1
|
Slabeva K, Baud MO. Timing Mechanisms for Circadian Seizures. Clocks Sleep 2024; 6:589-601. [PMID: 39449314 PMCID: PMC11503444 DOI: 10.3390/clockssleep6040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
For centuries, epileptic seizures have been noticed to recur with temporal regularity, suggesting that an underlying biological rhythm may play a crucial role in their timing. In this review, we propose to adopt the framework of chronobiology to study the circadian timing of seizures. We first review observations made on seizure timing in patients with epilepsy and animal models of the disorder. We then present the existing chronobiology paradigm to disentangle intertwined circadian and sleep-wake timing mechanisms. In the light of this framework, we review the existing evidence for specific timing mechanisms in specific epilepsy syndromes and highlight that current knowledge is far from sufficient. We propose that individual seizure chronotypes may result from an interplay between independent timing mechanisms. We conclude with a research agenda to help solve the urgency of ticking seizures.
Collapse
Affiliation(s)
- Kristina Slabeva
- Zentrum für Experimentelle Neurologie, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Maxime O. Baud
- Zentrum für Experimentelle Neurologie, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Schlaf-Wach Epilepsie Zentrum, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Zhang LM, Chen L, Zhao YF, Duan WM, Zhong LM, Liu MW. Identification of key potassium channel genes of temporal lobe epilepsy by bioinformatics analyses and experimental verification. Front Neurol 2023; 14:1175007. [PMID: 37483435 PMCID: PMC10361730 DOI: 10.3389/fneur.2023.1175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
One of the most prevalent types of epilepsy is temporal lobe epilepsy (TLE), which has unknown etiological factors and drug resistance. The detailed mechanisms underlying potassium channels in human TLE have not yet been elucidated. Hence, this study aimed to mine potassium channel genes linked to TLE using a bioinformatic approach. The results found that Four key TLE-related potassium channel genes (TERKPCGs) were identified: potassium voltage-gated channel subfamily E member (KCNA) 1, KCNA2, potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11), and KCNS1. A protein-protein interaction (PPI) network was constructed to analyze the relationship between TERKPCGs and other key module genes. The results of gene set enrichment analysis (GSEA) for a single gene indicated that the four TERKPCGs were highly linked to the cation channel, potassium channel, respiratory chain, and oxidative phosphorylation. The mRNA-TF network was established using four mRNAs and 113 predicted transcription factors. A ceRNA network containing seven miRNAs, two mRNAs, and 244 lncRNAs was constructed based on the TERKPCGs. Three common small-molecule drugs (enflurane, promethazine, and miconazole) target KCNA1, KCNA2, and KCNS1. Ten small-molecule drugs (glimepiride, diazoxide, levosimendan, and thiamylal et al.) were retrieved for KCNJ11. Compared to normal mice, the expression of KCNA1, KCNA2, KCNJ11, and KCNS1 was downregulated in the brain tissue of the epilepsy mouse model at both the transcriptional and translational levels, which was consistent with the trend of human data from the public database. The results indicated that key potassium channel genes linked to TLE were identified based on bioinformatics analysis to investigate the potential significance of potassium channel genes in the development and treatment of TLE.
Collapse
Affiliation(s)
- Lin-ming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Yi-fei Zhao
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Wei-mei Duan
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Lian-mei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Ming-wei Liu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Deodhar M, Matthews SA, Thomas B, Adamian L, Mattes S, Wells T, Zieba B, Simeone KA, Simeone TA. Pharmacoresponsiveness of spontaneous recurrent seizures and the comorbid sleep disorder of epileptic Kcna1-null mice. Eur J Pharmacol 2021; 913:174656. [PMID: 34838797 DOI: 10.1016/j.ejphar.2021.174656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
Drug resistant epilepsy affects ∼30% of people with epilepsy and is associated with epilepsy syndromes with frequent and multiple types of seizures, lesions or cytoarchitectural abnormalities, increased risk of mortality and comorbidities such as cognitive impairment and sleep disorders. A limitation of current preclinical models is that spontaneous seizures with comorbidities take time to induce and test, thus making them low-throughput. Kcna1-null mice exhibit all the characteristics of drug resistant epilepsy with spontaneous seizures and comorbidities occurring naturally; thus, we aimed to determine whether they also demonstrate pharmacoresistanct seizures and the impact of medications on their sleep disorder comorbidity. In this exploratory study, Kcna1-null mice were treated with one of four conventional antiseizure medications, carbamazepine, levetiracetam, phenytoin, and phenobarbital using a moderate throughput protocol (vehicle for 2 days followed by 2 days of treatment with high therapeutic doses selected based on published data in the 6 Hz model of pharmacoresistant seizures). Spontaneous recurrent seizures and vigilance states were recorded with video-EEG/EMG. Carbamazepine, levetiracetam and phenytoin had partial efficacy (67%, 75% and 33% were seizure free, respectively), whereas phenobarbital was fully efficacious and conferred seizure freedom to all mice. Thus, seizures of Kcna1-null mice appear to be resistant to three of the drugs tested. Levetiracetam failed to affect sleep architecture, carbamazepine and phenytoin had moderate effects, and phenobarbital, as predicted, restored sleep architecture. Data suggest Kcna1-null mice may be a moderate throughput model of drug resistant epilepsy useful in determining mechanisms of pharmacoresistance and testing novel therapeutic strategies.
Collapse
Affiliation(s)
- Malavika Deodhar
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Stephanie A Matthews
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Brittany Thomas
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Leena Adamian
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Sarah Mattes
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Tabitha Wells
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Brianna Zieba
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Kristina A Simeone
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Timothy A Simeone
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
4
|
Konduru SS, Pan YZ, Wallace E, Pfammatter JA, Jones MV, Maganti RK. Sleep Deprivation Exacerbates Seizures and Diminishes GABAergic Tonic Inhibition. Ann Neurol 2021; 90:840-844. [PMID: 34476841 PMCID: PMC8530964 DOI: 10.1002/ana.26208] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Patients with epilepsy report that sleep deprivation is a common trigger for breakthrough seizures. The basic mechanism of this phenomenon is unknown. In the Kv1.1-/- mouse model of epilepsy, daily sleep deprivation indeed exacerbated seizures though these effects were lost after the third day. Sleep deprivation also accelerated mortality in ~ 52% of Kv1.1-/- mice, not observed in controls. Voltage-clamp experiments on the day after recovery from sleep deprivation showed reductions in GABAergic tonic inhibition in dentate granule cells in epileptic Kv1.1-/- mice. Our results suggest that sleep deprivation is detrimental to seizures and survival, possibly due to reductions in GABAergic tonic inhibition. ANN NEUROL 2021;90:840-844.
Collapse
Affiliation(s)
- Sai Surthi Konduru
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yu-Zhen Pan
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Eli Wallace
- Department of Cellular and Molecular Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jesse A Pfammatter
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mathew V Jones
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Rama K Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
5
|
Maganti RK, Jones MV. Untangling a Web: Basic Mechanisms of the Complex Interactions Between Sleep, Circadian Rhythms, and Epilepsy. Epilepsy Curr 2021; 21:105-110. [PMID: 33541118 PMCID: PMC8010879 DOI: 10.1177/1535759721989674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Seizures have sleep–wake and circadian patterns in various epilepsies and, in turn, disrupt sleep and circadian rhythms. The resultant sleep deprivation (SD) is an exacerbating factor for seizures that sets up a vicious cycle that can potentially lead to disease progression and even to epilepsy-related mortality. A variety of cellular or network electrophysiological changes and changes in expression of clock-controlled genes or other transcription factors underlie sleep–wake and circadian distribution of seizures, as well as the disruptions seen in both. A broad understanding of these mechanisms may help in designing better treatments to prevent SD-induced seizure exacerbation, disrupt the vicious cycle of disease progression, and reduce epilepsy-related mortality.
Collapse
Affiliation(s)
- Rama K Maganti
- Department of Neurology, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mathew V Jones
- Department of Neuroscience, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
6
|
Chan F, Liu J. Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia 2021; 62 Suppl 1:S32-S48. [PMID: 33395505 PMCID: PMC8744084 DOI: 10.1111/epi.16796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Extensive study has demonstrated that epilepsy occurs with greater frequency at certain times in the 24-h cycle. Although these findings implicate an overlap between the circadian rhythm and epilepsy, the molecular and cellular mechanisms underlying this circadian regulation are poorly understood. Because the 24-h rhythm is generated by the circadian molecular system, it is not surprising that this system comprised of many circadian genes is implicated in epilepsy. We summarized evidence in the literature implicating various circadian genes such as Clock, Bmal1, Per1, Rev-erb⍺, and Ror⍺ in epilepsy. In various animal models of epilepsy, the circadian oscillation and the steady-state level of these genes are disrupted. The downstream pathway of these genes involves a large number of metabolic pathways associated with epilepsy. These pathways include pyridoxal metabolism, the mammalian target of rapamycin pathway, and the regulation of redox state. We propose that disruption of these metabolic pathways could mediate the circadian regulation of epilepsy. A greater understanding of the cellular and molecular mechanism of circadian regulation of epilepsy would enable us to precisely target the circadian disruption in epilepsy for a novel therapeutic approach.
Collapse
Affiliation(s)
- Felix Chan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Judy Liu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
7
|
Re CJ, Batterman AI, Gerstner JR, Buono RJ, Ferraro TN. The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy. Front Neurol 2020; 11:520. [PMID: 32714261 PMCID: PMC7344275 DOI: 10.3389/fneur.2020.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and sleep/wake mechanisms play some role in the disease. This review addresses key topics in the relationship between circadian rhythms and seizures in epilepsy. We present basic information on circadian biology, but focus on research studying the influence of both the time of day and the sleep/wake cycle as independent but related factors on the expression of seizures in epilepsy. We review studies investigating how seizures and epilepsy disrupt expression of core clock genes, and how disruption of clock mechanisms impacts seizures and the development of epilepsy. We focus on the overlap between mechanisms of circadian-associated changes in SCN neuronal excitability and mechanisms of epileptogenesis as a means of identifying key pathways and molecules that could represent new targets or strategies for epilepsy therapy. Finally, we review the concept of chronotherapy and provide a perspective regarding its application to patients with epilepsy based on their individual characteristics (i.e., being a “morning person” or a “night owl”). We conclude that better understanding of the relationship between circadian rhythms, neuronal excitability, and seizures will allow both the identification of new therapeutic targets for treating epilepsy as well as more effective treatment regimens using currently available pharmacological and non-pharmacological strategies.
Collapse
Affiliation(s)
- Christopher J Re
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Alexander I Batterman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Jason R Gerstner
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
8
|
Jankovic MJ, Kapadia PP, Krishnan V. Home-cage monitoring ascertains signatures of ictal and interictal behavior in mouse models of generalized seizures. PLoS One 2019; 14:e0224856. [PMID: 31697745 PMCID: PMC6837443 DOI: 10.1371/journal.pone.0224856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is a significant contributor to worldwide disability. In epilepsy, disability can be broadly divided into two components: ictal (pertaining to the burden of unpredictable seizures and associated medical complications including death) and interictal (pertaining to more pervasive debilitating changes in cognitive and emotional behavior). In this study, we objectively and noninvasively appraise aspects of ictal and interictal behavior in mice using instrumented home-cage chambers designed to assay kinematic and appetitive behavioral measures. Through daily intraperitoneal injections of the chemoconvulsant pentylenetetrazole (PTZ) applied to C57BL/6J mice, we coordinately measure how “behavioral severity” (complex dynamic changes in movement and sheltering behavior) and convulsive severity (latency and occurrence of convulsive seizures) evolve or kindle with repeated injections. By closely studying long epochs between PTZ injections, we identify an interictal syndrome of nocturnal hypoactivity and increased sheltering behavior which remits with the cessation of seizure induction. We observe elements of this interictal behavioral syndrome in seizure-prone DBA/2J mice and in mice with a pathogenic Scn1a mutation (modeling Dravet syndrome). Through analyzing their responses to PTZ, we illustrate how convulsive severity and “behavioral” severity are distinct and independent aspects of the overall severity of a PTZ-induced seizure. Our results illustrate the utility of an ethologically centered automated approach to quantitatively appraise murine expressions of disability in mouse models of seizures and epilepsy. In doing so, this study highlights the very unique psychopharmacological profile of PTZ.
Collapse
Affiliation(s)
- Miranda J. Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Paarth P. Kapadia
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
9
|
Reddy DS, Chuang SH, Hunn D, Crepeau AZ, Maganti R. Neuroendocrine aspects of improving sleep in epilepsy. Epilepsy Res 2018; 147:32-41. [PMID: 30212766 PMCID: PMC6192845 DOI: 10.1016/j.eplepsyres.2018.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022]
Abstract
Sleep plays an intricate role in epilepsy and can affect the frequency and occurrence of seizures. With nearly 35% of U.S. adults failing to obtain the recommended 7 h of sleep every night, understanding the complex relationship between sleep and epilepsy is of utmost relevance. Sleep deprivation is a common trigger of seizures in many persons with epilepsy and sleep patterns play a role in the occurrence of seizures. Some patients have their first seizure or repeated seizures after an "all-nighter" at college or after a long period of chronic sleep deprivation. The strength of the relationship between sleep and seizures varies between patients, but improving sleep and optimizing seizure control can have significant positive effects on the quality of life for all these patients. Research has shown that the changes in the brain's electrical and hormonal activity occurring during normal sleep-wake cycles can be linked to both sleep and seizure patterns. Many questions remain to be answered about sleep and epilepsy. How can sleep deprivation trigger an epileptic seizure? How do circadian and hormonal changes influence sleep pattern and seizure occurrence? Can hormones or sleeping pills help with sleep in epilepsy? In this article we discuss these and many other questions on sleep in epilepsy, with an emphasis on sleep architecture, hormone changes, mechanistic factors, and possible prevention strategies.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA.
| | - Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA
| | - Dayton Hunn
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA
| | - Amy Z Crepeau
- Department of Neurology, Mayo Clinic Hospital, Phoenix, AZ 85054, USA
| | - Rama Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
10
|
Wallace E, Wright S, Schoenike B, Roopra A, Rho JM, Maganti RK. Altered circadian rhythms and oscillation of clock genes and sirtuin 1 in a model of sudden unexpected death in epilepsy. Epilepsia 2018; 59:1527-1539. [DOI: 10.1111/epi.14513] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Eli Wallace
- Cellular and Molecular Pathology Graduate Program; University of Wisconsin School of Medicine and Public Health; Madison WI USA
- Department of Neuroscience; University of Wisconsin School of Medicine and Public Health; Madison WI USA
- Department of Neurology; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Samantha Wright
- Department of Neurology; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Barry Schoenike
- Department of Neuroscience; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Avtar Roopra
- Department of Neuroscience; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Jong M. Rho
- Departments of Pediatrics, Clinical Neurosciences, and Physiology & Pharmacology; Alberta Children's Hospital Research Institute; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Rama K. Maganti
- Department of Neurology; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| |
Collapse
|
11
|
Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, Reid CA. Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. Pharmacol Rev 2018; 70:142-173. [PMID: 29263209 PMCID: PMC5738717 DOI: 10.1124/pr.117.014456] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Epilepsy is a common and serious neurologic disease with a strong genetic component. Genetic studies have identified an increasing collection of disease-causing genes. The impact of these genetic discoveries is wide reaching-from precise diagnosis and classification of syndromes to the discovery and validation of new drug targets and the development of disease-targeted therapeutic strategies. About 25% of genes identified in epilepsy encode ion channels. Much of our understanding of disease mechanisms comes from work focused on this class of protein. In this study, we review the genetic, molecular, and physiologic evidence supporting the pathogenic role of a number of different voltage- and ligand-activated ion channels in genetic epilepsy. We also review proposed disease mechanisms for each ion channel and highlight targeted therapeutic strategies.
Collapse
Affiliation(s)
- Julia Oyrer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Ingrid E Scheffer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Samuel F Berkovic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| |
Collapse
|