1
|
Rathnakar BH, Rackley A, Kwon HR, Berry WL, Olson LE. Mouse scalp development requires Rac1 and SRF for the maintenance of mechanosensing mesenchyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637680. [PMID: 39990423 PMCID: PMC11844550 DOI: 10.1101/2025.02.11.637680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Regulation of essential cellular responses like proliferation, migration, and differentiation is crucial for normal development. Rac1, a ubiquitously expressed small GTPase, executes these responses under the regulation of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GTPases). Mutations in specific GEFs (DOCK6) and GTPases (AHGAP31) that regulate Rac1 are associated with Adams-Oliver syndrome (AOS), a developmental syndrome characterized by congenital scalp defects and limb truncations. Genetic ablation of Rac1 in the mouse embryonic limb ectoderm results in limb truncation. However, the etiology of Rac1-associated cranial defects is unknown. To investigate the origin and nature of cranial defects, we used a mesenchymal Cre line ( Pdgfra-Cre ) to delete Rac1 in cranial mesenchyme. Rac1 -KO mice died perinatally and lacked the apical portion of the calvarium and overlying dermis, resembling cranial defects seen in severe cases of AOS. In control embryos, α-smooth muscle actin (αSMA) expression was spatially restricted to the apical mesenchyme, suggesting a mechanical interaction between the growing brain and the overlying mesenchyme. In Rac1 -KO embryos there was reduced proliferation of apical mesenchyme, and reduced expression of αSMA and its regulator, serum response factor (SRF). Remarkably, Srf -KO mice generated with Pdgfra-Cre recapitulated the cranial phenotype observed in Rac1- KO mice. Together, these data suggest a model where Rac1 and SRF are critical to maintaining apical fibroblasts in a mechano-sensitive and proliferative state needed to complete cranial development.
Collapse
|
2
|
Liu C, Feng X, Jeong S, Carr ML, Gao Y, Atit RP, Senyo SE. Lamellipodia-Mediated Osteoblast Haptotaxis Guided by Fibronectin Ligand Concentrations on a Multiplex Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401717. [PMID: 39286887 PMCID: PMC11618712 DOI: 10.1002/smll.202401717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Indexed: 09/19/2024]
Abstract
Skull morphogenesis is a complex, dynamic process involving two different germ layers and progressing to the coordinated, directional growth of individual bones. The mechanisms underlying directional growth toward the apex are not completely understood. Here, a microfluidic chip-based approach is utilized to test whether calvarial osteoblast progenitors undergo haptotaxis on a gradient of Fibronectin1 (FN1) via lamellipodia. Mimicking the embryonic cranial mesenchyme's FN1 pattern, FN1 gradients is established in the chip using computer modeling and fluorescent labeling. Primary mouse calvarial osteoblast progenitors are plated in the chip along an array of segmented gradients of adsorbed FN1. The study performs single-cell tracking and measures protrusive activity. Haptotaxis is observed at an intermediate FN1 concentration, with an average directional migration index (yFMI) of 0.07, showing a significant increase compared to the control average yFMI of -0.01. A significant increase in protrusive activity is observed during haptotaxis. Haptotaxis is an Arp2/3-dependent, lamellipodia-mediated process. Calvarial osteoblast progenitors treated with the Arp2/3 (Actin Related Protein 2/3 complex) inhibitor CK666 show significantly diminished haptotaxis, with an average yFMI of 0.01. Together, these results demonstrate haptotaxis on an FN1 gradient as a new mechanism in the apical expansion of calvarial osteoblast progenitors during development and shed light on the etiology of calvarial defects.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Xiaotian Feng
- Department of BiologyCase Western Reserve UniversityClevelandOH44106USA
| | - Seoyoung Jeong
- Department of BiologyCase Western Reserve UniversityClevelandOH44106USA
| | - Melissa L. Carr
- Department of BiologyCase Western Reserve UniversityClevelandOH44106USA
| | - Yiwen Gao
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| | - Radhika P. Atit
- Department of BiologyCase Western Reserve UniversityClevelandOH44106USA
| | - Samuel E. Senyo
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOH44106USA
| |
Collapse
|
3
|
Li D, Jiang X, Xiao J, Liu C. A novel perspective of calvarial development: the cranial morphogenesis and differentiation regulated by dura mater. Front Cell Dev Biol 2024; 12:1420891. [PMID: 38979034 PMCID: PMC11228331 DOI: 10.3389/fcell.2024.1420891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
There are lasting concerns on calvarial development because cranium not only accommodates the growing brain, but also safeguards it from exogenous strikes. In the past decades, most studies attributed the dynamic expansion and remodeling of cranium to the proliferation of osteoprecursors in cranial primordium, and the proliferation of osteoprogenitors at the osteogenic front of cranial suture mesenchyme. Further investigations identified series genes expressed in suture mesenchymal cells as the markers of the progenitors, precursors and postnatal stem cells in cranium. However, similar to many other organs, it is suggested that the reciprocal interactions among different tissues also play essential roles in calvarial development. Actually, there are increasing evidence indicating that dura mater (DM) is indispensable for the calvarial morphogenesis and osteogenesis by secreting multiple growth factors, cytokines and extracellular matrix (ECM). Thus, in this review, we first briefly introduce the development of cranium, suture and DM, and then, comprehensively summarize the latest studies exploring the involvement of ECM in DM and cranium development. Eventually, we discussed the reciprocal interactions between calvarium and DM in calvarial development. Actually, our review provides a novel perspective for cranium development by integrating previous classical researches with a spotlight on the mutual interplay between the developing DM and cranium.
Collapse
Affiliation(s)
| | | | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Gupta I, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on fibronectin cues. Development 2024; 151:dev202371. [PMID: 38602508 PMCID: PMC11165720 DOI: 10.1242/dev.202371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isha Gupta
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M. Brent Hawkins
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sevan Hopyan
- Department of Developmental Biology, Hospital for Sick Kids, Toronto ON, M5G 0A4, Canada
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genome Sciences and Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Cabrera Pereira A, Dasgupta K, Ho TV, Pacheco-Vergara M, Kim J, Kataria N, Liang Y, Mei J, Yu J, Witek L, Chai Y, Jeong J. Lineage-specific mutation of Lmx1b provides new insights into distinct regulation of suture development in different areas of the calvaria. Front Physiol 2023; 14:1225118. [PMID: 37593235 PMCID: PMC10427921 DOI: 10.3389/fphys.2023.1225118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The calvaria (top part of the skull) is made of pieces of bone as well as multiple soft tissue joints called sutures. The latter is crucial to the growth and morphogenesis of the skull, and thus a loss of calvarial sutures can lead to severe congenital defects in humans. During embryogenesis, the calvaria develops from the cranial mesenchyme covering the brain, which contains cells originating from the neural crest and the mesoderm. While the mechanism that patterns the cranial mesenchyme into bone and sutures is not well understood, function of Lmx1b, a gene encoding a LIM-domain homeodomain transcription factor, plays a key role in this process. In the current study, we investigated a difference in the function of Lmx1b in different parts of the calvaria using neural crest-specific and mesoderm-specific Lmx1b mutants. We found that Lmx1b was obligatory for development of the interfrontal suture and the anterior fontanel along the dorsal midline of the skull, but not for the posterior fontanel over the midbrain. Also, Lmx1b mutation in the neural crest-derived mesenchyme, but not the mesoderm-derived mesenchyme, had a non-cell autonomous effect on coronal suture development. Furthermore, overexpression of Lmx1b in the neural crest lineage had different effects on the position of the coronal suture on the apical part and the basal part. Other unexpected phenotypes of Lmx1b mutants led to an additional finding that the coronal suture and the sagittal suture are of dual embryonic origin. Together, our data reveal a remarkable level of regional specificity in regulation of calvarial development.
Collapse
Affiliation(s)
- Angel Cabrera Pereira
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Krishnakali Dasgupta
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Maria Pacheco-Vergara
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Julie Kim
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Niam Kataria
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Yaowei Liang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Jeslyn Mei
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- Department of Psychology, Hunter College, City University of New York, New York, NY, United States
| | - Jinyeong Yu
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- Department of Biology, College of Arts and Sciences, New York University, New York, NY, United States
| | - Lukasz Witek
- Biomaterials Division, New York University College of Dentistry, New York, NY, United States
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Juhee Jeong
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| |
Collapse
|
6
|
Como CN, Kim S, Siegenthaler J. Stuck on you: Meninges cellular crosstalk in development. Curr Opin Neurobiol 2023; 79:102676. [PMID: 36773497 PMCID: PMC10023464 DOI: 10.1016/j.conb.2023.102676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
The spatial and temporal development of the brain, overlying meninges (fibroblasts, vasculature and immune cells) and calvarium are highly coordinated. In particular, the timing of meningeal fibroblasts into molecularly distinct pia, arachnoid and dura subtypes coincides with key developmental events in the brain and calvarium. Further, the meninges are positioned to influence development of adjacent structures and do so via depositing basement membrane and producing molecular cues to regulate brain and calvarial development. Here, we review the current knowledge of how meninges development aligns with events in the brain and calvarium and meningeal fibroblast "crosstalk" with these structures. We summarize outstanding questions and how the use of non-mammalian models to study the meninges will substantially advance the field of meninges biology.
Collapse
Affiliation(s)
- Christina N Como
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. https://twitter.com/ChristinaComo
| | - Sol Kim
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado, School of Medicine Department of Pediatrics 12800 East 19th Ave MS-8313 Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Amann L, Masuda T, Prinz M. Mechanisms of myeloid cell entry to the healthy and diseased central nervous system. Nat Immunol 2023; 24:393-407. [PMID: 36759712 DOI: 10.1038/s41590-022-01415-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023]
Abstract
Myeloid cells in the central nervous system (CNS), such as microglia, CNS-associated macrophages (CAMs), dendritic cells and monocytes, are vital for steady-state immune homeostasis as well as the resolution of tissue damage during brain development or disease-related pathology. The complementary usage of multimodal high-throughput and high-dimensional single-cell technologies along with recent advances in cell-fate mapping has revealed remarkable myeloid cell heterogeneity in the CNS. Despite the establishment of extensive expression profiles revealing myeloid cell multiplicity, the local anatomical conditions for the temporal- and spatial-dependent cellular engraftment are poorly understood. Here we highlight recent discoveries of the context-dependent mechanisms of myeloid cell migration and settlement into distinct subtissular structures in the CNS. These insights offer better understanding of the factors needed for compartment-specific myeloid cell recruitment, integration and residence during development and perturbation, which may lead to better treatment of CNS diseases.
Collapse
Affiliation(s)
- Lukas Amann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on graded fibronectin cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524278. [PMID: 36711975 PMCID: PMC9882209 DOI: 10.1101/2023.01.16.524278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bone. Premature suture fusion (craniosynostosis, CS) or persistent fontanelles are common defects in calvarial development. Although some of the genetic causes of these disorders are known, we lack an understanding of the instructions directing the growth and migration of progenitors of these bones, which may affect the suture patency. Here, we identify graded expression of Fibronectin (FN1) protein in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvarial osteoblasts. Syndromic forms of CS exhibit dysregulated FN1 expression, and we find FN1 expression is altered in a mouse CS model as well. Conditional deletion of Fn1 in CM causes diminished frontal bone expansion by altering cell polarity and shape. To address how osteoprogenitors interact with the observed FN1 prepattern, we conditionally ablate Wasl/N-Wasp to disrupt F-actin junctions in migrating cells, impacting lamellipodia and cell-matrix interaction. Neural crest-targeted deletion of Wasl results in a diminished actin network and reduced expansion of frontal bone primordia similar to conditional Fn1 mutants. Interestingly, defective calvaria formation in both the Fn1 and Wasl mutants occurs without a significant change in proliferation, survival, or osteogenesis. Finally, we find that CM-restricted Fn1 deletion leads to premature fusion of coronal sutures. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| | - M Brent Hawkins
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Greg Holmes
- Dept. of _Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sevan Hopyan
- Dept. of Developmental Biology, Hospital for Sick Kids, Toronto, Canada
| | - Matthew P Harris
- Dept of Genetics, Harvard Medical School, Dept. of Orthopedics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve Univ., Cleveland Ohio, USA
| |
Collapse
|
9
|
HOXC10 intronic duplication is associated with unsealed skull and crest in crested chicken with cerebral hernia. Gene 2022; 840:146758. [PMID: 35905851 DOI: 10.1016/j.gene.2022.146758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
Abstract
The genetic basis and developmental mechanism of unsealed skull in crested chicken with cerebral hernia remain unclear. Here, a genomic region including six HOXC genes was mapped by bulked segregant analysis (BSA) in a crested chicken resource population. A 195-bp intronic tandem duplication was further confirmed in the HOXC10 gene. HOXC genes, particularly HOXC10, were expressed ectopically in fetal skin and meningeal tissues of crested chicken with cerebral hernia, indicating its impact on the cranial mesenchymal tissues that drive the development of scalp skin, frontal bone, and meninges. The restricted expansion of frontal bone progenitors labeled with anti-RUNX2 antibody in the supraorbital mesenchyme of the fetal head implied abnormal migration, which contributed to the formation of the unsealed skull. This study suggests that HOXC genes were potent drivers for the abnormalities of the head crest and unsealed skull observed in crested chicken with cerebral hernia.
Collapse
|
10
|
Single-cell atlas of craniogenesis uncovers SOXC-dependent, highly proliferative, and myofibroblast-like osteodermal progenitors. Cell Rep 2022; 40:111045. [PMID: 35830813 PMCID: PMC9595211 DOI: 10.1016/j.celrep.2022.111045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
The mammalian skull vault is essential to shape the head and protect the brain, but the cellular and molecular events underlying its development remain incompletely understood. Single-cell transcriptomic profiling from early to late mouse embryonic stages provides a detailed atlas of cranial lineages. It distinguishes various populations of progenitors and reveals a high expression of SOXC genes (encoding the SOX4, SOX11, and SOX12 transcription factors) early in development in actively proliferating and myofibroblast-like osteodermal progenitors. SOXC inactivation in these cells causes severe skull and skin underdevelopment due to the limited expansion of cell populations before and upon lineage commitment. SOXC genes enhance the expression of gene signatures conferring dynamic cellular and molecular properties, including actin cytoskeleton assembly, chromatin remodeling, and signaling pathway induction and responsiveness. These findings shed light onto craniogenic mechanisms and SOXC functions and suggest that similar mechanisms could decisively control many developmental, adult, pathological, and regenerative processes. Angelozzi and colleagues establish a detailed transcriptomic atlas of mouse embryonic craniogenesis and use mutant mice to show that SOXC (SOX4, SOX11, and SOX12 transcription factors) critically support osteogenesis and dermogenesis by promoting the expression of dynamic cellular and molecular properties of progenitor populations. SOXC could similarly affect many other processes.
Collapse
|
11
|
A systematic review and meta-analysis of the association between cyproterone acetate and intracranial meningiomas. Sci Rep 2022; 12:1942. [PMID: 35121790 PMCID: PMC8816922 DOI: 10.1038/s41598-022-05773-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
The influence of exposure to hormonal treatments, particularly cyproterone acetate (CPA), has been posited to contribute to the growth of meningiomas. Given the widespread use of CPA, this systematic review and meta-analysis attempted to assess real-world evidence of the association between CPA and the occurrence of intracranial meningiomas. Systematic searches of Ovid MEDLINE, Embase and Cochrane Controlled Register of Controlled Trials, were performed from database inception to 18th December 2021. Four retrospective observational studies reporting 8,132,348 patients were included in the meta-analysis. There was a total of 165,988 subjects with usage of CPA. The age of patients at meningioma diagnosis was generally above 45 years in all studies. The dosage of CPA taken by the exposed group (n = 165,988) was specified in three of the four included studies. All studies that analyzed high versus low dose CPA found a significant association between high dose CPA usage and increased risk of meningioma. When high and low dose patients were grouped together, there was no statistically significant increase in risk of meningioma associated with use of CPA (RR = 3.78 [95% CI 0.31–46.39], p = 0.190). Usage of CPA is associated with increased risk of meningioma at high doses but not when low doses are also included. Routine screening and meningioma surveillance by brain MRI offered to patients prescribed with CPA is likely a reasonable clinical consideration if given at high doses for long periods of time. Our findings highlight the need for further research on this topic.
Collapse
|
12
|
Dasgupta K, Cesario JM, Ha S, Asam K, Deacon LJ, Song AH, Kim J, Cobb J, Yoon JK, Jeong J. R-Spondin 3 Regulates Mammalian Dental and Craniofacial Development. J Dev Biol 2021; 9:jdb9030031. [PMID: 34449628 PMCID: PMC8395884 DOI: 10.3390/jdb9030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
Development of the teeth requires complex signaling interactions between the mesenchyme and the epithelium mediated by multiple pathways. For example, canonical WNT signaling is essential to many aspects of odontogenesis, and inhibiting this pathway blocks tooth development at an early stage. R-spondins (RSPOs) are secreted proteins, and they mostly augment WNT signaling. Although RSPOs have been shown to play important roles in the development of many organs, their role in tooth development is unclear. A previous study reported that mutating Rspo2 in mice led to supernumerary lower molars, while teeth forming at the normal positions showed no significant anomalies. Because multiple Rspo genes are expressed in the orofacial region, it is possible that the relatively mild phenotype of Rspo2 mutants is due to functional compensation by other RSPO proteins. We found that inactivating Rspo3 in the craniofacial mesenchyme caused the loss of lower incisors, which did not progress beyond the bud stage. A simultaneous deletion of Rspo2 and Rspo3 caused severe disruption of craniofacial development from early stages, which was accompanied with impaired development of all teeth. Together, these results indicate that Rspo3 is an important regulator of mammalian dental and craniofacial development.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Jeffry M. Cesario
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Sara Ha
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Kesava Asam
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Lindsay J. Deacon
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Ana H. Song
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Julie Kim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - John Cobb
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea;
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Juhee Jeong
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
- Correspondence:
| |
Collapse
|
13
|
Mo F, Luo Y, Fan D, Zeng H, Zhao Y, Luo M, Liu X, Ma X. Integrated Analysis of mRNA-seq and miRNA-seq to Identify c-MYC, YAP1 and miR-3960 as Major Players in the Anticancer Effects of Caffeic Acid Phenethyl Ester in Human Small Cell Lung Cancer Cell Line. Curr Gene Ther 2021; 20:15-24. [PMID: 32445454 DOI: 10.2174/1566523220666200523165159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Caffeic Acid Phenethyl Ester (CAPE), an active extract of propolis, has recently been reported to have broad applications in various cancers. However, the effects of CAPE on Small Cell Lung Cancer (SCLC) are largely unknown. Therefore, the aim of this study was to determine the anti-proliferative effect of CAPE and explore the underlying molecular mechanisms in SCLC cells using high-throughput sequencing and bioinformatics analysis. METHODS Small-cell lung cancer H446 cells were treated with CAPE, and cell proliferation and apoptosis were then assessed. Additionally, the regulation mediated by miR-3960 after CAPE treatment was explored and the altered signaling pathways were predicted in a bioinformatics analysis. RESULTS CAPE significantly inhibited cell proliferation and induced apoptosis. CAPE decreased the expression of Yes-Associated Protein 1 (YAP1) and cellular myelocytomatosis oncogene (c-MYC) protein. Moreover, the upregulation of miR-3960 by CAPE contributed to CAPE-induced apoptosis. The knockdown of miR-3960 decreased the CAPE-induced apoptosis. CONCLUSION We demonstrated the anti-cancer effect of CAPE in human SCLC cells and studied the mechanism by acquiring a comprehensive transcriptome profile of CAPE-treated cells.
Collapse
Affiliation(s)
- Fei Mo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ya Luo
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Dian Fan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Luo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobei Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front Cell Neurosci 2021; 15:703944. [PMID: 34276313 PMCID: PMC8281977 DOI: 10.3389/fncel.2021.703944] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
The meninges are the fibrous covering of the central nervous system (CNS) which contain vastly heterogeneous cell types within its three layers (dura, arachnoid, and pia). The dural compartment of the meninges, closest to the skull, is predominantly composed of fibroblasts, but also includes fenestrated blood vasculature, an elaborate lymphatic system, as well as immune cells which are distinct from the CNS. Segregating the outer and inner meningeal compartments is the epithelial-like arachnoid barrier cells, connected by tight and adherens junctions, which regulate the movement of pathogens, molecules, and cells into and out of the cerebral spinal fluid (CSF) and brain parenchyma. Most proximate to the brain is the collagen and basement membrane-rich pia matter that abuts the glial limitans and has recently be shown to have regional heterogeneity within the developing mouse brain. While the meninges were historically seen as a purely structural support for the CNS and protection from trauma, the emerging view of the meninges is as an essential interface between the CNS and the periphery, critical to brain development, required for brain homeostasis, and involved in a variety of diseases. In this review, we will summarize what is known regarding the development, specification, and maturation of the meninges during homeostatic conditions and discuss the rapidly emerging evidence that specific meningeal cell compartments play differential and important roles in the pathophysiology of a myriad of diseases including: multiple sclerosis, dementia, stroke, viral/bacterial meningitis, traumatic brain injury, and cancer. We will conclude with a list of major questions and mechanisms that remain unknown, the study of which represent new, future directions for the field of meninges biology.
Collapse
Affiliation(s)
- Julia Derk
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Hannah E. Jones
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Christina Como
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| | - Bradley Pawlikowski
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Julie A. Siegenthaler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| |
Collapse
|
15
|
Wnt-Dependent Activation of ERK Mediates Repression of Chondrocyte Fate during Calvarial Development. J Dev Biol 2021; 9:jdb9030023. [PMID: 34199092 PMCID: PMC8293402 DOI: 10.3390/jdb9030023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023] Open
Abstract
Wnt signaling regulates cell fate decisions in diverse contexts during development, and loss of Wnt signaling in the cranial mesenchyme results in a robust and binary cell fate switch from cranial bone to ectopic cartilage. The Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and Wnt signaling pathways are activated during calvarial osteoblast cell fate selection. Here, we test the hypothesis that ERK signaling is a mediator of Wnt-dependent cell fate decisions in the cranial mesenchyme. First, we show that loss of Erk1/2 in the cranial mesenchyme results in a diminished domain of osteoblast marker expression and increased expression of cartilage fate markers and ectopic cartilage formation in the frontal bone primordia. Second, we show that mesenchyme Wnt/β-catenin signaling and Wntless are required for ERK activation in calvarial osteoblasts. Third, we demonstrate that Wnt and ERK signaling pathways function together to repress SOX9 expression in mouse cranial mesenchyme. Our results demonstrate an interaction between the Wnt and ERK signaling pathways in regulating lineage selection in a subset of calvarial cells and provide new insights into Wnt-dependent cell fate decisions.
Collapse
|
16
|
Dlx5-augmentation in neural crest cells reveals early development and differentiation potential of mouse apical head mesenchyme. Sci Rep 2021; 11:2092. [PMID: 33483579 PMCID: PMC7822927 DOI: 10.1038/s41598-021-81434-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022] Open
Abstract
Neural crest cells (NCCs) give rise to various tissues including neurons, pigment cells, bone and cartilage in the head. Distal-less homeobox 5 (Dlx5) is involved in both jaw patterning and differentiation of NCC-derivatives. In this study, we investigated the differentiation potential of head mesenchyme by forcing Dlx5 to be expressed in mouse NCC (NCCDlx5). In NCCDlx5 mice, differentiation of dermis and pigment cells were enhanced with ectopic cartilage (ec) and heterotopic bone (hb) in different layers at the cranial vertex. The ec and hb were derived from the early migrating mesenchyme (EMM), the non-skeletogenic cell population located above skeletogenic supraorbital mesenchyme (SOM). The ec developed within Foxc1+-dura mater with increased PDGFRα signalling, and the hb formed with upregulation of BMP and WNT/β-catenin signallings in Dermo1+-dermal layer from E11.5. Since dermal cells express Runx2 and Msx2 in the control, osteogenic potential in dermal cells seemed to be inhibited by an anti-osteogenic function of Msx2 in normal context. We propose that, after the non-skeletogenic commitment, the EMM is divided into dermis and meninges by E11.5 in normal development. Two distinct responses of the EMM, chondrogenesis and osteogenesis, to Dlx5-augmentation in the NCCDlx5 strongly support this idea.
Collapse
|
17
|
Boetto J, Peyre M, Kalamarides M. Meningiomas from a developmental perspective: exploring the crossroads between meningeal embryology and tumorigenesis. Acta Neurochir (Wien) 2021; 163:57-66. [PMID: 33216210 DOI: 10.1007/s00701-020-04650-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Meningiomas are tumors arising from the meninges and represent the most frequent central nervous system tumors in adults. Recent large-scale genetic studies and preclinical meningioma mouse modelling led to a better comprehension of meningioma development and suggested evidences of close relationships between meningeal embryology and tumorigenesis. In this non-systematic review, we summarize the current knowledge on meningeal embryology and developmental biology, and illustrate how meningioma tumorigenesis is deeply related to meningeal embryology, concerning the potential cell of origin, the role of reactivation of embryonic stem cells, the influence of the embryonic tissue of origin, and the parallelism between topography-dependant molecular pathways involved in normal meninges and in meningioma development. Our study emphasizes why future studies on meningeal embryology are mandatory to affine our comprehension of mechanisms underlying meningioma initiation and development.
Collapse
Affiliation(s)
- Julien Boetto
- Neurosurgery Department, Gui de Chauliac Hospital, Montpellier University Medical Center, 91 avenue Augustin Fliche, 34090, Montpellier, France.
| | - Matthieu Peyre
- APHP, Groupe Hospitalo-Universitaire Pitié-Salpétrière, Neurosurgery Department, Sorbonne Université, Paris, France
| | - Michel Kalamarides
- APHP, Groupe Hospitalo-Universitaire Pitié-Salpétrière, Neurosurgery Department, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
DeSisto J, O'Rourke R, Jones HE, Pawlikowski B, Malek AD, Bonney S, Guimiot F, Jones KL, Siegenthaler JA. Single-Cell Transcriptomic Analyses of the Developing Meninges Reveal Meningeal Fibroblast Diversity and Function. Dev Cell 2021; 54:43-59.e4. [PMID: 32634398 DOI: 10.1016/j.devcel.2020.06.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 03/18/2020] [Accepted: 06/01/2020] [Indexed: 01/18/2023]
Abstract
The meninges are a multilayered structure composed of fibroblasts, blood and lymphatic vessels, and immune cells. Meningeal fibroblasts secrete a variety of factors that control CNS development, yet strikingly little is known about their heterogeneity or development. Using single-cell sequencing, we report distinct transcriptional signatures for fibroblasts in the embryonic dura, arachnoid, and pia. We define new markers for meningeal layers and show conservation in human meninges. We find that embryonic meningeal fibroblasts are transcriptionally distinct between brain regions and identify a regionally localized pial subpopulation marked by the expression of μ-crystallin. Developmental analysis reveals a progressive, ventral-to-dorsal maturation of telencephalic meninges. Our studies have generated an unparalleled view of meningeal fibroblasts, providing molecular profiles of embryonic meningeal fibroblasts by layer and yielding insights into the mechanisms of meninges development and function.
Collapse
Affiliation(s)
- John DeSisto
- Department of Pediatrics Section of Hematology, Oncology, Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rebecca O'Rourke
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hannah E Jones
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bradley Pawlikowski
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alexandra D Malek
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie Bonney
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fabien Guimiot
- INSERM UMR 1141, Hôpital Robert Debré, 75019 Paris, France
| | - Kenneth L Jones
- Department of Pediatrics Section of Hematology, Oncology, Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie A Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Barqué A, Jan K, De La Fuente E, Nicholas CL, Hynes RO, Naba A. Knockout of the gene encoding the extracellular matrix protein SNED1 results in early neonatal lethality and craniofacial malformations. Dev Dyn 2020; 250:274-294. [PMID: 33012048 DOI: 10.1002/dvdy.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a fundamental component of multicellular organisms that orchestrates developmental processes and controls cell and tissue organization. We previously identified the novel ECM protein SNED1 as a promoter of breast cancer metastasis and showed that its level of expression negatively correlated with breast cancer patient survival. Here, we sought to identify the roles of SNED1 during murine development. RESULTS We generated two novel Sned1 knockout mouse strains and showed that Sned1 is essential since homozygous ablation of the gene led to early neonatal lethality. Phenotypic analysis of the surviving knockout mice revealed a role for SNED1 in the development of craniofacial and skeletal structures since Sned1 knockout resulted in growth defects, nasal cavity occlusion, and craniofacial malformations. Sned1 is widely expressed in embryos, notably by cell populations undergoing epithelial-to-mesenchymal transition, such as the neural crest cells. We further show that mice with a neural-crest-cell-specific deletion of Sned1 survive, but display facial anomalies partly phenocopying the global knockout mice. CONCLUSIONS Our results demonstrate requisite roles for SNED1 during development and neonatal survival. Importantly, the deletion of 2q37.3 in humans, a region that includes the SNED1 locus, has been associated with facial dysmorphism and short stature.
Collapse
Affiliation(s)
- Anna Barqué
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyleen Jan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Emanuel De La Fuente
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christina L Nicholas
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Anthropology, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Suh DC. Where Did the Dura Mater Come from? Neurointervention 2020; 15:2-3. [PMID: 32093449 PMCID: PMC7105093 DOI: 10.5469/neuroint.2020.00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Dae Chul Suh
- Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|