhibitors of MEK1/2, PI3K, and PLCγ were delivered individually and in tandem to the right FNP of chicken embryos. All treatments caused asymmetric proximodistal truncation on the treated side and a mild expansion on the untreated side compared to DMSO control treated FNPs. Inhibiting each pathway caused similar decreased proliferation and disrupted cellular orientation, and only mildly increased apoptosis. CONCLUSIONS Since RTK signaling is a ubiquitous and tightly regulated biochemical system, we conclude that the downstream pathways are robust to developmental perturbation through redundant signaling systems.
Collapse
Affiliation(s)
- Nicholas Hanne
- Department of Orthopaedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Diane Hu
- Department of Orthopaedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Marta Vidal-García
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Charlie Allen
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California, USA
| | - M Bilal Shakir
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Wei Liu
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Benedikt Hallgrímsson
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Hanne N, Hu D, Vidal-García M, Allen C, Shakir MB, Liu W, Hallgrímsson B, Marcucio R. Downstream branches of receptor tyrosine kinase signaling act interdependently to shape the face. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627829. [PMID: 39713427 PMCID: PMC11661274 DOI: 10.1101/2024.12.10.627829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background – Previously we found that increasing fibroblast growth factor (FGF) signaling in the neural crest cells within the frontonasal process (FNP) of the chicken embryo caused dysmorphology that was correlated with reduced proliferation, disrupted cellular orientation, and lower MAPK activation but no change in PLCy and PI3K activation. This suggests RTK signaling may drive craniofacial morphogenesis through specific downstream effectors that affect cellular activities. In this study we inhibited three downstream branches of RTK signaling to determine their role in regulating cellular activities and how these changes affect morphogenesis of the FNP. Results – Small molecule inhibitors of MEK1/2, PI3K, and PLCy were delivered individually and in tandem to the right FNP of chicken embryos. All treatments caused asymmetric proximodistal truncation on the treated side and a mild expansion on the untreated side compared to DMSO control treated FNPs. Inhibiting each pathway caused similar decreased proliferation and disrupted cellular orientation, but did not affect apoptosis. Conclusions – Since RTK signaling is a ubiquitous and tightly regulated biochemical system we conclude that the downstream pathways are robust to developmental perturbation through redundant signaling systems.
Collapse
Affiliation(s)
- Nicholas Hanne
- Department of Orthopaedic Surgery, University of California - San Francisco, San Francisco, California, USA
| | - Diane Hu
- Department of Orthopaedic Surgery, University of California - San Francisco, San Francisco, California, USA
| | - Marta Vidal-García
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Charlie Allen
- Cardiovascular Research Institute, University of California - San Francisco, San Francisco, California, USA
| | - M Bilal Shakir
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Wei Liu
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Benedikt Hallgrímsson
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California - San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Bardhan S, Bhargava N, Dighe S, Vats N, Naganathan SR. Emergence of a left-right symmetric body plan in vertebrate embryos. Curr Top Dev Biol 2024; 159:310-342. [PMID: 38729680 DOI: 10.1016/bs.ctdb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.
Collapse
Affiliation(s)
- Siddhartha Bardhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Nandini Bhargava
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Swarali Dighe
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Neha Vats
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sundar Ram Naganathan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
4
|
Ferguson CA, Firulli BA, Zoia M, Osterwalder M, Firulli AB. Identification and characterization of Hand2 upstream genomic enhancers active in developing stomach and limbs. Dev Dyn 2024; 253:215-232. [PMID: 37551791 PMCID: PMC11365009 DOI: 10.1002/dvdy.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.
Collapse
Affiliation(s)
- Chloe A. Ferguson
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
5
|
Sermeus Y, Vangheel J, Geris L, Smeets B, Tylzanowski P. Mechanical Regulation of Limb Bud Formation. Cells 2022; 11:420. [PMID: 35159230 PMCID: PMC8834596 DOI: 10.3390/cells11030420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/28/2022] Open
Abstract
Early limb bud development has been of considerable interest for the study of embryological development and especially morphogenesis. The focus has long been on biochemical signalling and less on cell biomechanics and mechanobiology. However, their importance cannot be understated since tissue shape changes are ultimately controlled by active forces and bulk tissue rheological properties that in turn depend on cell-cell interactions as well as extracellular matrix composition. Moreover, the feedback between gene regulation and the biomechanical environment is still poorly understood. In recent years, novel experimental techniques and computational models have reinvigorated research on this biomechanical and mechanobiological side of embryological development. In this review, we consider three stages of early limb development, namely: outgrowth, elongation, and condensation. For each of these stages, we summarize basic biological regulation and examine the role of cellular and tissue mechanics in the morphogenetic process.
Collapse
Affiliation(s)
- Yvenn Sermeus
- MeBioS, KU Leuven, 3000 Leuven, Belgium; (Y.S.); (J.V.); (B.S.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
| | - Jef Vangheel
- MeBioS, KU Leuven, 3000 Leuven, Belgium; (Y.S.); (J.V.); (B.S.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
- GIGA In Silico Medicine, Université de Liège, 4000 Liège, Belgium
- SBE, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bart Smeets
- MeBioS, KU Leuven, 3000 Leuven, Belgium; (Y.S.); (J.V.); (B.S.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
| | - Przemko Tylzanowski
- SBE, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Asgeirsson DO, Christiansen MG, Valentin T, Somm L, Mirkhani N, Nami AH, Hosseini V, Schuerle S. 3D magnetically controlled spatiotemporal probing and actuation of collagen networks from a single cell perspective. LAB ON A CHIP 2021; 21:3850-3862. [PMID: 34505607 PMCID: PMC8507888 DOI: 10.1039/d1lc00657f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/28/2021] [Indexed: 05/15/2023]
Abstract
Cells continuously sense and react to mechanical cues from their surrounding matrix, which consists of a fibrous network of biopolymers that influences their fate and behavior. Several powerful methods employing magnetic control have been developed to assess the micromechanical properties within extracellular matrix (ECM) models hosting cells. However, many of these are limited to in-plane sensing and actuation, which does not allow the matrix to be probed within its full 3D context. Moreover, little attention has been given to factors specific to the model ECM systems that can profoundly influence the cells contained there. Here we present methods to spatiotemporally probe and manipulate extracellular matrix networks at the scale relevant to cells using magnetic microprobes (μRods). Our techniques leverage 3D magnetic field generation, physical modeling, and image analysis to examine and apply mechanical stimuli to fibrous collagen matrices. We determined shear moduli ranging between hundreds of Pa to tens of kPa and modeled the effects of proximity to rigid surfaces and local fiber densification. We analyzed the spatial extent and dynamics of matrix deformation produced in response to magnetic torques on the order of 10 pNm, deflecting fibers over an area spanning tens of micrometers. Finally, we demonstrate 3D actuation and pose extraction of fluorescently labelled μRods.
Collapse
Affiliation(s)
- Daphne O Asgeirsson
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Michael G Christiansen
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Thomas Valentin
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Luca Somm
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Nima Mirkhani
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Amin Hosseini Nami
- Department of Biotechnology, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Vahid Hosseini
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Simone Schuerle
- Responsive Biomedical Systems Laboratory, Department of Health Science and Technology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
7
|
Dokmegang J, Nguyen H, Kardash E, Savy T, Cavaliere M, Peyriéras N, Doursat R. Quantification of cell behaviors and computational modeling show that cell directional behaviors drive zebrafish pectoral fin morphogenesis. Bioinformatics 2021; 37:2946-2954. [PMID: 33760050 DOI: 10.1093/bioinformatics/btab201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/01/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Understanding the mechanisms by which the zebrafish pectoral fin develops is expected to produce insights on how vertebrate limbs grow from a 2D cell layer to a 3D structure. Two mechanisms have been proposed to drive limb morphogenesis in tetrapods: a growth-based morphogenesis with a higher proliferation rate at the distal tip of the limb bud than at the proximal side, and directed cell behaviors that include elongation, division and migration in a non-random manner. Based on quantitative experimental biological data at the level of individual cells in the whole developing organ, we test the conditions for the dynamics of pectoral fin early morphogenesis. RESULTS We found that during the development of the zebrafish pectoral fin, cells have a preferential elongation axis that gradually aligns along the proximodistal (PD) axis of the organ. Based on these quantitative observations, we build a center-based cell model enhanced with a polarity term and cell proliferation to simulate fin growth. Our simulations resulted in 3D fins similar in shape to the observed ones, suggesting that the existence of a preferential axis of cell polarization is essential to drive fin morphogenesis in zebrafish, as observed in the development of limbs in the mouse, but distal tip-based expansion is not. AVAILABILITYAND IMPLEMENTATION Upon publication, biological data will be available at http://bioemergences.eu/modelingFin, and source code at https://github.com/guijoe/MaSoFin. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Joel Dokmegang
- Centre for Advanced Computational Science, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Hanh Nguyen
- BioEmergences, FRE2039, CNRS Université Paris Saclay, Gif-sur-Yvette 91190, France
| | - Elena Kardash
- BioEmergences, FRE2039, CNRS Université Paris Saclay, Gif-sur-Yvette 91190, France
| | - Thierry Savy
- BioEmergences, FRE2039, CNRS Université Paris Saclay, Gif-sur-Yvette 91190, France.,Complex Systems Institute, Paris Ile-de-France, Paris 75013, France
| | - Matteo Cavaliere
- Centre for Advanced Computational Science, Manchester Metropolitan University, Manchester M15 6BH, UK
| | - Nadine Peyriéras
- BioEmergences, FRE2039, CNRS Université Paris Saclay, Gif-sur-Yvette 91190, France.,Complex Systems Institute, Paris Ile-de-France, Paris 75013, France
| | - René Doursat
- BioEmergences, FRE2039, CNRS Université Paris Saclay, Gif-sur-Yvette 91190, France.,Complex Systems Institute, Paris Ile-de-France, Paris 75013, France
| |
Collapse
|
8
|
Ma SKY, Chan ASF, Rubab A, Chan WCW, Chan D. Extracellular Matrix and Cellular Plasticity in Musculoskeletal Development. Front Cell Dev Biol 2020; 8:781. [PMID: 32984311 PMCID: PMC7477050 DOI: 10.3389/fcell.2020.00781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular plasticity refers to the ability of cell fates to be reprogrammed given the proper signals, allowing for dedifferentiation or transdifferentiation into different cell fates. In vitro, this can be induced through direct activation of gene expression, however this process does not naturally occur in vivo. Instead, the microenvironment consisting of the extracellular matrix (ECM) and signaling factors, directs the signals presented to cells. Often the ECM is involved in regulating both biochemical and mechanical signals. In stem cell populations, this niche is necessary for maintenance and proper function of the stem cell pool. However, recent studies have demonstrated that differentiated or lineage restricted cells can exit their current state and transform into another state under different situations during development and regeneration. This may be achieved through (1) cells responding to a changing niche; (2) cells migrating and encountering a new niche; and (3) formation of a transitional niche followed by restoration of the homeostatic niche to sequentially guide cells along the regenerative process. This review focuses on examples in musculoskeletal biology, with the concept of ECM regulating cells and stem cells in development and regeneration, extending beyond the conventional concept of small population of progenitor cells, but under the right circumstances even “lineage-restricted” or differentiated cells can be reprogrammed to enter into a different fate.
Collapse
Affiliation(s)
- Sophia Ka Yan Ma
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Aqsa Rubab
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,Department of Orthopedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
9
|
Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. Proc Natl Acad Sci U S A 2020; 117:4781-4791. [PMID: 32071242 DOI: 10.1073/pnas.1912656117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Numerous hypotheses invoke tissue stiffness as a key parameter that regulates morphogenesis and disease progression. However, current methods are insufficient to test hypotheses that concern physical properties deep in living tissues. Here we introduce, validate, and apply a magnetic device that generates a uniform magnetic field gradient within a space that is sufficient to accommodate an organ-stage mouse embryo under live conditions. The method allows rapid, nontoxic measurement of the three-dimensional (3D) spatial distribution of viscoelastic properties within mesenchyme and epithelia. Using the device, we identify an anteriorly biased mesodermal stiffness gradient along which cells move to shape the early limb bud. The stiffness gradient corresponds to a Wnt5a-dependent domain of fibronectin expression, raising the possibility that durotaxis underlies cell movements. Three-dimensional stiffness mapping enables the generation of hypotheses and potentially the rigorous testing of mechanisms of development and disease.
Collapse
|
10
|
Schneider AJ, Gawdzik J, Vezina CM, Baker TR, Peterson RE. Sox9 in mouse urogenital sinus epithelium mediates elongation of prostatic buds and expression of genes involved in epithelial cell migration. Gene Expr Patterns 2019; 34:119075. [PMID: 31669249 PMCID: PMC6927329 DOI: 10.1016/j.gep.2019.119075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
Previous studies identified Sox9 as a critical mediator of prostate development but the precise stage when Sox9 acts had not been determined. A genetic approach was used to delete Sox9 from mouse urogenital sinus epithelium (UGE) prior to prostate specification. All prostatic bud types (anterior, dorsolateral and ventral) were stunted in Sox9 conditional knockouts (cKOs) even though the number of prostatic buds did not differ from that of controls. We concluded that Sox9 is required for prostatic bud elongation and compared control male, control female, Sox9 cKO male and Sox9 cKO female UGE transcriptomes to identify potential molecular mediators. We identified 702 sex-dependent and 95 Sox9-dependent genes. Thirty-one genes were expressed in both a sex- and Sox9-dependent pattern. A comparison of Sox9 cKO female vs control female UGE transcriptomes revealed 74 Sox9-dependent genes, some of which also function in cell migration. SOX9 regulates, directly or indirectly, a largely different profile of genes in male and female UGE. Eighty-three percent of Sox9-dependent genes in male UGE were not Sox9-dependent in female UGE. Only 16 genes were Sox9-dependent in the UGE of both sexes and seven had cell migration functions. These results support the notion that Sox9 promotes cell migration activities needed for prostate ductal elongation.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA.
| | - Joseph Gawdzik
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA; Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI, 53706, USA.
| | - Chad M Vezina
- School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI, 53706, USA.
| | - Tracie R Baker
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI, 53706, USA; Institute of Environmental Health Sciences and School of Medicine, Wayne State University, 6135 Woodward Avenue, Detroit, MI, 48202, USA.
| | - Richard E Peterson
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA; Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI, 53706, USA.
| |
Collapse
|