1
|
Ulrich E, Kistenmacher S, Martin G, Schlötzer-Schrehardt U, Seitz B, Auw-Hädrich C, Schlunck G, Reinhard T, Polisetti N. PAX3 expression patterns in ocular surface melanocytes. Sci Rep 2025; 15:12472. [PMID: 40216818 PMCID: PMC11992251 DOI: 10.1038/s41598-025-90318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 04/14/2025] Open
Abstract
PAX3, a transcription factor essential for neural crest development and melanocyte progenitors, is expressed in various melanocytic tissues. However, its role in ocular surface tissues remains poorly understood. This study investigated the expression patterns of PAX3 in the limbal stem cell niche, specifically in limbal epithelial progenitor cells (LEPC), limbal melanocytes (LM), and limbal mesenchymal stem cells (LMSC). Additionally, PAX3 expression was studied in conjunctival/limbal melanoma specimens. Immunohistochemical analysis revealed predominant PAX3 expression in LM as well in the conjunctival melanocytes, suggesting distinct roles in stem cell regulation and melanocyte maintenance. Notably, PAX3 was significantly upregulated in conjunctival/limbal melanoma tissues compared to healthy counterparts, with expression co-localizing with melanocyte markers (Melan-A, HMB45, SOX10) and the proliferation marker Ki-67 in melanoma cells. These findings suggests that while PAX3 expression is restricted to melanocytes in limbal/conjunctival tissues and its dysregulation may play a crucial role in conjunctival/limbal melanoma development. Further investigation into mechanisms by which PAX3 influences corneal pathophysiology and contributes to conjunctival/limbal melanoma pathogenesis could identify potential therapeutic targets for this aggressive ocular malignancy.
Collapse
Affiliation(s)
- Eva Ulrich
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Sebastian Kistenmacher
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | | | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Claudia Auw-Hädrich
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Naresh Polisetti
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| |
Collapse
|
2
|
Marutha T, Williams S, Novellie M, Dillon B, Carstens N, Mavri-Damelin D. Exome sequencing identifies existing and novel variants in a South African cohort presenting with anterior segment dysgenesis. Gene 2025; 943:149273. [PMID: 39870121 DOI: 10.1016/j.gene.2025.149273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Anterior segment dysgenesis (ASD) defines a collection of congenital eye disorders that affect structures within the anterior segment of the eye. Mutations in genes that initiate and regulate the complex pathways involved in eye development can cause a spectrum of disorders such as ASD, congenital cataracts and corneal opacity. In South Africa, causes of ASD are poorly understood with few studies looking at the possible genetic basis for these disorders. In this study, we performed exome sequencing on a cohort of South African patients with ASD, focusing on a panel of genes known to regulate eye development pathways, including the PXDN gene which has recently been associated with ASD. We identified novel as well as established variants: specifically, we found a disease-causing variant in PAX6; variants that are likely to be pathogenic in GJA8, BCOR and EPHA2, as well as variants of uncertain significance in PXDN and LTBP2. In conclusion, this study is the first to show disease-causing variants in South African patients presenting with ASD, including the identification of novel variants and highlights the need to expand upon such studies in understudied populations.
Collapse
Affiliation(s)
- Tebogo Marutha
- School of Molecular and Cell Biology Faculty of Science University of the Witwatersrand Johannesburg South Africa
| | - Sue Williams
- Division of Ophthalmology Department of Neurosciences School of Clinical Medicine Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Michael Novellie
- Division of Human Genetics National Health Laboratory Service and School of Pathology Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Bronwyn Dillon
- Division of Human Genetics National Health Laboratory Service and School of Pathology Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Nadia Carstens
- South African Medical Research Council Genomics Centre NIVS Building Tygerberg Hospital Campus Cape Town Western Cape South Africa
| | - Demetra Mavri-Damelin
- School of Molecular and Cell Biology Faculty of Science University of the Witwatersrand Johannesburg South Africa.
| |
Collapse
|
3
|
Vohra M, Kumar S, Sohnen P, Kaur S, Swamynathan S, Hirose T, Kozmik Z, Swamynathan SK. Pard3 promotes corneal epithelial stratification and homeostasis by regulating apical-basal polarity, cytoskeletal organization and tight junction-mediated barrier function. Ocul Surf 2025; 37:201-215. [PMID: 40188986 DOI: 10.1016/j.jtos.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE To document the expression of apical-basal polarity (ABP) determinants in the mouse corneal epithelium (CE) and elucidate the functions of Pard3 in establishment and maintenance of ABP, stratification, homeostasis, and barrier function in the CE. METHODS Pard3Δ/ΔC mice (Pard3LoxP/LoxP; Aldh3A1-Cre/+) with cornea-specific Pard3 ablation were generated by breeding Aldh3A1-Cre/+ with Pard3LoxP/LoxP mice. The control (Aldh3A1-Cre/+ or Pard3LoxP/LoxP alone) and Pard3Δ/ΔC corneal histology, ocular surface properties, barrier function, and actin cytoskeleton were assessed by Haematoxylin and Eosin staining of paraformaldehyde-fixed, paraffin-embedded tissues, scanning electron microscopy, fluorescein staining, and phalloidin staining, respectively. The expression of specific markers of interest was evaluated by qRT-PCR, immunoblots and immunofluorescent staining. RESULTS Dynamic changes were observed in the expression and localization of ABP determinants as the CE stratified and matured between post-natal day 5 (PN5) and PN52. Adult Pard3Δ/ΔC CE contained fewer cell layers with rounded basal cells, and loosely adherent superficial cells lacking microplicae. Adult Pard3Δ/ΔC CE also displayed impaired barrier function with decreased expression of tight junction, adherens junction, and desmosome components, disrupted actin cytoskeletal organization, increased proliferation, and upregulation of transcription factors that drive epithelial-mesenchymal transition (EMT). CONCLUSIONS Disruption of ABP in Pard3Δ/ΔC CE, altered expression of cell junction complex components and disorganized actin cytoskeleton, increased cell proliferation, and upregulated EMT transcription factors suggest that the ABP-determinant Pard3 promotes CE features while suppressing mesenchymal cell fate. Collectively, these results elucidate that Pard3-mediated ABP is essential for CE stratification, homeostasis and barrier function.
Collapse
Affiliation(s)
- Mehak Vohra
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Simran Kumar
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Peri Sohnen
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Satinder Kaur
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Sudha Swamynathan
- Department of Ophthalmology, University of South Florida, Tampa, FL, USA
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University, Yokohama, Japan
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | | |
Collapse
|
4
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
5
|
Wang S, Gao P, Wang X, Duan L, He X, Qu J. Clinical utility of keratin 14 expression measurement in reflecting the tumor properties and prognosis in patients with renal cell carcinoma: a study with long-term follow-up. Int Urol Nephrol 2024; 56:2045-2053. [PMID: 38206525 DOI: 10.1007/s11255-023-03923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE Keratin 14 (KRT14) is hypothesized to be involved in the pathogenesis of renal cell carcinoma (RCC) based on its tumorigenic role in various cancers and its relationship with the prognosis of other urinary system malignancies. This study aimed to evaluate the correlation of KRT14 with tumor properties and prognosis in RCC patients. METHODS Data from 180 RCC patients who received tumor resection were retrospectively reviewed. The KRT14 was assessed by immunohistochemistry (IHC) staining in tumor tissues and non-tumor tissues. RESULTS KRT14 was insufficiently expressed in both tumor and non-tumor tissues, with median (interquartile range) IHC score of 2.0 (0.0-3.4) and 1.0 (0.0-2.0), respectively. While it was relatively higher in tumor versus non-tumor tissues (P < 0.001). Besides, tumor KRT14 was positively correlated with the pathological grade (P = 0.038), tumor size (P = 0.012), T stage (P = 0.006), and TNM stage (P = 0.018). Interestingly, tumor KRT14 high predicted shorter accumulating recurrence-free survival (RFS) (P = 0.003) and accumulating overall survival (OS) (P = 0.001), which was further verified by the multivariate Cox's regression analysis (both P < 0.05). Furthermore, tumor KRT14 high estimated shorter RFS and OS from the Gene Expression Profiling Interactive Analysis and Human Protein ATLAS databases (all P < 0.05). Subgroup analyses indicated that the correlation of tumor KRT14 with accumulating RFS and accumulating OS was more pronounced in RCC patients with better physical status (such as age < 65 years and better eastern cooperative oncology group performance status) and higher tumor stages (such as higher pathological grade). CONCLUSION High KRT14 in tumor tissue could reflect an advanced tumor features and unsatisfying survival in RCC patients.
Collapse
Affiliation(s)
- Shuangyu Wang
- Department of Nephrology, Handan Central Hospital, Handan, 056000, China
| | - Peng Gao
- Department of Traditional Chinese Medicine, Han Mine General Hospital of North China Medical Health Group, Handan, 056000, China
| | - Xiaozhi Wang
- Department of Emergency, Handan Central Hospital, No. 59 Congtai North Road, Handan, 056000, China
| | - Liping Duan
- Department of Nephrology, Handan Central Hospital, Handan, 056000, China
| | - Xinmei He
- Department of Nephrology, Handan Central Hospital, Handan, 056000, China
| | - Juanjuan Qu
- Department of Emergency, Handan Central Hospital, No. 59 Congtai North Road, Handan, 056000, China.
| |
Collapse
|
6
|
Fan K, Dong N, Fang M, Xiang Z, Zheng L, Wang M, Shi Y, Tan G, Li C, Xue Y. Ozone exposure affects corneal epithelial fate by promoting mtDNA leakage and cGAS/STING activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133219. [PMID: 38101018 DOI: 10.1016/j.jhazmat.2023.133219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Ozone is a common air pollutant associated with various human diseases. The human ocular surface is frequently exposed to ozone in the troposphere, but the mechanisms by which ozone affects the ocular surface health remain unclear. This study aimed to establish a mouse model to investigate the effects of ozone exposure on the ocular surface and the corneal epithelium. The findings revealed that ozone exposure disrupted corneal epithelial homeostasis and differentiation, resulting in corneal squamous metaplasia. Further, ozone exposure induced oxidative damage and cytoplasmic leakage of mitochondrial DNA (mtDNA), thereby activating the cGAS/STING signaling pathway. The activation of the cGAS/STING signaling pathway triggered the activation of downstream NF-κB and TRAF6 signaling pathways, causing corneal inflammation, thereby promoting corneal inflammation and squamous metaplasia. Finally, C-176, a selective STING inhibitor, effectively prevented and treated corneal inflammation and squamous metaplasia caused by ozone exposure. This study revealed the role of mtDNA leakage-mediated cGAS/STING activation in corneal squamous epithelial metaplasia caused by ozone exposure. It also depicted the abnormal expression pattern of corneal epithelial keratin using three-dimensional images, providing new targets and strategies for preventing and treating corneal squamous metaplasia and other ocular surface diseases.
Collapse
Affiliation(s)
- Kai Fan
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Nuo Dong
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China
| | - Meichai Fang
- Ningde People's Hospital, Ningde, Fujian 352100, China
| | - Zixun Xiang
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Lan Zheng
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengyuan Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yukuan Shi
- The High School Affiliated to Renmin University of China, 100080, China
| | - Gang Tan
- The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Xiamen, Fujian 361102, China; The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | - Yuhua Xue
- Eye Institute & Affiliated Xiamen Eye Center, School of Pharmaceutical Sciences & School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
7
|
Barvaux S, Okawa S, Del Sol A. SinCMat: A single-cell-based method for predicting functional maturation transcription factors. Stem Cell Reports 2024; 19:270-284. [PMID: 38215756 PMCID: PMC10874865 DOI: 10.1016/j.stemcr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
A major goal of regenerative medicine is to generate tissue-specific mature and functional cells. However, current cell engineering protocols are still unable to systematically produce fully mature functional cells. While existing computational approaches aim at predicting transcription factors (TFs) for cell differentiation/reprogramming, no method currently exists that specifically considers functional cell maturation processes. To address this challenge, here, we develop SinCMat, a single-cell RNA sequencing (RNA-seq)-based computational method for predicting cell maturation TFs. Based on a model of cell maturation, SinCMat identifies pairs of identity TFs and signal-dependent TFs that co-target genes driving functional maturation. A large-scale application of SinCMat to the Mouse Cell Atlas and Tabula Sapiens accurately recapitulates known maturation TFs and predicts novel candidates. We expect SinCMat to be an important resource, complementary to preexisting computational methods, for studies aiming at producing functionally mature cells.
Collapse
Affiliation(s)
- Sybille Barvaux
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg; University of Pittsburgh School of Medicine, Vascular Medicine Institute, Department of Computational and Systems Biology, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg; CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
8
|
Volatier T, Cursiefen C, Notara M. Current Advances in Corneal Stromal Stem Cell Biology and Therapeutic Applications. Cells 2024; 13:163. [PMID: 38247854 PMCID: PMC10814767 DOI: 10.3390/cells13020163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Corneal stromal stem cells (CSSCs) are of particular interest in regenerative ophthalmology, offering a new therapeutic target for corneal injuries and diseases. This review provides a comprehensive examination of CSSCs, exploring their anatomy, functions, and role in maintaining corneal integrity. Molecular markers, wound healing mechanisms, and potential therapeutic applications are discussed. Global corneal blindness, especially in more resource-limited regions, underscores the need for innovative solutions. Challenges posed by corneal defects, emphasizing the urgent need for advanced therapeutic interventions, are discussed. The review places a spotlight on exosome therapy as a potential therapy. CSSC-derived exosomes exhibit significant potential for modulating inflammation, promoting tissue repair, and addressing corneal transparency. Additionally, the rejuvenation potential of CSSCs through epigenetic reprogramming adds to the evolving regenerative landscape. The imperative for clinical trials and human studies to seamlessly integrate these strategies into practice is emphasized. This points towards a future where CSSC-based therapies, particularly leveraging exosomes, play a central role in diversifying ophthalmic regenerative medicine.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
9
|
Li M, Guo H, Wang B, Han Z, Wu S, Liu J, Huang H, Zhu J, An F, Lin Z, Mo K, Tan J, Liu C, Wang L, Deng X, Li G, Ji J, Ouyang H. The single-cell transcriptomic atlas and RORA-mediated 3D epigenomic remodeling in driving corneal epithelial differentiation. Nat Commun 2024; 15:256. [PMID: 38177186 PMCID: PMC10766623 DOI: 10.1038/s41467-023-44471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Proper differentiation of corneal epithelial cells (CECs) from limbal stem/progenitor cells (LSCs) is required for maintenance of ocular homeostasis and clear vision. Here, using a single-cell transcriptomic atlas, we delineate the comprehensive and refined molecular regulatory dynamics during human CEC development and differentiation. We find that RORA is a CEC-specific molecular switch that initiates and drives LSCs to differentiate into mature CECs by activating PITX1. RORA dictates CEC differentiation by establishing CEC-specific enhancers and chromatin interactions between CEC gene promoters and distal regulatory elements. Conversely, RORA silences LSC-specific promoters and disrupts promoter-anchored chromatin loops to turn off LSC genes. Collectively, our work provides detailed and comprehensive insights into the transcriptional dynamics and RORA-mediated epigenetic remodeling underlying human corneal epithelial differentiation.
Collapse
Affiliation(s)
- Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Bofeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Fengjiao An
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Matmat K, Conart JB, Graindorge PH, El Kouche S, Hassan Z, Siblini Y, Umoret R, Safar R, Baspinar O, Robert A, Alberto JM, Oussalah A, Coelho D, Guéant JL, Guéant-Rodriguez RM. A transgenic mice model of retinopathy of cblG-type inherited disorder of one-carbon metabolism highlights epigenome-wide alterations related to cone photoreceptor cells development and retinal metabolism. Clin Epigenetics 2023; 15:158. [PMID: 37798757 PMCID: PMC10557304 DOI: 10.1186/s13148-023-01567-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND MTR gene encodes the cytoplasmic enzyme methionine synthase, which plays a pivotal role in the methionine cycle of one-carbon metabolism. This cycle holds a significant importance in generating S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the respective universal methyl donor and end-product of epigenetic transmethylation reactions. cblG type of inherited disorders of vitamin B12 metabolism due to mutations in MTR gene exhibits a wide spectrum of symptoms, including a retinopathy unresponsive to conventional therapies. METHODS To unveil the underlying epigenetic pathological mechanisms, we conducted a comprehensive study of epigenomic-wide alterations of DNA methylation by NGS of bisulfited retinal DNA in an original murine model with conditional Mtr deletion in retinal tissue. Our focus was on postnatal day 21, a critical developmental juncture for ocular structure refinement and functional maturation. RESULTS We observed delayed eye opening and impaired visual acuity and alterations in the one-carbon metabolomic profile, with a notable dramatic decline in SAM/SAH ratio predicted to impair DNA methylation. This metabolic disruption led to epigenome-wide changes in genes involved in eye development, synaptic plasticity, and retinoid metabolism, including promoter hypermethylation of Rarα, a regulator of Lrat expression. Consistently, we observed a decline in cone photoreceptor cells and reduced expression of Lrat, Rpe65, and Rdh5, three pivotal genes of eye retinoid metabolism. CONCLUSION We introduced an original in vivo model for studying cblG retinopathy, which highlighted the pivotal role of altered DNA methylation in eye development, cone differentiation, and retinoid metabolism. This model can be used for preclinical studies of novel therapeutic targets.
Collapse
Affiliation(s)
- Karim Matmat
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Baptiste Conart
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
- Department of Ophthalmology, University Regional Hospital Center of Nancy, 54000, Nancy, France
| | - Paul-Henri Graindorge
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Sandra El Kouche
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Ziad Hassan
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Youssef Siblini
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Rémy Umoret
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Ramia Safar
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Okan Baspinar
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Aurélie Robert
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Marc Alberto
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Abderrahim Oussalah
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - David Coelho
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France.
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France.
- Faculté de Médecine, Bâtiment C 2Ème Étage, 9 Avenue de La Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France.
| | - Rosa-Maria Guéant-Rodriguez
- Inserm UMRS 1256 NGERE - Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, 54500, Vandoeuvre-lès-Nancy, France.
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, 54000, Nancy, France.
- Faculté de Médecine, Bâtiment C 2Ème Étage, 9 Avenue de La Forêt de Haye, 54505, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
11
|
Swamynathan SK, Swamynathan S. Corneal epithelial development and homeostasis. Differentiation 2023; 132:4-14. [PMID: 36870804 PMCID: PMC10363238 DOI: 10.1016/j.diff.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The corneal epithelium (CE), the most anterior cellular structure of the eye, is a self-renewing stratified squamous tissue that protects the rest of the eye from external elements. Each cell in this exquisite three-dimensional structure needs to have proper polarity and positional awareness for the CE to serve as a transparent, refractive, and protective tissue. Recent studies have begun to elucidate the molecular and cellular events involved in the embryonic development, post-natal maturation, and homeostasis of the CE, and how they are regulated by a well-coordinated network of transcription factors. This review summarizes the status of related knowledge and aims to provide insight into the pathophysiology of disorders caused by disruption of CE development, and/or homeostasis.
Collapse
Affiliation(s)
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
12
|
Polisetti N, Martin G, Cristina Schmitz HR, Schlötzer-Schrehardt U, Schlunck G, Reinhard T. Characterization of Porcine Ocular Surface Epithelial Microenvironment. Int J Mol Sci 2023; 24:ijms24087543. [PMID: 37108705 PMCID: PMC10145510 DOI: 10.3390/ijms24087543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The porcine ocular surface is used as a model of the human ocular surface; however, a detailed characterization of the porcine ocular surface has not been documented. This is due, in part, to the scarcity of antibodies produced specifically against the porcine ocular surface cell types or structures. We performed a histological and immunohistochemical investigation on frozen and formalin-fixed, paraffin-embedded ocular surface tissue from domestic pigs using a panel of 41 different antibodies related to epithelial progenitor/differentiation phenotypes, extracellular matrix and associated molecules, and various niche cell types. Our observations suggested that the Bowman's layer is not evident in the cornea; the deep invaginations of the limbal epithelium in the limbal zone are analogous to the limbal interpalisade crypts of human limbal tissue; and the presence of goblet cells in the bulbar conjunctiva. Immunohistochemistry analysis revealed that the epithelial progenitor markers cytokeratin (CK)15, CK14, p63α, and P-cadherin were expressed in both the limbal and conjunctival basal epithelium, whereas the basal cells of the limbal and conjunctival epithelium did not stain for CK3, CK12, E-cadherin, and CK13. Antibodies detecting marker proteins related to the extracellular matrix (collagen IV, Tenascin-C), cell-matrix adhesion (β-dystroglycan, integrin α3 and α6), mesenchymal cells (vimentin, CD90, CD44), neurons (neurofilament), immune cells (HLA-ABC; HLA-DR, CD1, CD4, CD14), vasculature (von Willebrand factor), and melanocytes (SRY-homeobox-10, human melanoma black-45, Tyrosinase) on the normal human ocular surface demonstrated similar immunoreactivity on the normal porcine ocular surface. Only a few antibodies (directed against N-cadherin, fibronectin, agrin, laminin α3 and α5, melan-A) appeared unreactive on porcine tissues. Our findings characterize the main immunohistochemical properties of the porcine ocular surface and provide a morphological and immunohistochemical basis useful to research using porcine models. Furthermore, the analyzed porcine ocular structures are similar to those of humans, confirming the potential usefulness of pig eyes to study ocular surface physiology and pathophysiology.
Collapse
Affiliation(s)
- Naresh Polisetti
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Heidi R Cristina Schmitz
- CEMT-Freiburg, Experimental Surgery, Hospital-Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| |
Collapse
|
13
|
PAX6 Expression Patterns in the Adult Human Limbal Stem Cell Niche. Cells 2023; 12:cells12030400. [PMID: 36766742 PMCID: PMC9913671 DOI: 10.3390/cells12030400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Paired box 6 (PAX6), a nuclear transcription factor, determines the fate of limbal epithelial progenitor cells (LEPC) and maintains epithelial cell identity. However, the expression of PAX6 in limbal niche cells, primarily mesenchymal stromal cells (LMSC), and melanocytes is scarce and not entirely clear. To distinctly assess the PAX6 expression in limbal niche cells, fresh and organ-cultured human corneoscleral tissues were stained immunohistochemically. Furthermore, the expression of PAX6 in cultured limbal cells was investigated. Immunostaining revealed the presence of PAX6-negative cells which were positive for vimentin and the melanocyte markers Melan-A and human melanoma black-45 in the basal layer of the limbal epithelium. PAX6 staining was not observed in the limbal stroma. Moreover, the expression of PAX6 was observed by Western blot in cultured LEPC but not in cultured LMSC or LM. These data indicate a restriction of PAX6 expression to limbal epithelial cells at the limbal stem cell niche. These observations warrant further studies for the presence of other PAX isoforms in the limbal stem cell niche.
Collapse
|