1
|
Song J, de Jong D, Waletich J, Baxevanis AD, Schnitzler CE. An updated and spatially validated somatic single-cell atlas of Hydractinia symbiolongicarpus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.06.03.657738. [PMID: 40502179 PMCID: PMC12157527 DOI: 10.1101/2025.06.03.657738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized transcriptomic research, enabling the creation of detailed tissue, organ, and species-level atlases for model organisms. In Hydractinia , a cnidarian model for stem cell and regeneration studies, recent atlases have revealed key insights into cell types and developmental processes. However, these atlases remain limited in cell numbers and transcriptomic depth and cell type assignments were largely made in silico . Here, we present an updated Hydractinia single-cell atlas by integrating new datasets from fixed cells with previously published live-cell data. This expanded atlas captures over 47,000 cells from feeding polyps and stolon tissue, recovering and refining major somatic cell lineages including cnidocytes, neurons, gland cells, epithelial cells, and stem cells (i-cells), as well as identifying a novel population of putative immune cells. We investigated the spatial expression patterns of selected marker genes and validated all major cell types and several cell states. Our analyses uncovered a previously undescribed neural subtype, two spatially distinct gland cell populations, a stolon-specific cell type, and a putative immune cell cluster. Additionally, we recovered and explored a complete Hydractinia cnidocyte trajectory with two distinct endpoints, supported by spatial marker gene expression that reflects the developmental progression of cnidoblasts as they mature and migrate towards the tentacles. Subclustering of somatic i-cells revealed putative progenitor states and a potential population of true stem cells. Together, this atlas significantly advances our understanding of Hydractinia cellular diversity and dynamics, allowing us to generate new hypotheses and provide a valuable resource for the cnidarian research community and beyond.
Collapse
Affiliation(s)
- Jingwei Song
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Coastal Oregon Marine Experiment Station (COMES), Oregon State University/USDA-ARS Pacific Shellfish Research Unit, Newport, OR 97365, USA
| | - Danielle de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Justin Waletich
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Andreas D. Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christine E. Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, 32080, USA
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
2
|
Ramon-Mateu J, Ferraioli A, Teixidó N, Domart-Coulon I, Houliston E, Copley RR. Aboral cell types of Clytia and coral larvae have shared features and link taurine to the regulation of settlement. SCIENCE ADVANCES 2025; 11:eadv1159. [PMID: 40378222 DOI: 10.1126/sciadv.adv1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025]
Abstract
Larval settlement is of interest both for ecologists and for evolutionary biologists, who have proposed that anterior sensory systems for substrate selection provided the basis for animal brains. Nevertheless, the cellular and molecular regulation of settlement, including in Cnidaria (corals, jellyfish, sea anemones, and hydroids), is not well understood. We generated and compared anterior (aboral) transcriptomes and single-cell RNA sequencing datasets from the planula larvae of three cnidarian species: the jellyfish Clytia hemisphaerica and the corals Astroides calycularis and Pocillopora acuta. Integrating these datasets and characterizing aboral cell types, we defined common cellular features of the planula aboral end and identified clade-specific specializations in cell types. Among shared features were genes implicated in taurine uptake and catabolism expressed in distinct specialized aboral cell types. In functional assays using both Clytia and Astroides planulae, exogenous taurine inhibited settlement. These findings define the molecular and cellular architecture of the planula aboral pole and implicate localized taurine destruction in regulating settlement.
Collapse
Affiliation(s)
- Julia Ramon-Mateu
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Anna Ferraioli
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Núria Teixidó
- National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Center, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy
- Laboratoire d'Océanographie de Villefranche (LOV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Isabelle Domart-Coulon
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM) (UMR7245), Muséum National d'Histoire Naturelle (MNHN), CNRS, CP54, 63 Rue Buffon, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| |
Collapse
|
3
|
Kawamura K, Sekida S, Nishitsuji K, Satoh N. The property of larval cells of the scleractinian coral, Acropora tenuis, deduced from in vitro cultured cells. Dev Growth Differ 2025; 67:119-135. [PMID: 39982014 PMCID: PMC11997738 DOI: 10.1111/dgd.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
In previous studies, we have established approximately 15 cultured cell-lines derived from planula larvae of Acropora tenuis. Based on their morphology and behavior, these cells were classified into three types, flattened amorphous cells (FAmCs), vacuolated adherent cells (VAdCs), and small smooth cells (SSmCs). FAmCs include fibroblast-like cells and spherical, brilliant brown cells (BBrCs), which are transformable to each other. To examine the larval origin of the three cell types, we raised antibodies: anti-AtMLRP2 that appears to recognize FAmC, anti-AtAHNAK for BBrC, anti-AtSOMP5 and anti-AtEndoG for SSmC, and anti-AtGal and anti-AtFat4 for VAdC, respectively. Anti-AtMLRP2 antibody stained in vivo stomodeum and neuroblast-like cells embedded in larval ectoderm around the aboral pole. Anti-AtAHNAK antibody stained neuron-like and neuroblast-like cells, both of which were also stained with neuron-specific tubulin β-3 antibody. These results suggest that in vitro BBrCs and in vivo neuroblast-like cells share neuronal properties in common. Two antibodies for SSmCs, anti-AtSOMP5 and anti-AtEndoG, stained larval ectoderm cells, suggesting that SSmCs have larval ectoderm properties. Two antibodies for VAdCs, anti-AtGal and anti-AtFat4, stained larval endoderm cells, suggesting that VAdCs have larval endoderm properties. Therefore, the in vitro cell lines appear to retain properties of the stomodeum, neuroblast, ectoderm, or endoderm. Each of them may be used in future investigations to reveal cellular and molecular properties of cell types of coral larvae, such as the potential for symbiosis.
Collapse
Affiliation(s)
- Kaz Kawamura
- Department of Applied ScienceKochi UniversityKochiJapan
| | - Satoko Sekida
- Kuroshio Science Unit, Multidisciplinary Science ClusterKochi UniversityKochiJapan
| | - Koki Nishitsuji
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
- Department of Marine Science and TechnologyFukui Prefectural UniversityObamaFukuiJapan
| | - Noriyuki Satoh
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Tang X, Guo X, Yang Q, Sun H, Wang H, Ling J, Dong J. A transcriptome-wide analysis provides novel insights into how Metabacillus indicus promotes coral larvae metamorphosis and settlement. BMC Genomics 2024; 25:840. [PMID: 39242500 PMCID: PMC11380378 DOI: 10.1186/s12864-024-10742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Coral reefs experience frequent and severe disturbances that can overwhelm their natural resilience. In such cases, ecological restoration is essential for coral reef recovery. Sexual reproduction has been reported to present the simplest and most cost-effective means for coral reef restoration. However, larval settlement and post-settlement survival represent bottlenecks for coral recruitment in sexual reproduction. While bacteria play a significant role in triggering coral metamorphosis and settlement in many coral species, the underlying molecular mechanisms remain largely unknown. In this study, we employed a transcriptome-level analysis to elucidate the intricate interactions between bacteria and coral larvae that are crucial for the settlement process. RESULTS High Metabacillus indicus strain cB07 inoculation densities resulted in the successful induction of metamorphosis and settlement of coral Pocillopora damicoris larvae. Compared with controls, inoculated coral larvae exhibited a pronounced increase in the abundance of strain cB07 during metamorphosis and settlement, followed by a significant decrease in total lipid contents during the settled stage. The differentially expressed genes (DEGs) during metamorphosis were significantly enriched in amino acid, protein, fatty acid, and glucose related metabolic pathways. In settled coral larvae induced by strain cB07, there was a significant enrichment of DEGs with essential roles in the establishment of a symbiotic relationship between coral larvae and their symbiotic partners. The photosynthetic efficiency of strain cB07 induced primary polyp holobionts was improved compared to those of the negative controls. In addition, coral primary polyps induced by strain cB07 showed significant improvements in energy storage and survival. CONCLUSIONS Our findings revealed that strain cB07 can promote coral larval settlement and enhance post-settlement survival and fitness. Manipulating coral sexual reproduction with strain cB07 can overcome the current recruitment bottleneck. This innovative approach holds promise for future coral reef restoration efforts.
Collapse
Affiliation(s)
- Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, China.
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiangrui Guo
- Ocean School, Yantai University, Yantai, 264005, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Hao Sun
- Ocean School, Yantai University, Yantai, 264005, China
| | - Hanzhang Wang
- Ocean School, Yantai University, Yantai, 264005, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China.
| |
Collapse
|
5
|
Shikina S, Yoshioka Y, Chiu YL, Uchida T, Chen E, Cheng YC, Lin TC, Chu YL, Kanda M, Kawamitsu M, Fujie M, Takeuchi T, Zayasu Y, Satoh N, Shinzato C. Genome and tissue-specific transcriptomes of the large-polyp coral, Fimbriaphyllia (Euphyllia) ancora: a recipe for a coral polyp. Commun Biol 2024; 7:899. [PMID: 39048698 PMCID: PMC11269664 DOI: 10.1038/s42003-024-06544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Coral polyps are composed of four tissues; however, their characteristics are largely unexplored. Here we report biological characteristics of tentacles (Te), mesenterial filaments (Me), body wall (Bo), and mouth with pharynx (MP), using comparative genomic, morpho-histological, and transcriptomic analyses of the large-polyp coral, Fimbriaphyllia ancora. A draft F. ancora genome assembly of 434 Mbp was created. Morpho-histological and transcriptomic characterization of the four tissues showed that they have distinct differences in structure, primary cellular composition, and transcriptional profiles. Tissue-specific, highly expressed genes (HEGs) of Te are related to biological defense, predation, and coral-algal symbiosis. Me expresses multiple digestive enzymes, whereas Bo expresses innate immunity and biomineralization-related molecules. Many receptors for neuropeptides and neurotransmitters are expressed in MP. This dataset and new insights into tissue functions will facilitate a deeper understanding of symbiotic biology, immunology, biomineralization, digestive biology, and neurobiology in corals.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Yuki Yoshioka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Yi-Ling Chiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Taiga Uchida
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Emma Chen
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yin-Chu Cheng
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Tzu-Chieh Lin
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Ling Chu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Miyuki Kanda
- DNA Sequencing Center Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Center Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Center Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
6
|
Xu J, Mead O, Moya A, Caglar C, Miller DJ, Adamski M, Adamska M. Wound healing and regeneration in the reef building coral Acropora millepora. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.979278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Branching scleractinian corals are niche-constructing organisms, providing continuously-growing, structural foundation for spectacularly biodiverse coral reef ecosystems. A large part of their success lies in the ability to quickly regenerate following mechanical damage. Even now, when the corals undergo great decline due to anthropogenic weather and storm extremes, it is surprising how little is known about molecular mechanisms governing regeneration in these iconic organisms. In this study, we used RNA-seq to identify genes involved in the regeneration of Acropora millepora, starting with the initial wound closure up to complete rebuilding of lost structures. Many of the differentially expressed genes we found in the wound healing steps are homologues of genes known to be involved in wound healing and regeneration of bilaterian and other cnidarian species, prominently including multiple components of FGF and Wnt signalling pathways. Comparison between genes involved in wound healing and continuous growth of the colony demonstrates both similarity and distinctiveness of the genetic programmes controlling these processes. A striking example is specific expression of c-Fos, a transcription factor with conserved role in early injury response, during the earliest stages of wound healing of A. millepora. By comparing results obtained in diverse experimental conditions including a closed-loop, recirculating aquarium and a flow-through system of marine station, we have demonstrated feasibility of using zooxanthellate scleractinian corals as experimental models in fundamental biology research, including studies of regeneration.
Collapse
|
7
|
Takeda-Sakazume A, Honjo J, Sasano S, Matsushima K, Baba SA, Mogami Y, Hatta M. Gravitactic Swimming of the Planula Larva of the Coral Acropora: Characterization of Straightforward Vertical Swimming. Zoolog Sci 2023; 40:44-52. [PMID: 36744709 DOI: 10.2108/zs220043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
Vertical migration as well as horizontal dispersion is important in the ecological strategy of planktonic larvae of sedentary corals. We report in this paper unique vertical swimming behavior of planulae of the reef-building coral Acropora tenuis. Several days after fertilization, most of the planulae stayed exclusively at either the top or the bottom of the rearing tank. A good proportion of the planulae migrated almost vertically between top and bottom with fairly straight trajectories. Planulae sometimes switched their swimming direction via a sharp turn between the opposite directions. Quantitative analyses demonstrated that planulae kept constant speed while swimming either upward or downward, in contrast to frequent changes of direction and speed in horizontal swimming. Statistical comparison of propulsive speeds, estimated from swimming speeds and passive sedimentation, revealed gravikinesis of planulae, where the propulsive speed was significantly greater in downward swimming than upward swimming. The larval density hydrodynamically estimated was 0.25% lower than sea water density, which might be explained by the large quantity of lipids in planulae. Also, the deciliated larvae tended to orient oral end-up during floatation, presumably due to asymmetrical distribution of the endogenous light lipids. Plasticity of the larval tissue geometry could easily cause relocation of the center of forces which work together to generate gravitactic-orientation torque and, therefore, abrupt changing of the gravitactic swimming direction. The bimodal gravitactic behavior may give a new insight into dispersal and recruitment of coral larvae.
Collapse
Affiliation(s)
- Asuka Takeda-Sakazume
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Junko Honjo
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Sachia Sasano
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kanae Matsushima
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Shoji A Baba
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yoshihiro Mogami
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Masayuki Hatta
- Department of Biology, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan,
| |
Collapse
|
8
|
Colgren J, Burkhardt P. The premetazoan ancestry of the synaptic toolkit and appearance of first neurons. Essays Biochem 2022; 66:781-795. [PMID: 36205407 PMCID: PMC9750855 DOI: 10.1042/ebc20220042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Neurons, especially when coupled with muscles, allow animals to interact with and navigate through their environment in ways unique to life on earth. Found in all major animal lineages except sponges and placozoans, nervous systems range widely in organization and complexity, with neurons possibly representing the most diverse cell-type. This diversity has led to much debate over the evolutionary origin of neurons as well as synapses, which allow for the directed transmission of information. The broad phylogenetic distribution of neurons and presence of many of the defining components outside of animals suggests an early origin of this cell type, potentially in the time between the first animal and the last common ancestor of extant animals. Here, we highlight the occurrence and function of key aspects of neurons outside of animals as well as recent findings from non-bilaterian animals in order to make predictions about when and how the first neuron(s) arose during animal evolution and their relationship to those found in extant lineages. With advancing technologies in single cell transcriptomics and proteomics as well as expanding functional techniques in non-bilaterian animals and the close relatives of animals, it is an exciting time to begin unraveling the complex evolutionary history of this fascinating animal cell type.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| |
Collapse
|
9
|
Ishii Y, Hatta M, Deguchi R, Kawata M, Maruyama S. Gene expression alterations from reversible to irreversible stages during coral metamorphosis. ZOOLOGICAL LETTERS 2022; 8:4. [PMID: 35078542 PMCID: PMC8787945 DOI: 10.1186/s40851-022-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
For corals, metamorphosis from planktonic larvae to sedentary polyps is an important life event, as it determines the environment in which they live for a lifetime. Although previous studies on the reef-building coral Acropora have clarified a critical time point during metamorphosis when cells are committed to their fates, as defined by an inability to revert back to their previous states as swimming larvae (here referred to as the "point of no return"), the molecular mechanisms of this commitment to a fate remain unclear. To address this issue, we analyzed the transcriptomic changes before and after the point of no return by inducing metamorphosis of Acropora tenuis with Hym-248, a metamorphosis-inducing neuropeptide. Gene Ontology and pathway enrichment analysis of the 5893 differentially expressed genes revealed that G protein-coupled receptors (GPCRs) were enriched, including GABA receptor and Frizzled gene subfamilies, which showed characteristic temporal expression patterns. The GPCRs were then classified by comparison with those of Homo sapiens, Nematostella vectensis and Platynereis dumerilii. Classification of the differentially expressed genes into modules based on expression patterns showed that some modules with large fluctuations after the point of no return were biased toward functions such as protein metabolism and transport. This result suggests that in precommitted larvae, different types of GPCR genes function to ensure a proper environment, whereas in committed larvae, intracellular protein transport and proteolysis may cause a loss of the reversibility of metamorphosis as a result of cell differentiation.
Collapse
Affiliation(s)
- Yuu Ishii
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Masayuki Hatta
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
| | - Masakado Kawata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Shinichiro Maruyama
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| |
Collapse
|
10
|
Zhang Y, Shikina S, Ho YY, Chiu YL, I-Chen Yao J, Zatylny-Gaudin C, Dufour S, Chang CF. Involvement of RFamide neuropeptides in polyp contraction of the adult scleractinian corals Euphyllia ancora and Stylophora pistillata. Gen Comp Endocrinol 2021; 314:113905. [PMID: 34534544 DOI: 10.1016/j.ygcen.2021.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
The distribution and functions of neurons in scleractinian corals remain largely unknown. This study focused on the Arg-Phe amide family of neuropeptides (RFamides), which have been shown to be involved in a variety of biological processes in animals, and performed molecular identification and characterization in the adult scleractinian coral Euphyllia ancora. The deduced amino acid sequence of the identified RFamide preprohormone was predicted to contain 20 potential neuropeptides, including 1 Pro-Gly-Arg-Phe (PGRF) amide and 15 Gln-Gly-Arg-Phe (QGRF) amide peptides. Tissue distribution analysis showed that the level of transcripts in the tentacles was significantly higher than that in other polyp tissues. Immunohistochemical analysis with the FMRFamide antibody showed that RFamide neurons were mainly distributed in the epidermis of the tentacles and mouth with pharynx. Treatment of E. ancora polyps with synthetic QGRFamide peptides induced polyp contraction. The induction of polyp contraction by QGRFamide peptide treatment was also observed in another scleractinian coral, Stylophora pistillata. These results strongly suggested that RFamides play a role in the regulation of polyp contraction in adult scleractinians.
Collapse
Affiliation(s)
- Yan Zhang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan; Zhejiang Marine Fisheries Research Institute, Zhejiang, China; Marine and Fishery Research Institute, Zhejiang Ocean University, Zhejiang, China
| | - Shinya Shikina
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan; Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
| | - Yu-Ying Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ling Chiu
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Jack I-Chen Yao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Céline Zatylny-Gaudin
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), University of Caen-Normandy, Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université des Antilles, 14032, Caen, France and 75231 Paris Cedex 05, France
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), University of Caen-Normandy, Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université des Antilles, 14032, Caen, France and 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan; Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
11
|
Chuang PS, Mitarai S. Genetic changes involving the coral gastrovascular system support the transition between colonies and bailed-out polyps: evidence from a Pocillopora acuta transcriptome. BMC Genomics 2021; 22:694. [PMID: 34563133 PMCID: PMC8466926 DOI: 10.1186/s12864-021-08026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background A coral colony is composed of physiologically integrated polyps. In stony corals, coloniality adopts a wide diversity of forms and involves complex ontogenetic dynamics. However, molecular mechanisms underlying coloniality have been little studied. To understand the genetic basis of coloniality and its contribution to coral ecology, we induced polyp bail-out in a colonial coral, Pocillopora acuta, and compared transcription profiles of bailed-out polyps and polyps in normal colonies, and their responses to heat shock and hyposalinity. Results Consistent with morphological formation of a gastrovascular system and its neural transmission and molecular transport functions, we found genetic activation of neurogenesis and development of tube-like structures in normal colonies that is absent in bailed-out polyps. Moreover, relative to bailed-out polyps, colonies showed significant overexpression of genes for angiotensin-converting enzymes and endothelin-converting enzymes. In response to hyperthermal and hyposaline treatments, a high proportion of genetic regulation proved specific to either bailed-out polyps or colonies. Elevated temperatures even activated NF-κB signaling in colonies. On the other hand, colonies showed no discernible advantage over bailed-out polyps in regard to hyposalinity. Conclusions The present study provides a first look at the genetic basis of coloniality and documents different responses to environmental stimuli in P. acuta colonies versus those in bailed-out polyps. Overexpression of angiotensin-converting enzymes and endothelin-converting enzymes in colonies suggests possible involvement of these genes in development of the gastrovascular system in P. acuta. Functional characterization of these coral genes and further investigation of other forms of the transition to coloniality in stony corals should be fruitful areas for future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08026-x.
Collapse
Affiliation(s)
- Po-Shun Chuang
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun , 904-0495, Okinawa, Japan.
| | - Satoshi Mitarai
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun , 904-0495, Okinawa, Japan
| |
Collapse
|
12
|
Krasovec G, Pottin K, Rosello M, Quéinnec É, Chambon JP. Apoptosis and cell proliferation during metamorphosis of the planula larva of Clytia hemisphaerica (Hydrozoa, Cnidaria). Dev Dyn 2021; 250:1739-1758. [PMID: 34036636 DOI: 10.1002/dvdy.376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Metamorphosis in marine species is characterized by profound changes at the ecophysiological, morphological, and cellular levels. The cnidarian Clytia hemisphaerica exhibits a triphasic life cycle that includes a planula larva, a colonial polyp, and a sexually reproductive medusa. Most studies so far have focused on the embryogenesis of this species, whereas its metamorphosis has been only partially studied. RESULTS We investigated the main morphological changes of the planula larva of Clytia during the metamorphosis, and the associated cell proliferation and apoptosis. Based on our observations of planulae at successive times following artificial metamorphosis induction using GLWamide, we subdivided the Clytia's metamorphosis into a series of eight morphological stages occurring during a pre-settlement phase (from metamorphosis induction to planula ready for settlement) and the post-settlement phase (from planula settlement to primary polyp). Drastic morphological changes prior to definitive adhesion to the substrate were accompanied by specific patterns of stem-cell proliferation as well as apoptosis in both ectoderm and endoderm. Further waves of apoptosis occurring once the larva has settled were associated with morphogenesis of the primary polyp. CONCLUSION Clytia larval metamorphosis is characterized by distinct patterns of apoptosis and cell proliferation during the pre-settlement phase and the settled planula-to-polyp transformation.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France
| | - Karen Pottin
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France
| | - Marion Rosello
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France
| | - Éric Quéinnec
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France.,Institut de Systématique, Evolution, Biodiversité, Sorbonne Université, Muséum National d'histoire Naturelle, Paris Cedex, France
| | - Jean-Philippe Chambon
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, IBPS, Evolution Paris Seine, Paris, France.,Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier University, CNRS, Montpellier, France
| |
Collapse
|
13
|
Mason B, Cooke I, Moya A, Augustin R, Lin MF, Satoh N, Bosch TCG, Bourne DG, Hayward DC, Andrade N, Forêt S, Ying H, Ball EE, Miller DJ. AmAMP1 from Acropora millepora and damicornin define a family of coral-specific antimicrobial peptides related to the Shk toxins of sea anemones. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103866. [PMID: 32937163 DOI: 10.1016/j.dci.2020.103866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
A candidate antimicrobial peptide (AmAMP1) was identified by searching the whole genome sequence of Acropora millepora for short (<125AA) cysteine-rich predicted proteins with an N-terminal signal peptide but lacking clear homologs in the SwissProt database. It resembled but was not closely related to damicornin, the only other known AMP from a coral, and was shown to be active against both Gram-negative and Gram-positive bacteria. These proteins define a family of AMPs present in corals and their close relatives, the Corallimorpharia, and are synthesised as preproproteins in which the C-terminal mature peptide contains a conserved arrangement of six cysteine residues. Consistent with the idea of a common origin for AMPs and toxins, this Cys motif is shared between the coral AMPs and the Shk neurotoxins of sea anemones. AmAMP1 is expressed at late stages of coral development, in ectodermal cells that resemble the "ganglion neurons" of Hydra, in which it has recently been demonstrated that a distinct AMP known as NDA-1 is expressed.
Collapse
Affiliation(s)
- B Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia
| | - I Cooke
- Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - A Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia
| | - R Augustin
- Zoological Institute, Kiel University, Kiel, Germany
| | - M-F Lin
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia; Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan
| | - N Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan
| | - T C G Bosch
- Zoological Institute, Kiel University, Kiel, Germany
| | - D G Bourne
- Department of Marine Ecosystems and Impacts, James Cook University, Townsville, 4811, Queensland, Australia
| | - D C Hayward
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - N Andrade
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia
| | - S Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - H Ying
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - E E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - D J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia; Molecular and Cell Biology, James Cook University, Townsville, 4811, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia; Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495, Onna, Okinawa, Japan.
| |
Collapse
|
14
|
A comparative genomics study of neuropeptide genes in the cnidarian subclasses Hexacorallia and Ceriantharia. BMC Genomics 2020; 21:666. [PMID: 32993486 PMCID: PMC7523074 DOI: 10.1186/s12864-020-06945-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background Nervous systems originated before the split of Proto- and Deuterostomia, more than 600 million years ago. Four animal phyla (Cnidaria, Placozoa, Ctenophora, Porifera) diverged before this split and studying these phyla could give us important information on the evolution of the nervous system. Here, we have annotated the neuropeptide preprohormone genes of twenty species belonging to the subclass Hexacorallia or Ceriantharia (Anthozoa: Cnidaria), using thirty-seven publicly accessible genome or transcriptome databases. Studying hexacorals is important, because they are versatile laboratory models for development (e.g., Nematostella vectensis) and symbiosis (e.g., Exaiptasia diaphana) and also are prominent reef-builders. Results We found that each hexacoral or ceriantharian species contains five to ten neuropeptide preprohormone genes. Many of these preprohormones contain multiple copies of immature neuropeptides, which can be up to 50 copies of identical or similar neuropeptide sequences. We also discovered preprohormones that only contained one neuropeptide sequence positioned directly after the signal sequence. Examples of them are neuropeptides that terminate with the sequence RWamide (the Antho-RWamides). Most neuropeptide sequences are N-terminally protected by pyroglutamyl (pQ) or one or more prolyl residues, while they are C-terminally protected by an amide group. Previously, we isolated and sequenced small neuropeptides from hexacorals that were N-terminally protected by an unusual L-3-phenyllactyl group. In our current analysis, we found that these N-phenyllactyl-peptides are derived from N-phenylalanyl-peptides located directly after the signal sequence of the preprohormone. The N-phenyllactyl- peptides appear to be confined to the hexacorallian order Actiniaria and do not occur in other cnidarians. On the other hand, (1) the neuropeptide Antho-RFamide (pQGRFamide); (2) peptides with the C-terminal sequence GLWamide; and (3) tetrapeptides with the X1PRX2amide consensus sequence (most frequently GPRGamide) are ubiquitous in Hexacorallia. Conclusions We found GRFamide, GLWamide, and X1PRX2amide peptides in all tested Hexacorallia. Previously, we discovered these three neuropeptide classes also in Cubozoa, Scyphozoa, and Staurozoa, indicating that these neuropeptides originated in the common cnidarian ancestor and are evolutionarily ancient. In addition to these ubiquitous neuropeptides, other neuropeptides appear to be confined to specific cnidarian orders or subclasses.
Collapse
|
15
|
Shikina S, Chiu YL, Zhang Y, Yi-ChenYao, Liu TY, Tsai PH, Zatylny-Gaudin C, Chang CF. Involvement of GLWamide neuropeptides in polyp contraction of the adult stony coral Euphyllia ancora. Sci Rep 2020; 10:9427. [PMID: 32523083 PMCID: PMC7287070 DOI: 10.1038/s41598-020-66438-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
The existence and function of neurons remain largely unexplored in scleractinian corals. To gain a better understanding of neuronal functions in coral physiology, this study focused on Glycine-Leucine-Tryptophan-amide family neuropeptides (GLWamides), which have been shown to induce muscle contraction and larval metamorphosis in other cnidarians. Molecular identification and functional characterization of GLWamides in the adult stony coral Euphyllia ancora were performed. We successfully elucidated the full-length cDNA of GLWamide preprohormone in E. ancora (named EaGLW preprohormone). The deduced amino acid sequence was predicted to contain six potential GLWamide peptides. Tissue distribution analysis demonstrated that transcripts of EaGLW preprohormone were mainly expressed in the mouth (including the pharynx) and tentacles of the polyps. Immunodetection with an anti-GLWamide monoclonal antibody revealed that GLWamide neurons were mainly distributed in the epidermis of the mouth region and tentacle, in agreement with the distribution patterns of the transcripts. Treatment of the isolated mouth and tentacles with synthetic GLWamide peptides induced the contraction of these isolated tissues. Treatment of polyps with synthetic GLWamide peptides induced the contraction of polyps. These results suggest that GLWamides are involved in polyp contraction (myoactivity) in adult scleractinians. Our data provide new information on the physiological function of neuropeptides in scleractinians.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 20224, Taiwan. .,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Yi-Ling Chiu
- Doctoral degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Yan Zhang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-ChenYao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Tai-Yu Liu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Pin-Hsuan Tsai
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | | | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan. .,Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
16
|
Zang H, Nakanishi N. Expression Analysis of Cnidarian-Specific Neuropeptides in a Sea Anemone Unveils an Apical-Organ-Associated Nerve Net That Disintegrates at Metamorphosis. Front Endocrinol (Lausanne) 2020; 11:63. [PMID: 32140137 PMCID: PMC7042181 DOI: 10.3389/fendo.2020.00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Neuropeptides are ancient neuronal signaling molecules that have diversified across Cnidaria (e.g., jellyfish, corals, and sea anemones) and its sister group Bilateria (e.g., vertebrates, insects, and worms). Over the course of neuropeptide evolution emerged lineage-specific neuropeptides, but their roles in the evolution and diversification of nervous system function remain enigmatic. As a step toward filling in this knowledge gap, we investigated the expression pattern of a cnidarian-specific neuropeptide-RPamide-during the development of the starlet sea anemone Nematostella vectensis, using in situ hybridization and immunohistochemistry. We show that RPamide precursor transcripts first occur during gastrulation in scattered epithelial cells of the aboral ectoderm. These RPamide-positive epithelial cells exhibit a spindle-shaped, sensory-cell-like morphology, and extend basal neuronal processes that form a nerve net in the aboral ectoderm of the free-swimming planula larva. At the aboral end, RPamide-positive sensory cells become integrated into the developing apical organ that forms a bundle of long cilia referred to as the apical tuft. Later during planula development, RPamide expression becomes evident in sensory cells in the oral ectoderm of the body column and pharynx, and in the developing endodermal nervous system. At metamorphosis into a polyp, the RPamide-positive sensory nerve net in the aboral ectoderm degenerates by apoptosis, and RPamide expression begins in ectodermal sensory cells of growing oral tentacles. In addition, we find that the expression pattern of RPamide in planulae differs from that of conserved neuropeptides that are shared across Cnidaria and Bilateria, indicative of distinct functions. Our results not only provide the anatomical framework necessary to analyze the function of the cnidarian-specific neuropeptides in future studies, but also reveal previously unrecognized features of the sea anemone nervous system-the apical organ neurons of the planula larva, and metamorphosis-associated reorganization of the ectodermal nervous system.
Collapse
Affiliation(s)
- Hannah Zang
- Lyon College, Batesville, AR, United States
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Nagayasu Nakanishi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Nagayasu Nakanishi
| |
Collapse
|