1
|
Chu T, Jin Y, Wu G, Liu J, Sun S, Song Y, Zhang G. Insights into the single-cell transcriptome characteristics of porcine endometrium with embryo loss. FASEB J 2025; 39:e70395. [PMID: 40105155 PMCID: PMC11921279 DOI: 10.1096/fj.202402212rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025]
Abstract
Reproductive disorders are a concern in the pig industry. Successful gestation processes are closely related to a suitable endometrial microenvironment, and the physiological mechanisms leading to failed pregnancy during the peri-implantation period remain unclear. We constructed single-cell transcriptome profiles of peri-implantation embryo loss and successful gestation endometrial tissues and identified 22 cell subpopulations, with epithelial and stromal cells being the predominant endometrial cell types. The two tissues showed marked differences in cell type composition, especially among epithelial cell subpopulations. We also observed functional differences between epithelial and stromal cells in tissues from embryonic loss and successful gestation, as well as the expression levels and differentiation trajectories of genes associated with embryo attachment and endometrial receptivity in epithelial and stromal cells. The results of cell communication interactions analysis showed that ciliated cells were more active in endometrial tissue with embryo loss, and there were differences in the types of endometrial cells with major roles in embryo loss and embryo implantation successful tissues for bone morphogenic protein, insulin-like growth factor, and transforming growth factor-β signaling networks associated with embryo implantation. In addition, we compared the functional differences in immune cells between the two tissue types and the expression levels of genes related to the inflammatory microenvironment. Overall, the present study revealed the molecular features of endometrial cell transcription in embryo-lost endometrial tissues, providing deeper insights into the endometrial microenvironment of reproductive disorders, which may inform the etiological, diagnostic, and therapeutic studies of reproductive disorders.
Collapse
Affiliation(s)
- Tingting Chu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiP.R. China
| | - Yadan Jin
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdaoShandongP.R. China
| | - Guofang Wu
- College of Animal Husbandry and Veterinary ScienceQinghai UniversityXiningQinghaiP.R. China
| | - Jinyi Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiP.R. China
| | - Shiduo Sun
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiP.R. China
| | - Yuxuan Song
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiP.R. China
| | - Guoliang Zhang
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdaoShandongP.R. China
| |
Collapse
|
2
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential before implantation. Development 2024; 151:dev202377. [PMID: 38752427 PMCID: PMC11190579 DOI: 10.1242/dev.202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Weatherbee BAT, Weberling A, Gantner CW, Iwamoto-Stohl LK, Barnikel Z, Barrie A, Campbell A, Cunningham P, Drezet C, Efstathiou P, Fishel S, Vindel SG, Lockwood M, Oakley R, Pretty C, Chowdhury N, Richardson L, Mania A, Weavers L, Christie L, Elder K, Snell P, Zernicka-Goetz M. Distinct pathways drive anterior hypoblast specification in the implanting human embryo. Nat Cell Biol 2024; 26:353-365. [PMID: 38443567 PMCID: PMC10940163 DOI: 10.1038/s41556-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- Center for Stem Cell and Organoid Medicine, Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- All Souls College, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Lisa K Iwamoto-Stohl
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lucy Richardson
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, UK
| | | | | | | | - Kay Elder
- Bourn Hall Fertility Clinic, Bourn, UK
| | | | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
- Stem Cells Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
4
|
Pham PD, Lu H, Han H, Zhou JJ, Madan A, Wang W, Murre C, Cho KWY. Transcriptional network governing extraembryonic endoderm cell fate choice. Dev Biol 2023; 502:20-37. [PMID: 37423592 PMCID: PMC10550205 DOI: 10.1016/j.ydbio.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence. Transcriptomic analysis of cXEN cells, an in vitro model for PE cells, after the acute depletion of GATA6 or SOX17 demonstrated that these factors induce Mycn, imparting the self-renewal properties of PE cells. Concurrently, they suppress the VE gene program, including key genes like Hnf4a and Ttr, among others. We proceeded with RNA-seq analysis on cXEN cells with FOXA2 knockout, in conjunction with GATA6 or SOX17 depletion. We found FOXA2 acts as a potent suppressor of Mycn while simultaneously activating the VE gene program. The antagonistic gene regulatory activities of GATA6/SOX17 and FOXA2 in promoting alternative cell fates, and their physical co-bindings at the enhancers provide molecular insights to the plasticity of the PrE lineage. Finally, we show that the external cue, BMP signaling, promotes the VE cell fate by activation of VE TFs and repression of PE TFs including GATA6 and SOX17. These data reveal a putative core gene regulatory module that underpins PE and VE cell fate choice.
Collapse
Affiliation(s)
- Paula Duyen Pham
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Hanbin Lu
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Aarushi Madan
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Cornelis Murre
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Qin L, Zhang D, Liu S, Liu Q, Liu M, Huang B. Dissecting the molecular trajectory of fibroblast reprogramming to chemically induced mammary epithelial cells. Front Cell Dev Biol 2023; 11:1194070. [PMID: 37601103 PMCID: PMC10433763 DOI: 10.3389/fcell.2023.1194070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction: The plasticity of cell identity allows cellular reprogramming that manipulates the lineage of cells to generate the target cell types, bringing new avenues for disease modeling and autologous tailored cell therapy. Previously, we had already successfully established a technical platform for inducing fibroblast reprogramming to chemically induced mammary epithelial cells (CiMECs) by small-molecule compounds. However, exactly how the molecular mechanism driving the lineage conversion remains unknown. Methods: We employ the RNA-sequencing technology to investigate the transcriptome event during the reprogramming process and reveal the molecular mechanisms for the fate acquisition of mammary lineage. Results: The multi-step reprogramming process first overcomes multiple barriers, including the inhibition of mesenchymal characteristics, pro-inflammatory and cell death signals, and then enters an intermediate plastic state. Subsequently, the hormone and mammary development genes were rapidly activated, leading to the acquisition of the mammary program together with upregulation of the milk protein synthesis signal. Moreover, the gene network analyses reveal the potential relationship between the TGF-β signaling pathway to mammary lineage activation, and the changes in the expression of these genes may play important roles in coordinating the reprogramming process. Conclusion: Together, these findings provide critical insights into the molecular route and mechanism triggered by small-molecule compounds that induce fibroblast reprogramming into the fate of mammary epithelial cells, and they also laid a foundation for the subsequent research on the development and differentiation of mammary epithelial cells and lactation.
Collapse
Affiliation(s)
- Liangshan Qin
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Dandan Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Siyi Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Quanhui Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Mingxing Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| | - Ben Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
6
|
Wu B, Yang Z, Liu Y, Li J, Chen C, Li X, Bao S. A chemically defined system supports two distinct types of stem cell from a single blastocyst and their self-assembly to generate blastoid. Cell Prolif 2023:e13396. [PMID: 36593753 DOI: 10.1111/cpr.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
The pluripotent stem cells exist in a narrow window during early development and its derivation depends on intrinsic and extrinsic growth signalling in vitro. It has remained challenging to derive two or three distinct cell lines that are representative of blastocyst-stage lineages from one preimplantation embryo simultaneously in a chemical defined condition. Therefore, it is desirable to establish a system by manipulating extrinsic signalling in culture to derive multiple types of stem cells from a single blastocyst. This study used a defined medium containing Activin A, WNT activator and LIF (ACL medium), enabling establishment of ACL-ESCs and ACL-XEN cells from one blastocyst. ACL-blastoids were generated by suspending ACL-ESCs and ACL-XEN cells with ACL-blastoid medium in three-dimensional culture system. Lineage markers expression of ACL-blastoids were performed by immunofluorescence. Our results indicate that ACL-ESCs and ACL-XEN cells derived from one blastocyst represent ICM and PrE lineages. Importantly, we obtained ACL-blastoid from ACL-ESCs and ACL-XEN cells self-aggregation, partially recapitulating early development and initiation of early implantation events. This study would not only provide ACL culture system for derivation and maintenance of two types of cell lines corresponding to ICM as well as PrE, but also reconstruct blastoids with them to deepen our understanding of early embryogenesis and widen insights into translational application of stem cells.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhiqing Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yijie Liu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jianwen Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chen Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
7
|
Liu Z, Xu R, Zhang H, Wang D, Wang J, Wu K. A unique 15-bp InDel in the first intron of BMPR1B regulates its expression in Taihu pigs. BMC Genomics 2022; 23:799. [PMID: 36463109 PMCID: PMC9719134 DOI: 10.1186/s12864-022-08988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND BMPR1B (Bone morphogenetic protein receptor type-1B) is a receptor in the bone morphogenetic protein (BMP) family and has been identified as a candidate gene for reproductive traits in pigs. Our previous study in Taihu pigs found a specific estrogen response element (ERE) in the first intron of the BMPR1B gene that is associated with the number born alive trait. However, little is known about the mechanism by which the ERE regulates the expression of BMPR1B in the endometrium. RESULTS Here, a 15-bp InDel (insertion/deletion) (AGCCAGAAAGGAGGA) was identified as a unique variation in Taihu pigs, and was shown to be responsible for the binding of the type I receptor of estrogen (ESR1) to the ERE using dual-luciferase assays. Four BMPR1B transcripts (T1, T2, T3, and T4) were identified by 5' RACE in endometrial tissue. Expression of T3 and T4 in the endometrium of Meishan pigs was significantly higher than in Duroc pigs during pregnancy. Luciferase assays showed that three distinct BMPR1B promoters may drive expression of T1, T3, and T4. Interestingly, ERE-mediated enhancement of T4 promoter activity significantly increased expression of Transcript T4 in the endometrium of Taihu pigs (P < 0.05). In contrast, the ERE inhibited activity of the T3 promoter and decreased expression of the T3 transcript in the Duroc background (P < 0.05). In summary, we identified a 15-bp InDel in the Taihu ERE that can be used as a molecular marker for the number born alive trait, characterized the 5' untranslated regions (UTRs) of BMPR1B transcripts in the endometrium, and determined how the transcripts are processed by alternative splicing events. CONCLUSIONS Our results provide a foundation for understanding the transcriptional regulation of BMPR1B and its contributions to the unique breeding prolificacy characteristics of Taihu pigs.
Collapse
Affiliation(s)
- Zhexi Liu
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ran Xu
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Han Zhang
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Wang
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ji Wang
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Keliang Wu
- grid.22935.3f0000 0004 0530 8290Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ,grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Roberts RM, Ezashi T, Temple J, Owen JR, Soncin F, Parast MM. The role of BMP4 signaling in trophoblast emergence from pluripotency. Cell Mol Life Sci 2022; 79:447. [PMID: 35877048 PMCID: PMC10243463 DOI: 10.1007/s00018-022-04478-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO, 80124, USA
| | - Jasmine Temple
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joseph R Owen
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Au J, Requena DF, Rishik H, Kallol S, Tekkatte C, Farah OA, Kittle R, Meads M, Wakeland A, Soncin F. Role of autocrine bone morphogenetic protein Signaling in trophoblast stem cells. Biol Reprod 2021; 106:540-550. [PMID: 34791028 PMCID: PMC8934699 DOI: 10.1093/biolre/ioab213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The Bone Morphogenetic Protein (BMP) pathway is involved in numerous developmental processes, including cell growth, apoptosis, and differentiation. In mouse embryogenesis, BMP signaling is a well-known morphogen for both mesoderm induction and germ cell development. Recent evidence points to a potential role in development of the extra-embryonic compartment, including trophectoderm-derived tissues. In this study, we investigated the effect of BMP signaling in both mouse and human trophoblast stem cells (TSC) in vitro, evaluating the expression and activation of the BMP signaling response machinery, and the effect of BMP signaling manipulation during TSC maintenance and differentiation. Both mTSC and hTSC expressed various BMP ligands and the receptors BMPR1A and BMPR2, necessary for BMP response, and displayed maximal active BMP signaling when undifferentiated. We also observed a conserved modulatory role of BMP signaling during trophoblast differentiation, whereby maintenance of active BMP signaling blunted differentiation of TSC in both species. Conversely, the effect of BMP signaling on the undifferentiated state of TSC appeared to be species-specific, with SMAD-independent signaling important in maintenance of mTSC, and a more subtle role for both SMAD-dependent and -independent BMP signaling in hTSC. Altogether, these data establish an autocrine role for the BMP pathway in the trophoblast compartment. As specification and correct differentiation of the extra-embryonic compartment are fundamental for implantation and early placental development, insights on the role of the BMP signaling in early development might prove useful in the setting of in vitro fertilization as well as targeting trophoblast-associated placental dysfunction.
Collapse
Affiliation(s)
- Jennie Au
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniela F Requena
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hannah Rishik
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sampada Kallol
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chandana Tekkatte
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Omar A Farah
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ryan Kittle
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Morgan Meads
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anna Wakeland
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Liu L, Warmflash A. Self-organized signaling in stem cell models of embryos. Stem Cell Reports 2021; 16:1065-1077. [PMID: 33979594 PMCID: PMC8185436 DOI: 10.1016/j.stemcr.2021.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mammalian embryonic development is a complex process driven by self-organization. Understanding how a fertilized egg develops into an embryo composed of more than 200 cell types in precise spatial patterns remains one of the fundamental challenges in biology. Pluripotent stem cells have been used as in vitro models for investigating mammalian development, and represent promising building blocks for regenerative therapies. Recently, sophisticated stem cell-based models that recapitulate early embryonic fate patterning and morphogenesis have been developed. In this article, we review recent advances in stem cell models of embryos in particular focusing on signaling activities underpinning cell fate decisions in space and time.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|