1
|
Bodó K, Boros Á, da Costa CB, Tolnai G, Rumpler É, László Z, Nagyeri G, Németh P, Kille P, Molnár L, Engelmann P. A novel beta-catenin homologue from the earthworm Eisenia andrei: Identification and characterization during embryonic development, segment regeneration, and immune response. Int J Biol Macromol 2025; 306:141397. [PMID: 39988154 DOI: 10.1016/j.ijbiomac.2025.141397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Evolutionarily, Wnt/β-catenin signaling is well-conserved and supports several key cell-biological processes (e.g. adhesion and proliferation). Its crucial component, β-catenin, has been described in several organisms, however, its identification and characterization are notably lacking in annelid earthworms. Here, we report a novel β-catenin homologue from the earthworm Eisenia andrei, termed Ea-β-catenin. The full-length 3253 nt Ea-β-catenin mRNA includes an open reading frame of 2499 nt encoding a putative protein with 833 amino acid residues that comprise 11 classical armadillo-repeat regions. Phylogenetic analysis indicates that Ea-β-catenin shows strong homology with Lophotrochozoan β-catenins. Ubiquitous, but variable expressions of Ea-β-catenin were observed in distinct earthworm tissues. During embryogenesis, Ea-β-catenin mRNA gradually increased from the E1 to E4 developmental stages. Regeneration experiments revealed an inverse correlation between Ea-β-catenin mRNA levels and the rate of EdU+/PY489-β-catenin+ proliferating cells during the second week of the posterior blastema formation. In vitro exposures to poly(I:C) and zymosan significantly increased Ea-β-catenin mRNA levels, while small molecule Wnt-pathway modulators such as LiCl or iCRT14 increased or decreased Ea-β-catenin mRNA expression, and nuclear translocation of PY489-β-catenin, respectively. These novel results pave the way for follow-up studies aimed at characterizing additional members of the Wnt/β-catenin pathway that may be involved in embryonic and/or postembryonic development, as well as innate immunity in earthworms.
Collapse
Affiliation(s)
- Kornélia Bodó
- Department of Immunology and Biotechnology, Medical School, Clinical Center, University of Pécs, H-7624 Pécs, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, Clinical Center, University of Pécs, H-7624 Pécs, Hungary
| | - Chayeen Brotzki da Costa
- Department of Immunology and Biotechnology, Medical School, Clinical Center, University of Pécs, H-7624 Pécs, Hungary
| | - Gréta Tolnai
- Department of Immunology and Biotechnology, Medical School, Clinical Center, University of Pécs, H-7624 Pécs, Hungary
| | - Éva Rumpler
- Department of Comparative Anatomy and Developmental Biology, Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, Clinical Center, University of Pécs, H-7624 Pécs, Hungary
| | - György Nagyeri
- Department of Neurobiology, Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary; Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert Street 4, H-2100 Gödöllő, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Medical School, Clinical Center, University of Pécs, H-7624 Pécs, Hungary
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - László Molnár
- Ecophysiological and Ecotoxicological Research Group, HUN-REN, Balaton Limnological Research Institute, H-8237 Tihany, Hungary
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Medical School, Clinical Center, University of Pécs, H-7624 Pécs, Hungary.
| |
Collapse
|
2
|
Medina-Feliciano JG, Valentín-Tirado G, Luna-Martínez K, Beltran-Rivera A, Miranda-Negrón Y, Garcia-Arraras JE. Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium. eLife 2025; 13:RP100796. [PMID: 40111904 PMCID: PMC11925454 DOI: 10.7554/elife.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In holothurians, the regenerative process following evisceration involves the development of a 'rudiment' or 'anlage' at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.
Collapse
|
3
|
Medina-Feliciano JG, Valentín-Tirado G, Luna-Martínez K, Beltran-Rivera A, Miranda-Negrón Y, García-Arrarás JE. Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601561. [PMID: 39005414 PMCID: PMC11244903 DOI: 10.1101/2024.07.01.601561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In holothurians, the regenerative process following evisceration involves the development of a "rudiment" or "anlage" at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and HCR-FISH analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified thirteen distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.
Collapse
|
4
|
Reyes-Rivera J, Grillo-Alvarado V, Soriano-López AE, García-Arrarás JE. Evidence of interactions among apoptosis, cell proliferation, and dedifferentiation in the rudiment during whole-organ intestinal regeneration in the sea cucumber. Dev Biol 2024; 505:99-109. [PMID: 37925124 PMCID: PMC11163280 DOI: 10.1016/j.ydbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Sea cucumbers have an extraordinary regenerative capability. Under stressful conditions, Holothuria glaberrima can eviscerate their internal organs, including the digestive tract. From the mesentery, a rudiment grows and gives rise to a new intestine within a few weeks. In the last decades, the cellular events that occur during intestinal regeneration have been characterized, including apoptosis, cell proliferation, and muscle cell dedifferentiation. Nevertheless, their contribution to the formation and early growth of the rudiment is still unknown. Furthermore, these cellular events' relationship and potential interdependence remain a mystery. Using modulators to inhibit apoptosis and cell proliferation, we tested whether rudiment growth or other regenerative cellular events like muscle cell dedifferentiation were affected. We found that inhibition of apoptosis by zVAD and cell proliferation by aphidicolin and mitomycin did not affect the overall size of the rudiment seven days post-evisceration (7-dpe). Interestingly, animals treated with aphidicolin showed higher levels of muscle cell dedifferentiation in the distal mesentery, which could act as a compensatory mechanism. On the other hand, inhibition of apoptosis led to a decrease in cell proliferation in the rudiment and a delay in the spatiotemporal progression of muscle cell dedifferentiation throughout the rudiment-mesentery structure. Our findings suggest that neither apoptosis nor cell proliferation significantly contributes to early rudiment growth during intestinal regeneration in the sea cucumber. Nevertheless, apoptosis may play an essential role in modulating cell proliferation in the rudiment (a process known as apoptosis-induced proliferation) and the timing for the progression of muscle cell dedifferentiation. These findings provide new insights into the role and relationship of cellular events during intestinal regeneration in an emerging regeneration model.
Collapse
Affiliation(s)
- Josean Reyes-Rivera
- Department of Biology, University of Puerto Rico, Río Piedras, PR, USA; Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
5
|
Song X, Lin Y, Zhang Y, Wang Z, Li X, Liu J, Jiang W, Chen J, Wu L, Rong J, Xu K, Wang G. Long-Term Tetrabromobisphenol A Exposure Induces Gut Microbiota Imbalance and Metabolic Disorders via the Peroxisome Proliferator-Activated Receptor Signaling Pathway in the Regenerated Gut of Apostichopus japonicus. BIOLOGY 2023; 12:1365. [PMID: 37997964 PMCID: PMC10669644 DOI: 10.3390/biology12111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a commonly utilized brominated flame retardant, is found in many types of abiotic and biotic matrices. TBBPA can increase oxidative stress, disrupt the endocrine system, cause neurodevelopmental disorders and activate peroxisome proliferator-activated receptors to modulate lipid deposits in aquatic animals. However, the toxic mechanism of TBBPA on the gut microbiota and intestinal health remains unclear. Apostichopus japonicus is an ideal model for studying the relationship between environmental contaminants and intestinal health due to its unique capacity for evisceration and quickly regenerated intestine. In the present study, we investigated the toxic mechanism of TBBPA on the gut microbiota and intestinal health in the regenerated intestine of A. japonicus. The results show that TBBPA exposure decreased the health of the regenerated intestine and the enzymatic activities, alpha diversity indices, and the relative abundance of the gut microbiota. Transcriptome analysis shows that TBBPA exposure affected lipid metabolism via the PPAR signaling pathway during the process of intestinal regeneration in A. japonicus, suggesting that TBBPA exposure can affect the composition and function of the gut microbiota and intestinal health in the regenerated intestine of A. japonicus. These results provide a basis for further research on the potential toxicity of TBBPA to the intestinal health in animals.
Collapse
Affiliation(s)
- Xiaojun Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yinfeng Zhang
- College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaohan Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jixiang Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenwen Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianing Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Linxuan Wu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Rong
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Kefeng Xu
- Marine Science Research Institute of Shandong Province, National Oceanographic Center, Qingdao 266104, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Guodong Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
6
|
Auger NA, Medina-Feliciano JG, Quispe-Parra DJ, Colón-Marrero S, Ortiz-Zuazaga H, García-Arrarás JE. Characterization and Expression of Holothurian Wnt Signaling Genes during Adult Intestinal Organogenesis. Genes (Basel) 2023; 14:309. [PMID: 36833237 PMCID: PMC9957329 DOI: 10.3390/genes14020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Wnt signaling has been shown to play multiple roles in regenerative processes, one of the most widely studied of which is the regeneration of the intestinal luminal epithelia. Most studies in this area have focused on self-renewal of the luminal stem cells; however, Wnt signaling may also have more dynamic functions, such as facilitating intestinal organogenesis. To explore this possibility, we employed the sea cucumber Holothuria glaberrima that can regenerate a full intestine over the course of 21 days after evisceration. We collected RNA-seq data from various intestinal tissues and regeneration stages and used these data to define the Wnt genes present in H. glaberrima and the differential gene expression (DGE) patterns during the regenerative process. Twelve Wnt genes were found, and their presence was confirmed in the draft genome of H. glaberrima. The expressions of additional Wnt-associated genes, such as Frizzled and Disheveled, as well as genes from the Wnt/β-catenin and Wnt/Planar Cell Polarity (PCP) pathways, were also analyzed. DGE showed unique distributions of Wnt in early- and late-stage intestinal regenerates, consistent with the Wnt/β-catenin pathway being upregulated during early-stages and the Wnt/PCP pathway being upregulated during late-stages. Our results demonstrate the diversity of Wnt signaling during intestinal regeneration, highlighting possible roles in adult organogenesis.
Collapse
Affiliation(s)
- Noah A. Auger
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | | | - David J. Quispe-Parra
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Stephanie Colón-Marrero
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| |
Collapse
|
7
|
Cruz-González S, Quesada-Díaz E, Miranda-Negrón Y, García-Rosario R, Ortiz-Zuazaga H, García-Arrarás JE. The Stress Response of the Holothurian Central Nervous System: A Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232113393. [PMID: 36362181 PMCID: PMC9657328 DOI: 10.3390/ijms232113393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Injury to the central nervous system (CNS) results in permanent damage and lack of function in most vertebrate animals, due to their limited regenerative capacities. In contrast, echinoderms can fully regenerate their radial nerve cord (RNC) following transection, with little to no scarring. Investigators have associated the regenerative capacity of some organisms to the stress response and inflammation produced by the injury. Here, we explore the gene activation profile of the stressed holothurian CNS. To do this, we performed RNA sequencing on isolated RNC explants submitted to the stress of transection and enzyme dissection and compared them with explants kept in culture for 3 days following dissection. We describe stress-associated genes, including members of heat-shock families, ubiquitin-related pathways, transposons, and apoptosis that were differentially expressed. Surprisingly, the stress response does not induce apoptosis in this system. Other genes associated with stress in other animal models, such as hero proteins and those associated with the integrated stress response, were not found to be differentially expressed either. Our results provide a new viewpoint on the stress response in the nervous system of an organism with amazing regenerative capacities. This is the first step in deciphering the molecular processes that allow echinoderms to undergo fully functional CNS regeneration, and also provides a comparative view of the stress response in other organisms.
Collapse
Affiliation(s)
- Sebastián Cruz-González
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Eduardo Quesada-Díaz
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Yamil Miranda-Negrón
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Raúl García-Rosario
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, Río Piedras, San Juan, PR 00925, USA
- Correspondence:
| |
Collapse
|
8
|
Su F, Sun L, Li X, Cui W, Yang H. Characterization and Expression Analysis of Regeneration-Associated Protein (Aj-Orpin) during Intestinal Regeneration in the Sea Cucumber Apostichopus japonicus. Mar Drugs 2022; 20:568. [PMID: 36135757 PMCID: PMC9501386 DOI: 10.3390/md20090568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Apostichopus japonicus achieves intestinal regeneration in a short period after evisceration, and multiple genes are involved in this process. The transcriptome of A. japonicus was screened for regeneration-associated protein (Aj-Orpin), a gene that is specifically upregulated during intestinal regeneration. The expression and function of Aj-Orpin were identified and investigated in this study. The 5' and 3' RACE polymerase chain reaction (PCR) was used to clone the full-length cDNA of Aj-Orpin. The open reading frame codes for a 164 amino-acid protein with an EF-hand_7 domain and overlapping signal peptides and transmembrane regions. Moreover, Aj-Orpin mRNA and protein expression during intestinal regeneration was investigated using real-time quantitative PCR and Western blot. The expression pattern of Aj-Orpin in the regenerating intestine was investigated using immunohistochemistry. The results showed that Aj-Orpin is an exocrine protein with two EF-hand-like calcium-binding domains. Expression levels were higher in the regenerating intestine than in the normal intestine, but protein expression changes lagged behind mRNA expression changes. Aj-Orpin was found to play a role in the formation of blastema and lumen. It was primarily expressed in the serosal layer and submucosa, suggesting that it might be involved in proliferation. These observations lay the foundation for understanding the role of Orpin-like in echinoderm intestinal regeneration.
Collapse
Affiliation(s)
- Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
9
|
Su F, Yang H, Sun L. A Review of Histocytological Events and Molecular Mechanisms Involved in Intestine Regeneration in Holothurians. BIOLOGY 2022; 11:1095. [PMID: 35892951 PMCID: PMC9332576 DOI: 10.3390/biology11081095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
Abstract
Most species of the class Holothuroidea are able to regenerate most of their internal organs following a typical evisceration process, which is a unique mechanism that allows sea cucumbers to survive in adverse environments. In this review, we compare autotomy among different type of sea cucumber and summarize the histocytological events that occur during the five stages of intestinal regeneration. Multiple cytological activities, such as apoptosis and dedifferentiation, take place during wound healing and anlage formation. Many studies have focused on the molecular regulation mechanisms that underlie regeneration, and herein we describe the techniques that have been used as well as the development-related signaling pathways and key genes that are significantly expressed during intestinal regeneration. Future analyses of the underlying mechanisms responsible for intestinal regeneration should include mapping at the single-cell level. Studies of visceral regeneration in echinoderms provide a unique perspective for understanding whole-body regeneration or appendage regeneration.
Collapse
Affiliation(s)
- Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.S.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.S.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.S.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| |
Collapse
|
10
|
Intestine Explants in Organ Culture: A Tool to Broaden the Regenerative Studies in Echinoderms. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022; 10. [DOI: 10.3390/jmse10020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cellular events underlying intestine regrowth in the sea cucumber Holothuria glaberrima have been described by our group. Currently, the molecular and signaling mechanisms involved in this process are being explored. One of the limitations to our investigations has been the absence of suitable cell culture methodologies, required to advance the regeneration studies. An in vitro system, where regenerating intestine explants can be studied in organ culture, was established previously by our group. However, a detailed description of the histological properties of the cultured gut explants was lacking. Here, we used immunocytochemical techniques to study the potential effects of the culture conditions on the histological characteristics of explants, comparing them to the features observed during gut regeneration in our model in vivo. Additionally, the explant outgrowths were morphologically described by phase-contrast microscopy and SEM. Remarkably, intestine explants retain most of their original histoarchitecture for up to 10 days, with few changes as culture time increases. The most evident effects of the culture conditions on explants over culture time were the reduction in the proliferative rate, the loss of the polarity in the localization of proliferating cells, and the appearance of a subpopulation of putative spherulocytes. Finally, cells that migrated from the gut explants could form net-like monolayers, firmly attached to the culture substrate. Overall, regenerating explants in organ culture represent a powerful tool to perform short-term studies of processes associated with gut regeneration in H. glaberrima under controlled conditions.
Collapse
|
11
|
Medina-Feliciano JG, García-Arrarás JE. Regeneration in Echinoderms: Molecular Advancements. Front Cell Dev Biol 2021; 9:768641. [PMID: 34977019 PMCID: PMC8718600 DOI: 10.3389/fcell.2021.768641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Which genes and gene signaling pathways mediate regenerative processes? In recent years, multiple studies, using a variety of animal models, have aimed to answer this question. Some answers have been obtained from transcriptomic and genomic studies where possible gene and gene pathway candidates thought to be involved in tissue and organ regeneration have been identified. Several of these studies have been done in echinoderms, an animal group that forms part of the deuterostomes along with vertebrates. Echinoderms, with their outstanding regenerative abilities, can provide important insights into the molecular basis of regeneration. Here we review the available data to determine the genes and signaling pathways that have been proposed to be involved in regenerative processes. Our analyses provide a curated list of genes and gene signaling pathways and match them with the different cellular processes of the regenerative response. In this way, the molecular basis of echinoderm regenerative potential is revealed, and is available for comparisons with other animal taxa.
Collapse
|
12
|
Quesada-Díaz E, Figueroa-Delgado P, García-Rosario R, Sirfa A, García-Arrarás JE. Dedifferentiation of radial glia-like cells is observed in in vitro explants of holothurian radial nerve cord. J Neurosci Methods 2021; 364:109358. [PMID: 34537226 DOI: 10.1016/j.jneumeth.2021.109358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Among animal phyla, some of the least studied nervous systems are those of the phylum Echinodermata. Part of the problem lies in that most of their nervous components are embedded in the body wall that has calcareous skeletal components. NEW METHOD We have developed a novel technique for the successful isolation of the radial nerve cords (RNCs) and an in vitro system where the isolated RNCs can be cultured and are amenable to experimental manipulation. Here we use this system to isolate the RNC of the sea cucumber Holothuria glaberrima as a way to extend our studies on its regeneration capabilities. RESULTS The RNCs can be isolated from the surrounding tissues by collagenase treatment. The explants obtained following enzymatic dissociation can be kept in culture for up to 2 weeks. Histological and immunohistochemical studies show that the explants maintain a stable number of cells with little proliferation or apoptosis throughout the culture incubation period. The main change observed in RNCs in vitro is a progressive dedifferentiation of radial glia-like cells. This dedifferentiation corresponds to the first step in the regeneration response to injury that has been described in vivo. COMPARISON WITH EXISTING METHODS There are no existing methods to isolate and culture echinoderm radial nerve cord. CONCLUSIONS The described protocol provides a unique tool to obtain easily accessible RNC from holothurians to perform cellular, biochemical, and genomic experiments in the echinoderm nervous system without interference of adjacent tissues. The technique provides a unique opportunity to study the dedifferentiation response associated with the regeneration of the nervous system in echinoderms.
Collapse
Affiliation(s)
| | | | - Raúl García-Rosario
- Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, USA
| | - Angel Sirfa
- Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, USA
| | | |
Collapse
|
13
|
Kornthong N, Phanaksri T, Saetan J, Duangprom S, Lekskul B, Vivattanasarn T, Songkoomkrong S, Jattujan P, Cummins SF, Sobhon P, Suwansa-ard S. Identification and localization of growth factor genes in the sea cucumber , Holothuria scabra. Heliyon 2021; 7:e08370. [PMID: 34825084 PMCID: PMC8605306 DOI: 10.1016/j.heliyon.2021.e08370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
The sea cucumber Holothuria scabra is both an economically important species in Asian countries and an emerging experimental model for research studies in regeneration and medicinal bioactives. Growth factors and their receptors are known to be key components that guide tissue repair and renewal, yet validation of their presence in H. scabra has not been established. We performed a targeted in silico search of H. scabra transcriptome data to elucidate conserved growth factor family and receptor genes. In total, 42 transcripts were identified, of which 9 were validated by gene cloning and sequencing. The H. scabra growth factor genes, such as bone morphogenetic protein 2A (BMP 2A), bone morphogenetic protein 5-like (BMP5-like), neurotrophin (NT) and fibroblast growth factor 18 (FGF18), were selected for further analyses, including phylogenetic comparison and spatial gene expression using RT-PCR and in situ hybridization. Expression of all genes investigated were widespread in multiple tissues. However, BMP 2A, BMP5-like and NT were found extensively in the radial nerve cord cells, while FGF18 was highly expressed in connective tissue layer of the body wall. Our identification and expression analysis of the H. scabra growth factor genes provided the molecular information of growth factors in this species which may ultimately complement the research in regenerative medicine.
Collapse
Affiliation(s)
- Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Teva Phanaksri
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Buranee Lekskul
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Tipok Vivattanasarn
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Prapaporn Jattujan
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12121, Thailand
| | - Scott F. Cummins
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Saowaros Suwansa-ard
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, 4558, Australia
| |
Collapse
|
14
|
Alicea-Delgado M, García-Arrarás JE. Wnt/β-catenin signaling pathway regulates cell proliferation but not muscle dedifferentiation nor apoptosis during sea cucumber intestinal regeneration. Dev Biol 2021; 480:105-113. [PMID: 34481794 DOI: 10.1016/j.ydbio.2021.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022]
Abstract
Regeneration is a key developmental process by which organisms recover vital tissue and organ components following injury or disease. A growing interest is focused on the elucidation and characterization of the molecular mechanisms involved in these regenerative processes. We have now analyzed the possible role of the Wnt/β-catenin pathway on the regeneration of the intestine in the sea cucumber Holothuria glaberrima. For this we have studied the expression in vivo of Wnt-associated genes and have implemented the use of Dicer-substrate interference RNA (DsiRNA) to knockdown the expression of β-catenin transcript on gut rudiment explants. Neither cell dedifferentiation nor apoptosis were affected by the reduction of β-catenin transcripts in the gut rudiment explants. Yet, the number of proliferating cells decreased significantly following the interference, suggesting that the Wnt/β-catenin signaling pathway plays a significant role in cell proliferation, but not in cell dedifferentiation nor apoptosis during the regeneration of the intestine. The development of the in vitro RNAi protocol is a significant step in analyzing specific gene functions involved in echinoderm regeneration.
Collapse
Affiliation(s)
- Miosotis Alicea-Delgado
- Biology Department, University of Puerto Rico - Río Piedras Campus, San Juan, PR, 00925, USA
| | - José E García-Arrarás
- Biology Department, University of Puerto Rico - Río Piedras Campus, San Juan, PR, 00925, USA.
| |
Collapse
|
15
|
Dolmatov IY. Molecular Aspects of Regeneration Mechanisms in Holothurians. Genes (Basel) 2021; 12:250. [PMID: 33578707 PMCID: PMC7916379 DOI: 10.3390/genes12020250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Holothurians, or sea cucumbers, belong to the phylum Echinodermata. They show good regenerative abilities. The present review provides an analysis of available data on the molecular aspects of regeneration mechanisms in holothurians. The genes and signaling pathways activated during the asexual reproduction and the formation of the anterior and posterior parts of the body, as well as the molecular mechanisms that provide regeneration of the nervous and digestive systems, are considered here. Damage causes a strong stress response, the signs of which are recorded even at late regeneration stages. In holothurian tissues, the concentrations of reactive oxygen species and antioxidant enzymes increase. Furthermore, the cellular and humoral components of the immune system are activated. Extracellular matrix remodeling and Wnt signaling play a major role in the regeneration in holothurians. All available morphological and molecular data show that the dedifferentiation of specialized cells in the remnant of the organ and the epithelial morphogenesis constitute the basis of regeneration in holothurians. However, depending on the type of damage, the mechanisms of regeneration may differ significantly in the spatial organization of regeneration process, the involvement of different cell types, and the depth of reprogramming of their genome (dedifferentiation or transdifferentiation).
Collapse
Affiliation(s)
- Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientifc Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| |
Collapse
|
16
|
Parekh KR, Nawroth J, Pai A, Busch SM, Senger CN, Ryan AL. Stem cells and lung regeneration. Am J Physiol Cell Physiol 2020; 319:C675-C693. [PMID: 32783658 PMCID: PMC7654650 DOI: 10.1152/ajpcell.00036.2020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
The ability to replace defective cells in an airway with cells that can engraft, integrate, and restore a functional epithelium could potentially cure a number of lung diseases. Progress toward the development of strategies to regenerate the adult lung by either in vivo or ex vivo targeting of endogenous stem cells or pluripotent stem cell derivatives is limited by our fundamental lack of understanding of the mechanisms controlling human lung development, the precise identity and function of human lung stem and progenitor cell types, and the genetic and epigenetic control of human lung fate. In this review, we intend to discuss the known stem/progenitor cell populations, their relative differences between rodents and humans, their roles in chronic lung disease, and their therapeutic prospects. Additionally, we highlight the recent breakthroughs that have increased our understanding of these cell types. These advancements include novel lineage-traced animal models and single-cell RNA sequencing of human airway cells, which have provided critical information on the stem cell subtypes, transition states, identifying cell markers, and intricate pathways that commit a stem cell to differentiate or to maintain plasticity. As our capacity to model the human lung evolves, so will our understanding of lung regeneration and our ability to target endogenous stem cells as a therapeutic approach for lung disease.
Collapse
Affiliation(s)
- Kalpaj R Parekh
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Janna Nawroth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Albert Pai
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Shana M Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Christiana N Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
17
|
Shan TD, Tian ZB, Jiang YP. Downregulation of lncRNA MALAT1 suppresses abnormal proliferation of small intestinal epithelial stem cells through miR‑129‑5p expression in diabetic mice. Int J Mol Med 2020; 45:1250-1260. [PMID: 32124944 DOI: 10.3892/ijmm.2020.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/08/2020] [Indexed: 11/05/2022] Open
Abstract
The problems caused by diabetes mellitus (DM) and its related complications are gaining increasing attention. In our previous study, the abnormal proliferation of small intestinal epithelial cells (IECs) were observed in diabetic mice. However, little is known regarding the potential underlying mechanism. In the present study, the abnormal proliferation of IECs in DM and the marked upregulation of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was observed. Additionally, knockdown of MALAT1 significantly reduced abnormal IESC proliferation in DM mice. Bioinformatics analysis and luciferase reporter assays revealed that microRNA (miR)‑129‑5p was directly targeted by MALAT1. Moreover, the results of the bioinformatics prediction and luciferase assays demonstrated that MALAT1 directly interacted with SRY‑box 9 (SOX9). Furthermore, MALAT1 silencing was observed to attenuate the abnormal proliferation of IESCs through the SOX9‑mediated WNT/β‑catenin signaling pathway. Knockdown of MALAT1 downregulated SOX9 expression by binding to miR‑129‑5p, thereby inhibiting the abnormal proliferation of IESCs via the WNT/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Yue-Ping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| |
Collapse
|