1
|
Proteins of the Nucleolus of Dictyostelium discoideum: Nucleolar Compartmentalization, Targeting Sequences, Protein Translocations and Binding Partners. Cells 2019; 8:cells8020167. [PMID: 30781559 PMCID: PMC6406644 DOI: 10.3390/cells8020167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
The nucleoli of Dictyostelium discoideum have a comparatively unique, non-canonical, localization adjacent to the inner nuclear membrane. The verified nucleolar proteins of this eukaryotic microbe are detailed while other potential proteins are introduced. Heat shock protein 32 (Hsp32), eukaryotic translation initiation factor 6 (eIF6), and tumour necrosis factor receptor-associated protein 1 (TRAP1) are essential for cell survival. NumA1, a breast cancer type 1 susceptibility protein-C Terminus domain-containing protein linked to cell cycle, functions in the regulation of nuclear number. The cell cycle checkpoint kinase 2 homologue forkhead-associated kinase A (FhkA) and BRG1-associated factor 60a homologue Snf12 are also discussed. While nucleoli appear homogeneous ultrastructurally, evidence for nucleolar subcompartments exists. Nucleolar localization sequences (NoLS) have been defined that target proteins to either the general nucleolar area or to a specific intranucleolar domain. Protein translocations during mitosis are protein-specific and support the multiple functions of the Dictyostelium nucleolus. To enrich the picture, binding partners of NumA1, the most well-characterized nucleolar protein, are examined: nucleolar Ca2+-binding protein 4a (CBP4a), nuclear puromycin-sensitive aminopeptidase A (PsaA) and Snf12. The role of Dictyostelium as a model for understanding the contribution of nucleolar proteins to various diseases and cellular stress is discussed throughout the review.
Collapse
|
2
|
Catalano A, O'Day DH. Evidence for nucleolar subcompartments in Dictyostelium. Biochem Biophys Res Commun 2014; 456:901-7. [PMID: 25522879 DOI: 10.1016/j.bbrc.2014.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
The nucleolus is a multifunctional nuclear compartment usually consisting of two to three subcompartments which represent stages of ribosomal biogenesis. It is linked to several human diseases including viral infections, cancer, and neurodegeneration. Dictyostelium is a model eukaryote for the study of fundamental biological processes as well as several human diseases however comparatively little is known about its nucleolus. Unlike most nucleoli it does not possess visible subcompartments at the ultrastructural level. Several recently identified nucleolar proteins in Dictyostelium leave the nucleolus after treatment with the rDNA transcription inhibitor actinomycin-D (AM-D). Different proteins exit in different ways, suggesting that previously unidentified nucleolar subcompartments may exist. The identification of nucleolar subcompartments would help to better understand the nucleolus in this model eukaryote. Here, we show that Dictyostelium nucleolar proteins nucleomorphin isoform NumA1 and Bud31 localize throughout the entire nucleolus while calcium-binding protein 4a localizes to only a portion, representing nucleolar subcompartment 1 (NoSC1). SWI/SNF complex member Snf12 localizes to a smaller area within NoSC1 representing a second nucleolar subcompartment, NoSC2. The nuclear/nucleolar localization signal KRKR from Snf12 localized GFP to NoSC2, and thus also appears to function as a nucleolar subcompartment localization signal. FhkA localizes to the nucleolar periphery displaying a similar pattern to that of Hsp32. Similarities between the redistribution patterns of Dictyostelium nucleolar proteins during nucleolar disruption as a result of either AM-D treatment or mitosis support these subcompartments. A model for the AM-D-induced redistribution patterns is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario L5L 1C6, Canada.
| | - Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
3
|
Chida J, Araki H, Maeda Y. Specific growth suppression of human cancer cells by targeted delivery of Dictyostelium mitochondrial ribosomal protein S4. Cancer Cell Int 2014; 14:56. [PMID: 24976792 PMCID: PMC4074393 DOI: 10.1186/1475-2867-14-56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/09/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In general, growth and differentiation are mutually exclusive but are cooperatively regulated throughout development. Thus, the process of a cell's switching from growth to differentiation is of great importance not only for the development of organisms but also for malignant transformation, in which this process is reversed. We have previously demonstrated using a Dictyostelium model system that the Dictyostelium mitochondrial ribosomal protein S4 (Dd-mrp4) gene expression is essential for the initiation of cell differentiation: Dd-mrp4-null cells fail to initiate differentiation, while the initial step of cell differentiation and the subsequent morphogenesis are markedly enhanced in mrp4 (OE) cells overexpressing the Dd-mrp4 in the extramitochondrial cytoplasm. This raised a possibility that the ectopically enforced expression of the Dd-mrp4 in human cells might inhibit their growth, particularly of malignant tumor cells, by inducing cell differentiation. METHODS FOUR KINDS OF HUMAN TUMOR CELL LINES WERE TRANSFECTED BY THREE KIND OF VECTOR CONSTRUCTS (THE EMPTY VECTOR: pcDNA3.1 (Mock); pcDNA3.1-rps4 bearing Dictyostelium cytoplasmic ribosomal protein S4; pcDNA3.1-mrp4 bearing Dictyostelium mitochondrial ribosomal protein S4). As controls, four kinds of human primary cultured cells were similarly transfected by the above vector constructs. After transfection, growth kinetics of cells was analyzed using cell viability assay, and also the TUNEL method was used for evaluation of apoptotic cells. RESULTS Ectopically expressed Dd-mrp4 suppressed cell proliferation through inducing apoptotic cell death specifically in the human lung adenocarcinoma (A549), epithelial cervical cancer (HeLa), hepatocellular carcinoma (HepG2) and colonic carcinoma (Caco-2), but not in primary cultured normal cells, such as human brain microvascular endothelial cells (HBMECs); human umbilical vein endothelial cells (HUVECs) and human normal hepatocytes (hHeps™), with one exception (human cardiac fibloblasts (HCF)). CONCLUSION The present finding that the ectopically enforced expression of Dd-mrp4 in human several tumor cell lines specifically suppresses their proliferation suggests strongly that the Dd-mrp4 gene derived from Dictyostelium mitochondria may provide a new promising therapeutic strategy for disrupting cell viability pathways in human cancers.
Collapse
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hikaru Araki
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Maeda Y, Chida J. Control of cell differentiation by mitochondria, typically evidenced in dictyostelium development. Biomolecules 2013; 3:943-66. [PMID: 24970198 PMCID: PMC4030964 DOI: 10.3390/biom3040943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/01/2013] [Accepted: 11/02/2013] [Indexed: 01/15/2023] Open
Abstract
In eukaryotic cells, mitochondria are self-reproducing organelles with their own DNA and they play a central role in adenosine triphosphate (ATP) synthesis by respiration. Increasing evidence indicates that mitochondria also have critical and multiple functions in the initiation of cell differentiation, cell-type determination, cell movement, and pattern formation. This has been most strikingly realized in development of the cellular slime mold Dictyostelium. For example, the expression of the mitochondrial ribosomal protein S4 (mt-rps4) gene is required for the initial differentiation. The Dictyostelium homologue (Dd-TRAP1) of TRAP-1 (tumor necrosis receptor-associated protein 1), a mitochondrial molecular chaperone belonging to the Hsp90 family, allows the prompt transition of cells from growth to differentiation through a novel prestarvation factor (PSF-3) in growth medium. Moreover, a cell-type-specific organelle named a prespore-specific vacuole (PSV) is constructed by mitochondrial transformation with the help of the Golgi complex. Mitochondria are also closely involved in a variety of cellular activities including CN-resistant respiration and apoptosis. These mitochondrial functions are reviewed in this article, with special emphasis on the regulation of Dictyostelium development.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan.
| | - Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
5
|
Catalano A, O'Day DH. Rad53 homologue forkhead-associated kinase A (FhkA) and Ca2+-binding protein 4a (CBP4a) are nucleolar proteins that differentially redistribute during mitosis in Dictyostelium. Cell Div 2013; 8:4. [PMID: 23587254 PMCID: PMC3637376 DOI: 10.1186/1747-1028-8-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND During mitosis most nucleolar proteins redistribute to other locales providing an opportunity to study the relationship between nucleolar protein localization and function. Dictyostelium is a model organism for the study of several fundamental biological processes and human diseases but only two nucleolar proteins have been studied during mitosis: NumA1 and Snf12. Both of them are linked to the cell cycle. To acquire a better understanding of nucleolar protein localization and dynamics in Dictyostelium we studied the nucleolar localization of two additional proteins during mitosis: Snf12-linked forkhead-associated kinase A (FhkA), which is involved in the cell cycle, and Ca2+-binding protein 4a (CBP4a), which is a binding partner of NumA1. METHODS Polyclonal antibodies were produced in-house. Cells were fixed and probed with either anti-FhkA or anti-CBP4a in order to determine cellular localization during interphase and throughout the stages of mitosis. Colocalization with DAPI nuclear stain allowed us to determine the location of the nucleus and nucleolus while colocalization with anti-α-tubulin allowed us to determine the cell cycle stage. RESULTS Here we verify two novel nucleolar proteins, Rad53 homologue FhkA which localized around the edge of the nucleolus and CBP4a which was detected throughout the entire nucleolus. Treatment with the Ca2+ chelator BAPTA (5 mM) showed that the nucleolar localization of CBP4a is Ca2+-dependent. In response to actinomycin D (0.05 mg/mL) CBP4a disappeared from the nucleolus while FhkA protruded from the nucleus, eventually pinching off as cytoplasmic circles. FhkA and CBP4a redistributed differently during mitosis. FhkA redistributed throughout the entire cell and at the nuclear envelope region from prometaphase through telophase. In contrast, during prometaphase CBP4a relocated to many large, discrete "CBP4a islands" throughout the nucleoplasm. Two larger "CBP4a islands" were also detected specifically at the metaphase plate region. CONCLUSIONS FhkA and CBP4a represent the sixth and seventh nucleolar proteins that have been verified to date in Dictyostelium and the third and fourth studied during mitosis. The protein-specific distributions of all of these nucleolar proteins during interphase and mitosis provide unique insight into nucleolar protein dynamics in this model organism setting the stage for future work.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord st,, Toronto, ON M5S 3G5, Canada.
| | | |
Collapse
|
6
|
Nucleoplasmic/nucleolar translocation and identification of a nuclear localization signal (NLS) in Dictyostelium BAF60a/SMARCD1 homologue Snf12. Histochem Cell Biol 2012; 138:515-30. [PMID: 22623154 DOI: 10.1007/s00418-012-0973-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Dictyostelium is a model eukaryote for the study of several cellular processes; however, comparatively little is known about its nucleolus. Identification of nucleolar proteins is key to understanding this nuclear subcompartment, but only four have been identified in Dictyostelium. As discussed in this article, a potential relationship between nucleolar NumA1 and BAF60a/SMARCD1 suggested BAF60a may also reside in the nucleolus. Here, we identify BAF60a homologue Snf12 as the fifth nucleolar protein in Dictyostelium. Immunolocalization experiments demonstrate that Snf12 is nucleoplasmic, but translocates to nucleoli upon actinomycin-D-induced transcription inhibition (0.05 mg/mL, 4 h). Translocation was accompanied by a microtubule-independent protrusion of nucleolar Snf12 regions from the nucleus followed by detection of Snf12 in cytoplasmic circles for at least 48 h. Residues (372)KRKR(375) are both necessary and sufficient for nucleoplasmic localization of Snf12 and represent a functional nuclear localization signal (NLS), similar to recently identified NLSs in other Dictyostelium proteins. Since nucleolar and nucleoplasmic proteins redistribute during mitosis, we investigated Snf12 dynamics during this time. Dictyostelium undergoes closed mitosis, meaning its nuclear envelope remains intact. Despite this, during metaphase and anaphase Snf12 redistributed throughout the cytoplasm before reaccumulating in the nucleus during telophase, unlike the previously reported nucleoplasmic redistribution of nucleolar NumA1. The nuclear exit of Snf12 was independent of its putative nuclear export signal and not inhibited by exportin inhibition, suggesting that the redistribution of nuclear proteins during mitosis in Dictyostelium is mediated by other mechanisms. Snf12 is the second Dictyostelium nucleolar protein for which its dynamics during mitosis have been investigated.
Collapse
|
7
|
JiangFeng F, Jiu YS, Wen ZZ, Ben L. The expression of Fas/FasL and apoptosis in yak placentomes. Anim Reprod Sci 2011; 128:107-16. [PMID: 22014664 DOI: 10.1016/j.anireprosci.2011.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 09/08/2011] [Accepted: 09/16/2011] [Indexed: 11/15/2022]
Abstract
To clarify the status and distribution of Fas and Fas-Ligand (FasL) in yak's placentomes, immunohistochemistry (IHC) was carried out to analyze the expression and location of Fas and FasL in paraffin embedded sections. The area of positive stained sites was selected and measured using image analyses software (Image Pro-Plus 6.0). So the positive index (PI) was calculated to estimate the intensity of protein expression according to the percentage of positive area in corresponding compartment of the placentomes. In cotyledonary villi, Fas mainly presented on the villous trophoblast cells in early pregnancy. The positive index reached a maximum of 20.7±8.8 at the third month of pregnancy. Then Fas was declined rapidly along with the progress of gestation and the value was 2.8±1.3 after the 7th month of pregnancy. However, in caruncular crypts, Fas was mainly localized to isolated cells or clustered cells of the uterine stroma underlying the caruncular epithelium. The intensity was lower and the positive index was changed between 4.7±0.9 and 8.5±1.6 throughout gestation. For FasL, it gave a distinct immunostained distribution. In cotyledonary villi, FasL was localized dominantly and strongly in the cytoplasm of binuclear, mononuclear and trinuclear trophoblast giant cells (TGC). The positive index of FasL maintained a moderate level all through the gestation. In caruncular crypts, the expression of FasL was weak and the positive index was declined. Only in the first two months, maternal uterine epithelial cells intensely expressed FasL and the index reached to the maximum of 19.8±5.2. The result of subcellular localization of Fas ligand using immunoelectron microscopy technology indicated that FasL was subcellular located in some intracellular vesicles of TGC. This means the vesicles of trophoblast giant cells itself can express FasL. By the TUNEL method, apoptosis was detected in yak placentomes. The amount of apoptotic cells was rare. The fetal chorionic trophoblast cells and caruncular crypt epithelium cells demonstrated higher percentage of apoptosis in middle pregnancy, which suggested that apoptosis plays an important role in placental cellular regeneration. In addition, the apoptosis of maternal caruncular stromal cells provides a local mechanism for maternal immunotolerance to the fetus and this mechanism was mediated by Fas-FasL pathway.
Collapse
Affiliation(s)
- Fan JiangFeng
- Academic of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, PR China
| | | | | | | |
Collapse
|
8
|
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance for the development of organisms, and terminally differentiated cells such as nerve cells never divide. Meanwhile, the growth rate speeds up when cells turn malignant. The cellular slime mold Dictyostelium discoideum grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A critical checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been precisely specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of the GDT point, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and multiple functions of mitochondria in various respects of development including the initiation of differentiation have been directly realized in Dictyostelium cells, they are also reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan.
| |
Collapse
|
9
|
Nucleolar localization and identification of nuclear/nucleolar localization signals of the calmodulin-binding protein nucleomorphin during growth and mitosis in Dictyostelium. Histochem Cell Biol 2011; 135:239-49. [PMID: 21327858 DOI: 10.1007/s00418-011-0785-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2011] [Indexed: 10/18/2022]
Abstract
The calmodulin-binding protein nucleomorphin isoform NumA1 is a nuclear number regulator in Dictyostelium that localizes to intra-nuclear patches adjacent to the nuclear envelope and to a lesser extent the nucleoplasm. Earlier studies have shown similar patches to be nucleoli but only three nucleolar proteins have been identified in Dictyostelium. Here, actinomycin-D treatment caused the loss of NumA1 localization, while calcium and calmodulin antagonists had no effect. In keeping with a nucleolar function, NumA1 moved out of the presumptive nucleoli during mitosis redistributing to areas within the nucleus, the spindle fibers, and centrosomal region before re-accumulating in the presumptive nucleoli at telophase. Together, these data verify NumA1 as a true nucleolar protein. Prior to this study, the dynamics of specific nucleolar proteins had not been determined during mitosis in Dictyostelium. FITC-conjugated peptides equivalent to presumptive nuclear localization signals within NumA1 localized to nucleoli indicating that they also act as nucleolar localization signals. To our knowledge, these represent the first precisely defined nucleolar localization signals as well as the first nuclear/nucleolar localization signals identified in Dictyostelium. Together, these results reveal that NumA1 is a true nucleolar protein and the only nucleolar calmodulin-binding protein identified in Dictyostelium. The possible use of nuclear/nucleolar localization signal-mediated drug targeting to nucleoli is discussed.
Collapse
|
10
|
Clark MS, Thorne MAS, Toullec JY, Meng Y, Guan LL, Peck LS, Moore S. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 2011; 6:e15919. [PMID: 21253607 PMCID: PMC3017093 DOI: 10.1371/journal.pone.0015919] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/07/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The Antarctic krill Euphausia superba is a keystone species in the Antarctic food chain. Not only is it a significant grazer of phytoplankton, but it is also a major food item for charismatic megafauna such as whales and seals and an important Southern Ocean fisheries crop. Ecological data suggest that this species is being affected by climate change and this will have considerable consequences for the balance of the Southern Ocean ecosystem. Hence, understanding how this organism functions is a priority area and will provide fundamental data for life history studies, energy budget calculations and food web models. METHODOLOGY/PRINCIPAL FINDINGS The assembly of the 454 transcriptome of E. superba resulted in 22,177 contigs with an average size of 492bp (ranging between 137 and 8515bp). In depth analysis of the data revealed an extensive catalogue of the cellular chaperone systems and the major antioxidant proteins. Full length sequences were characterised for the chaperones HSP70, HSP90 and the super-oxide dismutase antioxidants, with the discovery of potentially novel duplications of these genes. The sequence data contained 41,470 microsatellites and 17,776 Single Nucleotide Polymorphisms (SNPs/INDELS), providing a resource for population and also gene function studies. CONCLUSIONS This paper details the first 454 generated data for a pelagic Antarctic species or any pelagic crustacean globally. The classical "stress proteins", such as HSP70, HSP90, ferritin and GST were all highly expressed. These genes were shown to be over expressed in the transcriptomes of Antarctic notothenioid fish and hypothesized as adaptations to living in the cold, with the associated problems of decreased protein folding efficiency and increased vulnerability to damage by reactive oxygen species. Hence, these data will provide a major resource for future physiological work on krill, but in particular a suite of "stress" genes for studies understanding marine ectotherms' capacities to cope with environmental change.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
11
|
Francione LM, Annesley SJ, Carilla-Latorre S, Escalante R, Fisher PR. The Dictyostelium model for mitochondrial disease. Semin Cell Dev Biol 2010; 22:120-30. [PMID: 21129494 DOI: 10.1016/j.semcdb.2010.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/19/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022]
Abstract
Mitochondrial diseases are a diverse family of genetic disorders caused by mutations affecting mitochondrial proteins encoded in either the nuclear or the mitochondrial genome. By impairing mitochondrial oxidative phosphorylation, they compromise cellular energy production and the downstream consequences in humans are a bewilderingly complex array of signs and symptoms that can affect any of the major organ systems in unpredictable combinations. This complexity and unpredictability has limited our understanding of the cytopathological consequences of mitochondrial dysfunction. By contrast, in Dictyostelium the mitochondrial disease phenotypes are consistent, measurable "readouts" of dysregulated intracellular signalling pathways. When the underlying genetic defects would produce coordinate, generalized deficiencies in multiple mitochondrial respiratory complexes, the disease phenotypes are mediated by chronic activation of an energy-sensing protein kinase, AMP-activated protein kinase (AMPK). This chronic AMPK hyperactivity maintains mitochondrial mass and cellular ATP concentrations at normal levels, but chronically impairs growth, cell cycle progression, multicellular development, photosensory and thermosensory signal transduction. It also causes the cells to support greater proliferation of the intracellular bacterial pathogen, Legionella pneumophila. Notably however, phagocytic and macropinocytic nutrient uptake are impervious both to AMPK signalling and to these types of mitochondrial dysfunction. Surprisingly, a Complex I-specific deficiency (midA knockout) not only causes the foregoing AMPK-mediated defects, but also produces a dramatic deficit in endocytic nutrient uptake accompanied by an additional secondary defect in growth. More restricted and specific phenotypic outcomes are produced by knocking out genes for nuclear-encoded mitochondrial proteins that are not required for respiration. The Dictyostelium model for mitochondrial disease has thus revealed consistent patterns of sublethal dysregulation of intracellular signalling pathways that are produced by different types of underlying mitochondrial dysfunction.
Collapse
|
12
|
Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK. Heat shock proteins in toxicology: How close and how far? Life Sci 2010; 86:377-84. [DOI: 10.1016/j.lfs.2009.12.015] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/22/2009] [Accepted: 12/31/2009] [Indexed: 01/03/2023]
|
13
|
Czarna M, Mathy G, Mac'Cord A, Dobson R, Jarmuszkiewicz W, Sluse-Goffart CM, Leprince P, De Pauw E, Sluse FE. Dynamics of the Dictyostelium discoideum mitochondrial proteome during vegetative growth, starvation and early stages of development. Proteomics 2010; 10:6-22. [PMID: 20013782 DOI: 10.1002/pmic.200900352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2-D DIGE technology allowed the detection of around 2000 protein spots on each 2-D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CM Ros showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation-induced development.
Collapse
Affiliation(s)
- Malgorzata Czarna
- Laboratory of Bioenergetics and Cellular Physiology, University of Liege, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tapia H, Morano KA. Hsp90 nuclear accumulation in quiescence is linked to chaperone function and spore development in yeast. Mol Biol Cell 2009; 21:63-72. [PMID: 19889838 PMCID: PMC2801720 DOI: 10.1091/mbc.e09-05-0376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protein chaperone Hsp90 and its co-chaperone Sba1/p23 are found to accumulate in the nucleus of haploid yeast cells as glucose is exhausted and in sporulating diploids. Novel and existing Hsp90 mutants exhibit defects in nuclear translocation and spore development, linking these two phenomena. The 90-kDa heat-shock protein (Hsp90) operates in the context of a multichaperone complex to promote maturation of nuclear and cytoplasmic clients. We have discovered that Hsp90 and the cochaperone Sba1/p23 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells. Hsp90 nuclear accumulation was unaffected in sba1Δ cells, demonstrating that Hsp82 translocates independently of Sba1. Translocation of both chaperones was dependent on the α/β importin SRP1/KAP95. Hsp90 nuclear retention was coincident with glucose exhaustion and seems to be a starvation-specific response, as heat shock or 10% ethanol stress failed to elicit translocation. We generated nuclear accumulation-defective HSP82 mutants to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to retain Hsp90 in the cytoplasm in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program.
Collapse
Affiliation(s)
- Hugo Tapia
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Maeda Y, Mayanagi T, Amagai A. Folic Acid is A Potent Chemoattractant of Free-Living Amoebae in A New and Amazing Species of Protist,Vahlkampfiasp. Zoolog Sci 2009; 26:179-86. [DOI: 10.2108/zsj.26.179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Prassinos C, Haralampidis K, Milioni D, Samakovli D, Krambis K, Hatzopoulos P. Complexity of Hsp90 in organelle targeting. PLANT MOLECULAR BIOLOGY 2008; 67:323-34. [PMID: 18368500 DOI: 10.1007/s11103-008-9322-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 03/14/2008] [Indexed: 05/09/2023]
Abstract
Heat shock protein 90 (Hsp90) is an abundant and highly conserved molecular chaperone. In Arabidopsis, the Hsp90 gene family consists of seven members. Here, we report that the AtHsp90-6 gene gives rise to two mRNA populations, termed AtHsp90-6L and AtHsp90-6S due to alternative initiation of transcription. The AtHsp90-6L and AtHsp90-6S transcription start sites are located 228 nucleotides upstream and 124 nucleotides downstream of the annotated translation start site, respectively. Both transcripts are detected under normal or heat-shock conditions. The inducibility of AtHsp90-6 mRNAs by heat shock implies a potential role of both isoforms in stress management. Stable transformation experiments with fusion constructs between the N-terminal part of each AtHsp90-6 isoform and green fluorescent protein indicated import of both fusion proteins into mitochondria. In planta investigation confirmed that fusion of the AtHsp90-5 N-terminus to green fluorescent protein (GFP) did result in specific chloroplastic localization. The mechanisms of regulation for mitochondria- and plastid-localized chaperone-encoding genes are not well understood. Future work is needed to address the possible roles of harsh environmental conditions and developmental processes on fine-tuning and compartmentalization of the AtHsp90-6L, AtHsp90-6S, and AtHsp90-5 proteins in Arabidopsis.
Collapse
Affiliation(s)
- Constantinos Prassinos
- Laboratory of Molecular Biology, Agricultural Biotechnology Department, Agricultural University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
17
|
Hirata K, Amagai A, Chae SC, Hirose S, Maeda Y. Involvements of a novel protein, DIA2, in cAMP signaling and spore differentiation during Dictyostelium development. Differentiation 2008; 76:310-322. [PMID: 17825085 DOI: 10.1111/j.1432-0436.2007.00217.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The novel gene dia2 (differentiation-associated gene 2) was originally isolated as a gene expressed specifically in response to initial differentiation of Dictyostelium discoideum Ax-2 cells. Using dia2(AS) cells in which the dia2 expression was inactivated by the antisense RNA method, DIA2 protein was found to be required for cAMP signaling during cell aggregation. During late development, the DIA2 protein changed its location from the endoplasmic reticulum (ER) to prespore-specific vacuoles (PSVs) that are specifically present in prespore cells of the slug. In differentiating prestalk cells, however, DIA2 was found to be nearly lost from the cells. Importantly, exocytosis of PSVs from prespore cells and the subsequent spore differentiation were almost completely impaired in dia2(AS) cells. In addition, spore induction by externally applied 8-bromo cAMP was significantly suppressed in dia2(AS) cells. Taken together, these results strongly suggested that DIA2 might be closely involved in cAMP signaling and spore differentiation as well as in the initiation of differentiation during Dictyostelium development.
Collapse
Affiliation(s)
- Kaori Hirata
- Department of Developmental Biology and Neurosciences Graduate School of Life Sciences Tohoku University Aoba, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
18
|
Leskovar A, Wegele H, Werbeck ND, Buchner J, Reinstein J. The ATPase cycle of the mitochondrial Hsp90 analog Trap1. J Biol Chem 2008; 283:11677-88. [PMID: 18287101 DOI: 10.1074/jbc.m709516200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hsp90 is an ATP-dependent molecular chaperone whose mechanism is not yet understood in detail. Here, we present the first ATPase cycle for the mitochondrial member of the Hsp90 family called Trap1 (tumor necrosis factor receptor-associated protein 1). Using biochemical, thermodynamic, and rapid kinetic methods we dissected the kinetics of the nucleotide-regulated rearrangements between the open and the closed conformations. Surprisingly, upon ATP binding, Trap1 shifts predominantly to the closed conformation (70%), but, unlike cytosolic Hsp90 from yeast, this process is rather slow at 0.076 s(-1). Because reopening (0.034 s(-1)) is about ten times faster than hydrolysis (k(hyd) = 0.0039 s(-1)), which is the rate-limiting step, Trap1 is not able to commit ATP to hydrolysis. The proposed ATPase cycle was further scrutinized by a global fitting procedure that utilizes all relevant experimental data simultaneously. This analysis corroborates our model of a two-step binding mechanism of ATP followed by irreversible ATP hydrolysis and a one-step product (ADP) release.
Collapse
Affiliation(s)
- Adriane Leskovar
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | | | | | | | | |
Collapse
|
19
|
Barth C, Le P, Fisher PR. Mitochondrial biology and disease in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:207-52. [PMID: 17725968 DOI: 10.1016/s0074-7696(07)63005-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cellular slime mold Dictyostelium discoideum has become an increasingly useful model for the study of mitochondrial biology and disease. Dictyostelium is an amoebazoan, a sister clade to the animal and fungal lineages. The mitochondrial biology of Dictyostelium exhibits some features which are unique, others which are common to all eukaryotes, and still others that are otherwise found only in the plant or the animal lineages. The AT-rich mitochondrial genome of Dictyostelium is larger than its mammalian counterpart and contains 56kb (compared to 17kb in mammals) encoding tRNAs, rRNAs, and 33 polypeptides (compared to 13 in mammals). It produces a single primary transcript that is cotranscriptionally processed into multiple monocistronic, dicistronic, and tricistronic mRNAs, tRNAs, and rRNAs. The mitochondrial fission mechanism employed by Dictyostelium involves both the extramitochondrial dynamin-based system used by plant, animal, and fungal mitochondria and the ancient FtsZ-based intramitochondrial fission process inherited from the bacterial ancestor. The mitochondrial protein-import apparatus is homologous to that of other eukaryote, and mitochondria in Dictyostelium play an important role in the programmed cell death pathways. Mitochondrial disease in Dictyostelium has been created both by targeted gene disruptions and by antisense RNA and RNAi inhibition of expression of essential nucleus-encoded mitochondrial proteins. This has revealed a regular pattern of aberrant mitochondrial disease phenotypes caused not by ATP insufficiency per se, but by chronic activation of the universal eukaryotic energy-sensing protein kinase AMPK. This novel insight into the cytopathological mechanisms of mitochondrial dysfunction suggests new possibilities for therapeutic intervention in mitochondrial and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Barth
- Department of Microbiology, La Trobe University, Melbourne VIC 3086, Australia
| | | | | |
Collapse
|
20
|
Morita T, Yamaguchi H, Amagai A, Maeda Y. Involvement of the TRAP-1 homologue, Dd-TRAP1, in spore differentiation during Dictyostelium development. Exp Cell Res 2005; 303:425-31. [PMID: 15652354 DOI: 10.1016/j.yexcr.2004.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/06/2004] [Accepted: 10/18/2004] [Indexed: 11/25/2022]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a member of the molecular chaperone HSP90 (90-kDa heat shock protein) family. We have previously demonstrated that Dictyostelium discoideum TRAP1 (Dd-TRAP1) synthesized at the vegetative growth phase is retained during the whole course of D. discoideum development, and that at the multicellular slug stage, it is located in prespore-specific vacuoles (PSVs) of prespore cells as well as in the cell membrane and mitochondria. Thereupon, we examined the function of Dd-TRAP1 in prepore and spore differentiation, using Dd-TRAP1-knockdown cells (TRAP1-RNAi cells) produced by the RNA interference method. As was expected, Dd-TRAP1 contained in the PSV was found to be exocytosed during sporulation to constitute the outer-most layer of the spore cell wall. In the TRAP1-RNAi cells, PSV formation and therefore prespore differentiation were significantly impaired, particularly under a heat stress condition. Although the TRAP1-RNAi cells formed apparently normal-shaped spores with a cellulosic wall, the spores were less resistant to heat and detergent treatments, as compared with those of parental MB35 cells derived from Ax-2 cells. These findings strongly suggest that Dd-TRAP1 may be closely involved in late development including spore differentiation, as well as in early development as realized by its induction of prestarvation response.
Collapse
Affiliation(s)
- T Morita
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
21
|
Maeda Y. Regulation of growth and differentiation in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:287-332. [PMID: 16157183 DOI: 10.1016/s0074-7696(05)44007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance not only for the development of organisms but also for the initiation of malignant transformation, in which this process is reversed. The cellular slime mold Dictyostelium, a wonderful model organism, grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A strict checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of GDT points, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and somewhat unexpected multiple functions of mitochondria in cell movement, differentiation, and pattern formation have been well realized in Dictyostelium cells, they are reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|