1
|
Cho HW, Jin HS, Eom YB. Genetic variants of FGFR family associated with height, hypertension, and osteoporosis. Ann Hum Biol 2023:1-26. [PMID: 36876654 DOI: 10.1080/03014460.2023.2187457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Hypertension and osteoporosis are the most common types of health problems. A recent study suggested that the fibroblast growth factor receptor-like protein 1 (FGFRL1) gene in giraffes is the most promising candidate gene that may have direct effects on both the skeleton and the cardiovascular system. AIM Our study purposed to replicate the finding that the FGFR5 gene is related to giraffe-related characteristics (height, hypertension, and osteoporosis), and to assess the associations between genetic variants of the FGFR family and three phenotypes. SUBJECTS AND METHODS An association study was performed to confirm the connections between hypertension, osteoporosis, and height and the FGFR family proteins (FGFR1 to FGFR5). RESULTS We identified a total of 192 genetic variants in the FGFR family and found six SNVs in the FGFR2, FGFR3, and FGFR4 genes that were associated with two phenotypes simultaneously. Also, the FGFR family was found to be involved in calcium signalling, and three genetic variants of the FGFR3 gene showed significant signals in the pituitary and hypothalamus. CONCLUSION Taken together, these findings suggest that FGFR genes are associated with hypertension, height, and osteoporosis. In particular, the present study highlights the FGFR3 gene, which influences two fundamental regulators of bone remodelling.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| |
Collapse
|
2
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
3
|
Yu L, Toriseva M, Afshan S, Cangiano M, Fey V, Erickson A, Seikkula H, Alanen K, Taimen P, Ettala O, Nurmi M, Boström PJ, Kallajoki M, Tuomela J, Mirtti T, Beumer IJ, Nees M, Härkönen P. Increased Expression and Altered Cellular Localization of Fibroblast Growth Factor Receptor-Like 1 (FGFRL1) Are Associated with Prostate Cancer Progression. Cancers (Basel) 2022; 14:cancers14020278. [PMID: 35053442 PMCID: PMC8796033 DOI: 10.3390/cancers14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most frequently diagnosed malignancies in men. PCa is primarily regulated by androgens, but other mechanisms, such as fibroblast growth factor receptor (FGFR) signaling, are also involved. In some patients, PCa relapses after surgical removal of prostate, and androgen deprivation therapy (ADT) is used as the first-line treatment. Unfortunately, the patients often lose response to ADT and progress by other mechanisms to castration-resistant, currently non-curable PCa. In our study, we aimed to identify better diagnostic markers and therapeutic targets against PCa. We analyzed patient PCa tissue samples from radical prostatectomies and biopsies, and used physiologically relevant 3D organoids and mouse xenografts to study FGFR signaling in PCa. We found that FGFRL1, a protein belonging to the FGFR family, plays a role in PCa. Our results suggest that FGFRL1 has significant effects on PCa progression and has potential as a prognostic biomarker. Abstract Fibroblast growth factor receptors (FGFRs) 1–4 are involved in prostate cancer (PCa) regulation, but the role of FGFR-like 1 (FGFRL1) in PCa is unclear. FGFRL1 expression was studied by qRT-PCR and immunohistochemistry of patient tissue microarrays (TMAs) and correlated with clinical patient data. The effects of FGFRL1 knockdown (KD) in PC3M were studied in in vitro culture models and in mouse xenograft tumors. Our results showed that FGFRL1 was significantly upregulated in PCa. The level of membranous FGFRL1 was negatively associated with high Gleason scores (GSs) and Ki67, while increased cytoplasmic and nuclear FGFRL1 showed a positive correlation. Cox regression analysis indicated that nuclear FGFRL1 was an independent prognostic marker for biochemical recurrence after radical prostatectomy. Functional studies indicated that FGFRL1-KD in PC3M cells increases FGFR signaling, whereas FGFRL1 overexpression attenuates it, supporting decoy receptor actions of membrane-localized FGFRL1. In accordance with clinical data, FGFRL1-KD markedly suppressed PC3M xenograft growth. Transcriptomics of FGFRL1-KD cells and xenografts revealed major changes in genes regulating differentiation, ECM turnover, and tumor–stromal interactions associated with decreased growth in FGFRL1-KD xenografts. Our results suggest that FGFRL1 upregulation and altered cellular compartmentalization contribute to PCa progression. The nuclear FGFRL1 could serve as a prognostic marker for PCa patients.
Collapse
Affiliation(s)
- Lan Yu
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Mervi Toriseva
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Mario Cangiano
- GenomeScan, 2333 BZ Leiden, The Netherlands; (M.C.); (I.J.B.)
| | - Vidal Fey
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford 0X3 9DU, UK;
| | - Heikki Seikkula
- Department of Urology, University of Turku and Turku University Hospital, 20520 Turku, Finland; (H.S.); (O.E.); (M.N.); (P.J.B.)
| | - Kalle Alanen
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; (K.A.); (M.K.)
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; (K.A.); (M.K.)
| | - Otto Ettala
- Department of Urology, University of Turku and Turku University Hospital, 20520 Turku, Finland; (H.S.); (O.E.); (M.N.); (P.J.B.)
| | - Martti Nurmi
- Department of Urology, University of Turku and Turku University Hospital, 20520 Turku, Finland; (H.S.); (O.E.); (M.N.); (P.J.B.)
| | - Peter J. Boström
- Department of Urology, University of Turku and Turku University Hospital, 20520 Turku, Finland; (H.S.); (O.E.); (M.N.); (P.J.B.)
| | - Markku Kallajoki
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; (K.A.); (M.K.)
| | - Johanna Tuomela
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
| | - Tuomas Mirtti
- HUS Diagnostic Center and Research Program in Systems Oncology (ONCOSYS), Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland;
| | - Inès J. Beumer
- GenomeScan, 2333 BZ Leiden, The Netherlands; (M.C.); (I.J.B.)
| | - Matthias Nees
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
- Department of Biochemistry and Molecular Biology, Medical University in Lublin, 20-093 Lublin, Poland
| | - Pirkko Härkönen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (L.Y.); (M.T.); (S.A.); (V.F.); (P.T.); (M.N.)
- Correspondence: ; Tel.: +358-40-7343520
| |
Collapse
|
4
|
Chioni AM, Grose RP. Biological Significance and Targeting of the FGFR Axis in Cancer. Cancers (Basel) 2021; 13:5681. [PMID: 34830836 PMCID: PMC8616401 DOI: 10.3390/cancers13225681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes shown by many FGF/R knockout mice, highlight the diversity, complexity and functional importance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeostasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involvement of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal antibodies and some have already been approved for the treatment of cancer patients. The heterogeneous tumour microenvironment and complexity of FGFR signalling may be some of the factors responsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. In the present review we will focus on the structure and function of FGF(R)s, their common irregularities in cancer and the therapeutic value of targeting their function in cancer.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| |
Collapse
|
5
|
Aprajita, Sharma R. Comprehending fibroblast growth factor receptor like 1: Oncogene or tumor suppressor? Cancer Treat Res Commun 2021; 29:100472. [PMID: 34689016 DOI: 10.1016/j.ctarc.2021.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Fibroblast Growth Factor Receptor Like 1 (FGFRL1) signaling has crucial role in a multitude of processes during genetic diseases, embryonic development and various types of cancer. Due to its partial structural similarity with its classical Fibroblast Growth Factor Receptor [FGFR] counterparts and lack of tyrosine kinase domain, FGFRL1 was thought to work as a decoy receptor in FGF/FGFR signaling. Later on, growing number evidences showed that expression of FGFRL1 affects major pathways like ERK1/2, Akt and others, which are dysfunctional in a wide range of human cancers. In this review, we provide an overview of the current understanding of FGFRL1 and its roles in cell differentiation, adhesion and proliferation pathways . Overexpression of FGFRL1 might lead to tumor progression and invasion. In this context, inhibitors for FGFRL1 might have therapeutic benefits in human cancer prognosis.
Collapse
Affiliation(s)
- Aprajita
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India.
| |
Collapse
|
6
|
Dissecting the Interaction of FGF8 with Receptor FGFRL1. Biomolecules 2020; 10:biom10101399. [PMID: 33019532 PMCID: PMC7600612 DOI: 10.3390/biom10101399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, the novel protein fibroblast growth factor receptor-like 1 (FGFRL1) is involved in the development of metanephric kidneys. It appears that this receptor controls a crucial transition of the induced metanephric mesenchyme to epithelial renal vesicles, which further develop into functional nephrons. FGFRL1 knockout mice lack metanephric kidneys and do not express any fibroblast growth factor (FGF) 8 in the metanephric mesenchyme, suggesting that FGFRL1 and FGF8 play a decisive role during kidney formation. FGFRL1 consists of three extracellular immunoglobulin (Ig) domains (Ig1-Ig2-Ig3), a transmembrane domain and a short intracellular domain. We have prepared the extracellular domain (Ig123), the three individual Ig domains (Ig1, Ig2, Ig3) as well as all combinations containing two Ig domains (Ig12, Ig23, Ig13) in recombinant form in human cells. All polypeptides that contain the Ig2 domain (Ig123, Ig12, Ig23, Ig2) were found to interact with FGF8 with very high affinity, whereas all constructs that lack the Ig2 domain (Ig1, Ig3, Ig13) poorly interacted with FGF8 as shown by ELISA and surface plasmon resonance. It is therefore likely that FGFRL1 represents a physiological receptor for FGF8 in the kidney and that the ligand primarily binds to the Ig2 domain of the receptor. With Biacore experiments, we also measured the affinity of FGF8 for the different constructs. All constructs containing the Ig2 domain showed a rapid association and a slow dissociation phase, from which a KD of 2–3 × 10−9 M was calculated. Our data support the hypothesis that binding of FGF8 to FGFRL1 could play an important role in driving the formation of nephrons in the developing kidney.
Collapse
|