1
|
Liu XG, Zhao T, Qiu QQ, Wang CK, Li TL, Liu XL, Wang L, Wang QQ, Zhou L. CRISPR/Cas9-mediated knockout of the abdominal-B homeotic gene in the global pest, fall armyworm (Spodoptera frugiperda). INSECT MOLECULAR BIOLOGY 2025; 34:162-173. [PMID: 39314071 DOI: 10.1111/imb.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/18/2024] [Indexed: 09/25/2024]
Abstract
The Homeotic complex (Hox) genes play a crucial role in determining segment identity and appendage morphology in bilaterian animals along the antero-posterior axis. Recent studies have expanded to agricultural pests such as fall armyworm (FAW), scientifically known as Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), which significantly threatens global agricultural productivity. However, the specific role of the hox gene Sfabd-B in FAW remains unexplored. This research investigates the spatial and temporal expression patterns of Sfabd-B in various tissues at different developmental stages using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we explored the potential function of the Sfabd-B gene located in the FAW genome using CRISPR/Cas9 technology. The larval mutant phenotypes can be classified into three subgroups as compared with wild-type individuals, that is, an excess of pedis in the posterior abdomen, deficient pedis due to segmental fusion and deviations in the posterior abdominal segments. Importantly, significant differences in mutant phenotypes between male and female individuals were also evident during the pupal and adult phases. Notably, both the decapentaplegic (dpp) and cuticular protein 12 (cp 12) genes displayed a substantial marked decrease in expression levels in the copulatory organ of male mutants and the ovipositor of female mutants compared with the wild type. These findings highlight the importance of Sfabd-B in genital tract patterning, providing a potential target for improving genetic control.
Collapse
Affiliation(s)
- Xiao-Guang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qi-Qi Qiu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Cong-Ke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Tian-Liang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Long Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
| | - Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qin-Qin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
VanKuren NW, Sheikh SI, Fu CL, Massardo D, Lu W, Kronforst MR. Supergene evolution via gain of autoregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574839. [PMID: 38260248 PMCID: PMC10802445 DOI: 10.1101/2024.01.09.574839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Development requires the coordinated action of many genes across space and time, yet numerous species have evolved the ability to develop multiple discrete, alternate phenotypes1-5. Such polymorphisms are often controlled by supergenes, sets of tightly-linked loci that function together to control development of a polymorphic phenotype6-10. Although theories of supergene evolution are well-established, the mutations that cause functional differences between supergene alleles have been difficult to identify. The doublesex gene is a master regulator of insect sexual differentiation but has been co-opted to function as a supergene in multiple Papilio swallowtail butterflies, where divergent dsx alleles control development of discrete non-mimetic or mimetic female wing shapes and color patterns11-15. Here we demonstrate that the Papilio alphenor supergene evolved via recruitment of six new cis-regulatory elements (CREs) that control allele-specific dsx expression. Most dsx CREs, including four of the six new CREs, are bound by the DSX transcription factor itself. Our findings provide experimental support to classic supergene theory and suggest that autoregulation may provide a simple route to supergene origination and to the co-option of pleiotropic genes into new developmental roles.
Collapse
Affiliation(s)
| | - Sofia I. Sheikh
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| | - Claire L. Fu
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| | - Darli Massardo
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| | - Wei Lu
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| | - Marcus R. Kronforst
- Department of Ecology & Evolution, The University of Chicago, Chicago IL USA
| |
Collapse
|
3
|
Chikami Y, Okuno M, Toyoda A, Itoh T, Niimi T. Evolutionary History of Sexual Differentiation Mechanism in Insects. Mol Biol Evol 2022; 39:msac145. [PMID: 35820410 PMCID: PMC9290531 DOI: 10.1093/molbev/msac145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
4
|
Fu SJ, Zhang JL, Xu HJ. A genome-wide identification and analysis of the homeobox genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21833. [PMID: 34288091 DOI: 10.1002/arch.21833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The homeobox family is a large and diverse superclass of genes, many of which act as transcription factors that play important roles in tissue differentiation and embryogenesis in animals. The brown planthopper (BPH), Nilaparvata lugens, is the most destructive pest of rice in Asia, and high fecundity contributes significantly to its ecological success in natural and agricultural habits. Here, we identified 94 homeobox genes in BPH, which could be divided into 75 gene families and 9 classes. This number is comparable to the number of homeobox genes found in the honeybee Apis mellifera, but is slightly less than in Drosophila or the red flour beetle Tribolium castaneum. A spatio-temporal analysis indicated that most BPH homeobox genes were expressed in a development and tissue-specific manner, of which 21 genes were highly expressed in ovaries. RNA interference (RNAi)-mediated functional assay showed that 22 homeobox genes were important for nymph development and the nymph to adult transition, whereas 67 genes were dispensable during this process. Fecundity assay showed that knockdown of 13 ovary-biased genes (zfh1, schlank, abd-A, Lim3_2, Lmxb, Prop, ap_1, Not, lab, Hmx, vis, Pknox, and C15) led to the reproductive defect. This is the first comprehensive investigation into homeobox genes in a hemipteran insect and thus helps us to understand the functional significance of homeobox genes in insect reproduction.
Collapse
Affiliation(s)
- Sheng-Jie Fu
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Li Zhang
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hai-Jun Xu
- Department of Agriculture and Biotechnology, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Agriculture and Biotechnology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Agriculture and Biotechnology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|