1
|
Stanova A, Kontsevaya G, Romashchenko A, Zuev D, Silvanovich E, Moshkin Y, Gerlinskaya L, Moshkin M. The Temperature of the First Cleavage Impacts Preimplantation Development and Newborn Viability. Int J Mol Sci 2025; 26:3745. [PMID: 40332374 PMCID: PMC12028014 DOI: 10.3390/ijms26083745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
At the early developmental stage, embryos are susceptible to environmental factors, which modulate development trajectories. In our study, we examined how different incubation temperatures (35 °C, 37 °C, and 39 °C) in vitro during the first embryonic cleavage affect the morphology, cell division rate, and DNA methylation in two-, four-, and eight-cell embryos and the viability of these two-cell embryos transferred to recipient females. Embryos kept at 35 °C for the first 24 h after in vitro fertilization in two- and four-cell embryos at 37 °C showed enhanced variability in the size of blastomeres and DNA 5mC level among blastomeres, as compared to the groups kept at 37 °C and 39 °C. This was associated with the highest rate of embryo death in four- and eight-cell embryos and the highest viability of newborns. In contrast, incubation at 39 °C did not significantly impact developmental dynamics and viability in vitro but led to a notably higher rate of gestation failure compared to other groups. The indicators of the 37 °C group fell within an intermediate range. Therefore, we conclude that a decrease in temperature during zygotic genome activation (ZGA) highlights the adaptive potential of embryos during their initial cleavages, while an increase in temperature does not show clear effects on their fate.
Collapse
Affiliation(s)
- Aliya Stanova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (A.S.); (G.K.); (A.R.); (D.Z.); (E.S.); (Y.M.)
| | - Galina Kontsevaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (A.S.); (G.K.); (A.R.); (D.Z.); (E.S.); (Y.M.)
| | - Alexander Romashchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (A.S.); (G.K.); (A.R.); (D.Z.); (E.S.); (Y.M.)
- LIFT Center LLC, 121205 Moscow, Russia
| | - Daniil Zuev
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (A.S.); (G.K.); (A.R.); (D.Z.); (E.S.); (Y.M.)
| | - Elizaveta Silvanovich
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (A.S.); (G.K.); (A.R.); (D.Z.); (E.S.); (Y.M.)
| | - Yuri Moshkin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (A.S.); (G.K.); (A.R.); (D.Z.); (E.S.); (Y.M.)
- Gene Learning Association, 1205 Geneva, Switzerland
| | - Ludmila Gerlinskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (A.S.); (G.K.); (A.R.); (D.Z.); (E.S.); (Y.M.)
| | - Mikhail Moshkin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, 630090 Novosibirsk, Russia; (A.S.); (G.K.); (A.R.); (D.Z.); (E.S.); (Y.M.)
- Department of Vertebrate Zoology and Ecology, Institute of Biology, Ecology, Soil Science, Agriculture and Forestry, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
2
|
Rombouts J, Tavella F, Vandervelde A, Phong C, Ferrell JE, Yang Q, Gelens L. Mechanistic origins of temperature scaling in the early embryonic cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.24.630245. [PMID: 39763717 PMCID: PMC11703202 DOI: 10.1101/2024.12.24.630245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Temperature profoundly impacts organismal physiology and ecological dynamics, particularly affecting ectothermic species and making them especially vulnerable to climate changes. Although complex physiological processes usually involve dozens of enzymes, empirically it is found that the rates of these processes often obey the Arrhenius equation, which was originally proposed for individual chemical reactions. Here we have examined the temperature scaling of the early embryonic cell cycle, with the goal of understanding why the Arrhenius equation approximately holds and why it breaks down at temperature extremes. Using experimental data from Xenopus laevis, Xenopus tropicalis, and Danio rerio, plus published data from Caenorhabditis elegans, Caenorhabditis briggsae, and Drosophila melanogaster, we find that the apparent activation energies (E a values) for the early embryonic cell cycle for diverse ectotherms are all similar, 75 ± 7 kJ/mol (mean ± std.dev., n = 6), which corresponds to aQ 10 value at 20°C of 2.8 ± 0.2 (mean ± std.dev., n = 6). Using computational models, we find that the approximate Arrhenius scaling and the deviations from it at high and low temperatures can be accounted for by biphasic temperature scaling in critical individual components of the cell cycle oscillator circuit, by imbalances in theE a values for different partially rate-determining enzymes, or by a combination of both. Experimental studies of cycling Xenopus extracts indicate that both of these mechanisms contribute to the general scaling of temperature, and in vitro studies of individual cell cycle regulators confirm that there is in fact a substantial imbalance in theirE a values. These findings provide mechanistic insights into the dynamic interplay between temperature and complex biochemical processes, and into why biological systems fail at extreme temperatures.
Collapse
Affiliation(s)
- Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
- Cell Biology and Biophysics Unit and Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Franco Tavella
- Department of Physics /Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandra Vandervelde
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
| | - Connie Phong
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Qiong Yang
- Department of Physics /Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat, 49, Leuven, Belgium
| |
Collapse
|
3
|
Gibbs JR, Mei C, Wunderlich Z. Beyond the heat shock pathway: Heat stress responses in Drosophila development. Dev Biol 2025; 518:53-60. [PMID: 39557149 PMCID: PMC11703687 DOI: 10.1016/j.ydbio.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Heat stress has broad effects on an organism and is an inevitable part of life. Embryos face a particular challenge when faced with heat stress - the intricate molecular processes that pattern the embryo can all be affected by heat, and the embryo lacks some of the strategies that adults can use to manage or avoid heat stress. We use Drosophila melanogaster as a model, as insects are capable of developing normally under a wide range of temperatures and are exposed to daily temperature swings as they develop. Research has focused on the heat shock pathway and the transcription of heat shock proteins as the main response to heat and heat damage. This review explores embryonic heat responses beyond the heat shock pathway. We examine the effects of heat from a biochemical standpoint, as well as highlighting other mechanisms of heat stress regulation, such as miRNA activity or other signaling pathways. We discuss how different elements of the heat stress response must be coordinated across the embryo to enable development under a wide range of temperatures. Studying heat stress in Drosophila melanogaster can be a powerful lens into how developmental systems ensure robustness to environmental factors.
Collapse
Affiliation(s)
- Julia R Gibbs
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Christian Mei
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Zeba Wunderlich
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Sonmez UM, Frey N, LeDuc PR, Minden JS. Fly Me to the Micron: Microtechnologies for Drosophila Research. Annu Rev Biomed Eng 2024; 26:441-473. [PMID: 38959386 DOI: 10.1146/annurev-bioeng-050423-054647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Multicellular model organisms, such as Drosophila melanogaster (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise. We discuss recent advances in microtechnological systems developed for small model organisms using D. melanogaster as an example. We critically analyze the state of the field by comparing the systems produced for different applications. Additionally, we suggest design guidelines, operational tips, and new research directions based on the technical and knowledge gaps in the literature. This review aims to foster interdisciplinary work by helping engineers to familiarize themselves with model organisms while presenting the most recent advances in microengineering strategies to biologists.
Collapse
Affiliation(s)
- Utku M Sonmez
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Current affiliation: Department of Neuroscience, Scripps Research, San Diego, California, USA
- Current affiliation: Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| | - Nolan Frey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Philip R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Toulany N, Morales-Navarrete H, Čapek D, Grathwohl J, Ünalan M, Müller P. Uncovering developmental time and tempo using deep learning. Nat Methods 2023; 20:2000-2010. [PMID: 37996754 PMCID: PMC10703695 DOI: 10.1038/s41592-023-02083-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/15/2023] [Indexed: 11/25/2023]
Abstract
During animal development, embryos undergo complex morphological changes over time. Differences in developmental tempo between species are emerging as principal drivers of evolutionary novelty, but accurate description of these processes is very challenging. To address this challenge, we present here an automated and unbiased deep learning approach to analyze the similarity between embryos of different timepoints. Calculation of similarities across stages resulted in complex phenotypic fingerprints, which carry characteristic information about developmental time and tempo. Using this approach, we were able to accurately stage embryos, quantitatively determine temperature-dependent developmental tempo, detect naturally occurring and induced changes in the developmental progression of individual embryos, and derive staging atlases for several species de novo in an unsupervised manner. Our approach allows us to quantify developmental time and tempo objectively and provides a standardized way to analyze early embryogenesis.
Collapse
Affiliation(s)
- Nikan Toulany
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- University Hospital and Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Hernán Morales-Navarrete
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany
| | - Daniel Čapek
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
| | - Jannis Grathwohl
- Systems Biology of Development, University of Konstanz, Konstanz, Germany
| | - Murat Ünalan
- Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
| | - Patrick Müller
- Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- University Hospital and Faculty of Medicine, University of Tübingen, Tübingen, Germany.
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany.
| |
Collapse
|
6
|
Wendering P, Nikoloski Z. Model-driven insights into the effects of temperature on metabolism. Biotechnol Adv 2023; 67:108203. [PMID: 37348662 DOI: 10.1016/j.biotechadv.2023.108203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Temperature affects cellular processes at different spatiotemporal scales, and identifying the genetic and molecular mechanisms underlying temperature responses paves the way to develop approaches for mitigating the effects of future climate scenarios. A systems view of the effects of temperature on cellular physiology can be obtained by focusing on metabolism since: (i) its functions depend on transcription and translation and (ii) its outcomes support organisms' development, growth, and reproduction. Here we provide a systematic review of modelling efforts directed at investigating temperature effects on properties of single biochemical reactions, system-level traits, metabolic subsystems, and whole-cell metabolism across different prokaryotes and eukaryotes. We compare and contrast computational approaches and theories that facilitate modelling of temperature effects on key properties of enzymes and their consideration in constraint-based as well as kinetic models of metabolism. In addition, we provide a summary of insights from computational approaches, facilitating integration of omics data from temperature-modulated experiments with models of metabolic networks, and review the resulting biotechnological applications. Lastly, we provide a perspective on how different types of metabolic modelling can profit from developments in machine learning and models of different cellular layers to improve model-driven insights into the effects of temperature relevant for biotechnological applications.
Collapse
Affiliation(s)
- Philipp Wendering
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany.
| |
Collapse
|
7
|
Ning H, Horikawa A, Yamamoto T, Michiue T. Chemical inhibitors of cyclin-dependent kinase (CDKi) improve pancreatic endocrine differentiation of iPS cells. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00776-0. [PMID: 37405627 PMCID: PMC10374832 DOI: 10.1007/s11626-023-00776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023]
Abstract
Islet transplantation, including pancreatic beta cells, has become an approved treatment for type I diabetes. To date, the number of donors limits the availability of treatment. Induction of pancreatic endocrine cells from pluripotent stem cells including iPSCs in vitro offers promise as a solution, but continues to face problems including high reagent costs and cumbersome differentiation procedures. In a previous study, we developed a low-cost, simplified differentiation method, but its efficiency for inducing pancreatic endocrine cells was not sufficient: induction of endocrine cells is non-uniform, resulting in colonies containing relatively high ratio of non-pancreatic-related cells. Here, we applied cyclin-dependent kinase inhibitors (CDKi) within a specific time window, which improved the efficiency of pancreatic endocrine cell induction. CDKi treatment reduced the prevalence of multi-layered regions and enhanced expression of the endocrine progenitor-related marker genes PDX1 and NGN3 resulting in enhanced production of both INSULIN and GLUCAGON. These findings support a step forward in the field of regenerative medicine of pancreatic endocrine cells.
Collapse
Affiliation(s)
- Heming Ning
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Ayumi Horikawa
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Takayoshi Yamamoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
Mendaluk A, Caussinus E, Boutros M, Lehner CF. A genome-wide RNAi screen for genes important for proliferation of cultured Drosophila cells at low temperature identifies the Ball/VRK protein kinase. Chromosoma 2023; 132:31-53. [PMID: 36746786 PMCID: PMC9981717 DOI: 10.1007/s00412-023-00787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
A change in ambient temperature is predicted to disrupt cellular homeostasis by affecting all cellular processes in an albeit non-uniform manner. Diffusion is generally less temperature-sensitive than enzymes, for example, and each enzyme has a characteristic individual temperature profile. The actual effects of temperature variation on cells are still poorly understood at the molecular level. Towards an improved understanding, we have performed a genome-wide RNA interference screen with S2R + cells. This Drosophila cell line proliferates over a temperature range comparable to that tolerated by the parental ectothermic organism. Based on effects on cell counts and cell cycle profile after knockdown at 27 and 17 °C, respectively, genes were identified with an apparent greater physiological significance at one or the other temperature. While 27 °C is close to the temperature optimum, the substantially lower 17 °C was chosen to identify genes important at low temperatures, which have received less attention compared to the heat shock response. Among a substantial number of screen hits, we validated a set successfully in cell culture and selected ballchen for further evaluation in the organism. This gene encodes the conserved metazoan VRK protein kinase that is crucial for the release of chromosomes from the nuclear envelope during mitosis. Our analyses in early embryos and larval wing imaginal discs confirmed a higher requirement for ballchen function at temperatures below the optimum. Overall, our experiments validate the genome-wide screen as a basis for future characterizations of genes with increased physiological significance at the lower end of the readily tolerated temperature range.
Collapse
Affiliation(s)
- Anna Mendaluk
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Emmanuel Caussinus
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, BioQuant, Heidelberg, Germany
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Maryu G, Yang Q. Nuclear-cytoplasmic compartmentalization of cyclin B1-Cdk1 promotes robust timing of mitotic events. Cell Rep 2022; 41:111870. [PMID: 36577372 DOI: 10.1016/j.celrep.2022.111870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The cyclin-dependent kinase (Cdk1) oscillator is widely characterized in homogenized cytosolic extracts, leaving unclear the impact of nucleocytoplasmic compartmentalization. Here, by developing a Förster resonance energy transfer (FRET) biosensor, we track Cdk1 spatiotemporal dynamics in reconstituted cells with or without side by side and find compartmentalization significantly modulates clock properties previously found in bulk studies. Although nucleus-absent cells display highly tunable frequency, the nucleus-present cells maintain constant frequency against cyclin B1 variations. Despite high expression variability, cyclin degraded within the same duration, enabling a robust mitotic phase. Moreover, Cdk1 and cyclin B1 cycle rigorously out-of-phase, ensuring wide phase-plane orbits, essential for oscillation robustness. Although Cdk1 in homogeneous extracts is well known for delayed switch-like activation, we find active cyclin B1-Cdk1 accumulates in nuclei, without delay, until the nuclear envelope breakdown (NEB) when another abrupt activation triggers anaphase. Cdk1 biphasic activation and spatial compartmentalization may together coordinate the accurate ordering of different downstream events.
Collapse
Affiliation(s)
- Gembu Maryu
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Hayden L, Hur W, Vergassola M, Di Talia S. Manipulating the nature of embryonic mitotic waves. Curr Biol 2022; 32:4989-4996.e3. [PMID: 36332617 PMCID: PMC9691596 DOI: 10.1016/j.cub.2022.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Early embryogenesis is characterized by rapid and synchronous cleavage divisions, which are often controlled by wave-like patterns of Cdk1 activity. Two mechanisms have been proposed for mitotic waves: sweep and trigger waves.1,2 The two mechanisms give rise to different wave speeds, dependencies on physical and molecular parameters, and spatial profiles of Cdk1 activity: upward sweeping gradients versus traveling wavefronts. Both mechanisms hinge on the transient bistability governing the cell cycle and are differentiated by the speed of the cell-cycle progression: sweep and trigger waves arise for rapid and slow drives, respectively. Here, using quantitative imaging of Cdk1 activity and theory, we illustrate that sweep waves are the dominant mechanism in Drosophila embryos and test two fundamental predictions on the transition from sweep to trigger waves. We demonstrate that sweep waves can be turned into trigger waves if the cell cycle is slowed down genetically or if significant delays in the cell-cycle progression are introduced across the embryo by altering nuclear density. Our genetic experiments demonstrate that Polo kinase is a major rate-limiting regulator of the blastoderm divisions, and genetic perturbations reducing its activity can induce the transition from sweep to trigger waves. Furthermore, we show that changes in temperature cause an essentially uniform slowdown of interphase and mitosis. That results in sweep waves being observed across a wide temperature range despite the cell-cycle durations being significantly different. Collectively, our combination of theory and experiments elucidates the nature of mitotic waves in Drosophila embryogenesis, their control mechanisms, and their mutual transitions.
Collapse
Affiliation(s)
- Luke Hayden
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA
| | - Woonyung Hur
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA
| | - Massimo Vergassola
- Laboratoire de Physique de l'École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, 24 Rue Lhomond, 75005 Paris, France; Department of Physics, University of California, San Diego, 9500 Gillman Drive, La Jolla, CA 92093, USA.
| | - Stefano Di Talia
- Department of Cell Biology, Research Drive, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Mofatteh M, Echegaray-Iturra F, Alamban A, Dalla Ricca F, Bakshi A, Aydogan MG. Autonomous clocks that regulate organelle biogenesis, cytoskeletal organization, and intracellular dynamics. eLife 2021; 10:e72104. [PMID: 34586070 PMCID: PMC8480978 DOI: 10.7554/elife.72104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
How do cells perceive time? Do cells use temporal information to regulate the production/degradation of their enzymes, membranes, and organelles? Does controlling biological time influence cytoskeletal organization and cellular architecture in ways that confer evolutionary and physiological advantages? Potential answers to these fundamental questions of cell biology have historically revolved around the discussion of 'master' temporal programs, such as the principal cyclin-dependent kinase/cyclin cell division oscillator and the circadian clock. In this review, we provide an overview of the recent evidence supporting an emerging concept of 'autonomous clocks,' which under normal conditions can be entrained by the cell cycle and/or the circadian clock to run at their pace, but can also run independently to serve their functions if/when these major temporal programs are halted/abrupted. We begin the discussion by introducing recent developments in the study of such clocks and their roles at different scales and complexities. We then use current advances to elucidate the logic and molecular architecture of temporal networks that comprise autonomous clocks, providing important clues as to how these clocks may have evolved to run independently and, sometimes at the cost of redundancy, have strongly coupled to run under the full command of the cell cycle and/or the circadian clock. Next, we review a list of important recent findings that have shed new light onto potential hallmarks of autonomous clocks, suggestive of prospective theoretical and experimental approaches to further accelerate their discovery. Finally, we discuss their roles in health and disease, as well as possible therapeutic opportunities that targeting the autonomous clocks may offer.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Fabio Echegaray-Iturra
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Francesco Dalla Ricca
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Anand Bakshi
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Mustafa G Aydogan
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
12
|
Crapse J, Pappireddi N, Gupta M, Shvartsman SY, Wieschaus E, Wühr M. Evaluating the Arrhenius equation for developmental processes. Mol Syst Biol 2021; 17:e9895. [PMID: 34414660 PMCID: PMC8377445 DOI: 10.15252/msb.20209895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022] Open
Abstract
The famous Arrhenius equation is well suited to describing the temperature dependence of chemical reactions but has also been used for complicated biological processes. Here, we evaluate how well the simple Arrhenius equation predicts complex multi-step biological processes, using frog and fruit fly embryogenesis as two canonical models. We find that the Arrhenius equation provides a good approximation for the temperature dependence of embryogenesis, even though individual developmental intervals scale differently with temperature. At low and high temperatures, however, we observed significant departures from idealized Arrhenius Law behavior. When we model multi-step reactions of idealized chemical networks, we are unable to generate comparable deviations from linearity. In contrast, we find the two enzymes GAPDH and β-galactosidase show non-linearity in the Arrhenius plot similar to our observations of embryonic development. Thus, we find that complex embryonic development can be well approximated by the simple Arrhenius equation regardless of non-uniform developmental scaling and propose that the observed departure from this law likely results more from non-idealized individual steps rather than from the complexity of the system.
Collapse
Affiliation(s)
- Joseph Crapse
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| | - Nishant Pappireddi
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| | - Meera Gupta
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
- Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonNJUSA
| | - Stanislav Y Shvartsman
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
- Center for Computational BiologyFlatiron InstituteSimons FoundationNew YorkNYUSA
| | - Eric Wieschaus
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| | - Martin Wühr
- Undergraduate Integrated Science CurriculumPrinceton UniversityPrincetonNJUSA
- Department of Molecular BiologyPrinceton UniversityPrincetonNJUSA
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNJUSA
| |
Collapse
|