1
|
Nguyen N, Carpenter KA, Ensing J, Gilliland C, Rudisel EJ, Mu EM, Thurlow KE, Triche TJ, Grainger S. EGFR-dependent endocytosis of Wnt9a and Fzd9b promotes β-catenin signaling during hematopoietic stem cell development in zebrafish. Sci Signal 2024; 17:eadf4299. [PMID: 38626007 PMCID: PMC11103623 DOI: 10.1126/scisignal.adf4299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.
Collapse
Affiliation(s)
- Nicole Nguyen
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Kelsey A. Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Jessica Ensing
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Carla Gilliland
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Emma J. Rudisel
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Emily M. Mu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| | - Kate E. Thurlow
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
- Van Andel Institute Graduate School, Grand Rapids, Michigan, 49503, USA
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, 49503, USA
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID:SCR_021956
| |
Collapse
|
2
|
Hsu SH, Chuang KT, Wang LT. Role of wnt ligand secretion mediator signaling in cancer development. JOURNAL OF CANCER RESEARCH AND PRACTICE 2023. [DOI: 10.4103/ejcrp.ejcrp-d-22-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
3
|
Phillips C, Bhamra I, Eagle C, Flanagan E, Armer R, Jones CD, Bingham M, Calcraft P, Edmenson Cook A, Thompson B, Woodcock SA. The Wnt Pathway Inhibitor RXC004 Blocks Tumor Growth and Reverses Immune Evasion in Wnt Ligand-dependent Cancer Models. CANCER RESEARCH COMMUNICATIONS 2022; 2:914-928. [PMID: 36922934 PMCID: PMC10010340 DOI: 10.1158/2767-9764.crc-21-0095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Wnt signaling is implicated in the etiology of gastrointestinal tract cancers. Targeting Wnt signaling is challenging due to on-target toxicity concerns and lack of druggable pathway components. We describe the discovery and characterization of RXC004, a potent and selective inhibitor of the membrane-bound o-acyl transferase Porcupine, essential for Wnt ligand secretion. Absorption, distribution, metabolism, and excretion and safety pharmacology studies were conducted with RXC004 in vitro, and pharmacokinetic exposure assessed in vivo. RXC004 effects on proliferation and tumor metabolism were explored in genetically defined colorectal and pancreatic cancer models in vitro and in vivo. RXC004 effects on immune evasion were assessed in B16F10 immune "cold" and CT26 immune "hot" murine syngeneic models, and in human cell cocultures. RXC004 showed a promising pharmacokinetic profile, inhibited Wnt ligand palmitoylation, secretion, and pathway activation, and demonstrated potent antiproliferative effects in Wnt ligand-dependent (RNF43-mutant or RSPO3-fusion) colorectal and pancreatic cell lines. Reduced tumor growth and increased cancer cell differentiation were observed in SNU-1411 (RSPO3-fusion), AsPC1 and HPAF-II (both RNF43-mutant) xenograft models, with a therapeutic window versus Wnt homeostatic functions. Additional effects of RXC004 on tumor cell metabolism were confirmed in vitro and in vivo by glucose uptake and 18fluorodeoxyglucose-PET, respectively. RXC004 stimulated host tumor immunity; reducing resident myeloid-derived suppressor cells within B16F10 tumors and synergizing with anti-programmed cell death protein-1 (PD-1) to increase CD8+/regulatory T cell ratios within CT26 tumors. Moreover, RXC004 reversed the immunosuppressive effects of HPAF-II cells cocultured with human peripheral blood mononuclear cells, confirming the multiple anticancer mechanisms of this compound, which has progressed into phase II clinical trials. Significance Wnt pathway dysregulation drives many gastrointestinal cancers; however, there are no approved therapies that target the pathway. RXC004 has demonstrated the potential to block both tumor growth and tumor immune evasion in a genetically defined, clinically actionable subpopulation of Wnt ligand-dependent gastrointestinal cancers. The clinical utility of RXC004, and other Porcupine inhibitors, in such Wnt ligand-dependent cancers is currently being assessed in patient trials.
Collapse
Affiliation(s)
| | - Inder Bhamra
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Catherine Eagle
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Eimear Flanagan
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Richard Armer
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | | | - Matilda Bingham
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Concept Life Sciences Ltd, Manchester, United Kingdom
| | - Peter Calcraft
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Analytical Development, Flu-BPD, AstraZeneca PLC, Manchester, United Kingdom
| | - Alicia Edmenson Cook
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Oncology Cell Therapy, GlaxoSmithKline PLC, London, United Kingdom
| | - Ben Thompson
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,In Vitro, RxCelerate Ltd, Cambridge, United Kingdom
| | | |
Collapse
|
4
|
Galli LM, Anderson MO, Gabriel Fraley J, Sanchez L, Bueno R, Hernandez DN, Maddox EU, Lingappa VR, Burrus LW. Determination of the membrane topology of PORCN, an O-acyl transferase that modifies Wnt signalling proteins. Open Biol 2021; 11:200400. [PMID: 34186010 PMCID: PMC8241489 DOI: 10.1098/rsob.200400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wnt gradients elicit distinct cellular responses, such as proliferation, specification, differentiation and survival in a dose-dependent manner. Porcupine (PORCN), a membrane-bound O-acyl transferase (MBOAT) that resides in the endoplasmic reticulum, catalyses the addition of monounsaturated palmitate to Wnt proteins and is required for Wnt gradient formation and signalling. In humans, PORCN mutations are causal for focal dermal hypoplasia (FDH), an X-linked dominant syndrome characterized by defects in mesodermal and endodermal tissues. PORCN is also an emerging target for cancer therapeutics. Despite the importance of this enzyme, its structure remains poorly understood. Recently, the crystal structure of DltB, an MBOAT family member from bacteria, was solved. In this report, we use experimental data along with homology modelling to DltB to determine the membrane topology of PORCN. Our studies reveal that PORCN has 11 membrane domains, comprising nine transmembrane spanning domains and two reentrant domains. The N-terminus is oriented towards the lumen while the C-terminus is oriented towards the cytosol. Like DltB, PORCN has a funnel-like structure that is encapsulated by multiple membrane-spanning helices. This new model for PORCN topology allows us to map residues that are important for biological activity (and implicated in FDH) onto its three-dimensional structure.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - J Gabriel Fraley
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Luis Sanchez
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Raymund Bueno
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - David N Hernandez
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Eva U Maddox
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | | | - Laura W Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
5
|
Wesslowski J, Kozielewicz P, Wang X, Cui H, Schihada H, Kranz D, Karuna M P, Levkin P, Gross JC, Boutros M, Schulte G, Davidson G. eGFP-tagged Wnt-3a enables functional analysis of Wnt trafficking and signaling and kinetic assessment of Wnt binding to full-length Frizzled. J Biol Chem 2020; 295:8759-8774. [PMID: 32381507 PMCID: PMC7324525 DOI: 10.1074/jbc.ra120.012892] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1–10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/β-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.
Collapse
Affiliation(s)
- Janine Wesslowski
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Pawel Kozielewicz
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xianxian Wang
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Haijun Cui
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Hannes Schihada
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Dominique Kranz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Pradhipa Karuna M
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Pavel Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Julia Christina Gross
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Gary Davidson
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
6
|
Rao DM, Shackleford MT, Bordeaux EK, Sottnik JL, Ferguson RL, Yamamoto TM, Wellberg EA, Bitler BG, Sikora MJ. Wnt family member 4 (WNT4) and WNT3A activate cell-autonomous Wnt signaling independent of porcupine O-acyltransferase or Wnt secretion. J Biol Chem 2019; 294:19950-19966. [PMID: 31740580 PMCID: PMC6937561 DOI: 10.1074/jbc.ra119.009615] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Porcupine O-acyltransferase (PORCN) is considered essential for Wnt secretion and signaling. However, we observed that PORCN inhibition does not phenocopy the effects of WNT4 knockdown in WNT4-dependent breast cancer cells. This suggests a unique relationship between PORCN and WNT4 signaling. To examine the role of PORCN in WNT4 signaling, here we overexpressed WNT4 or WNT3A in breast cancer, ovarian cancer, and fibrosarcoma cell lines. Conditioned media from these lines and co-culture systems were used to assess the dependence of Wnt secretion and activity on the critical Wnt secretion proteins PORCN and Wnt ligand secretion (WLS) mediator. We observed that WLS is universally required for Wnt secretion and paracrine signaling. In contrast, the dependence of WNT3A secretion and activity on PORCN varied across the cell lines, and WNT4 secretion was PORCN-independent in all models. Surprisingly, WNT4 did not exhibit paracrine activity in any tested context. Absent the expected paracrine activity of secreted WNT4, we identified cell-autonomous Wnt signaling activation by WNT4 and WNT3A, independent of PORCN or Wnt secretion. The PORCN-independent, cell-autonomous Wnt signaling demonstrated here may be critical in WNT4-driven cellular contexts or in those that are considered to have dysfunctional Wnt signaling.
Collapse
Affiliation(s)
- Deviyani M Rao
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Madeleine T Shackleford
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Evelyn K Bordeaux
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Joseph L Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Rebecca L Ferguson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Tomomi M Yamamoto
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Benjamin G Bitler
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
7
|
Franke-Radowiecka A, Prozorowska E, Zalecki M, Jackowiak H, Kaleczyc J. Innervation of internal female genital organs in the pig during prenatal development. J Anat 2019; 235:1007-1017. [PMID: 31347705 DOI: 10.1111/joa.13052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 11/30/2022] Open
Abstract
This study investigated the innervation of internal genital organs in 5-, 7- and 10-week-old female pig foetuses using single and double-labelling immunofluorescence methods. The structure and topography of the organs was examined using a scanning electron microscope (SEM). The investigations revealed differences in the innervation between the three developmental periods. Immunostaining for protein gene product 9.5 (PGP; general neural marker) disclosed solitary nerve fibres in the external part of the gonadal ridge and just outside of the mesenchyme surrounding mesonephric ducts in 5-week-old foetuses. Double-labelling immunohistochemistry revealed that nerve fibres associated with the ridge expressed dopamine β-hydroxylase (DβH; adrenergic marker) or vesicular acetylcholine transporter (VAChT; cholinergic marker). In 7-week-old foetuses, the PGP-positive nerve terminals were absent from the gonad but some of them ran outside and along, and sometimes penetrated into the mesenchyme surrounding the tubal and uterine segments of the paramesonephric ducts and uterovaginal canal. Few axons penetrated into the mesenchyme. DβH-positive fibres were found in single nerve strands or bundles distributed at the edge of the mesenchyme. VAChT-positive nerve terminals formed delicate bundles located at the edge of the mesenchyme, and the single nerves penetrated into the mesenchyme. DβH was also expressed by neurons which formed cell clusters comprising also DβH- or VAChT-positive nerve fibres. In 10-week-old foetuses, PGP-positive nerve fibres were still absent from the ovary but some were distributed in the mesenchyme associated with the uterovaginal canal and uterine and a tubal segment of the paramesonephric ducts, respectively. DβH- or VAChT-positive nerve fibres were distributed at the periphery of the mesenchyme associated with the uterovaginal canal. Some DβH- and many VAChT-positive nerve fibres were evenly distributed throughout the mesenchyme. The clusters of nerve cells comprised DβH-positive perikarya and DβH- or VAChT-positive nerve fibres. The investigations revealed no DβH/VAChT-positive nerve fibres or neurons as well as no nerve structures stained for calcitonin gene-related peptide and/or substance P (sensory markers) associated with the genital organs in the studied prenatal periods.
Collapse
Affiliation(s)
- Amelia Franke-Radowiecka
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Ewelina Prozorowska
- Department of Histology and Embryology, Poznań University of Life Sciences, Poznań, Poland
| | - Michal Zalecki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Hanna Jackowiak
- Department of Histology and Embryology, Poznań University of Life Sciences, Poznań, Poland
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|