1
|
Tompkins YH, Chen C, Sweeney KM, Kim M, Voy BH, Wilson JL, Kim WK. The effects of maternal fish oil supplementation rich in n-3 PUFA on offspring-broiler growth performance, body composition and bone microstructure. PLoS One 2022; 17:e0273025. [PMID: 35972954 PMCID: PMC9380956 DOI: 10.1371/journal.pone.0273025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
This study evaluated the effects of maternal fish oil supplementation rich in n-3 PUFA on the performance and bone health of offspring broilers at embryonic development stage and at market age. Ross 708 broiler breeder hens were fed standard diets containing either 2.3% soybean oil (SO) or fish oil (FO) for 28 days. Their fertilized eggs were collected and hatched. For a pre-hatch study, left tibia samples were collected at 18 days of incubation. For a post-hatch study, a total of 240 male chicks from each maternal treatment were randomly selected and assigned to 12 floor pens and provided with the same broiler diets. At 42 days of age, growth performance, body composition, bone microstructure, and expression of key bone marrow osteogenic and adipogenic genes were evaluated. One-way ANOVA was performed, and means were compared by student’s t-test. Maternal use of FO in breeder hen diet increased bone mineral content (p < 0.01), bone tissue volume (p < 0.05), and bone surface area (p < 0.05), but decreased total porosity volume (p < 0.01) during the embryonic development period. The FO group showed higher body weight gain and feed intake at the finisher stage than the SO group. Body composition analyses by dual-energy X-ray absorptiometry showed that the FO group had higher fat percentage and higher fat mass at day 1, but higher lean mass and total body mass at market age. The decreased expression of key adipogenic genes in the FO group suggested that prenatal FO supplementation in breeder hen diet suppressed adipogenesis in offspring bone marrow. Furthermore, no major differences were observed in expression of osteogenesis marker genes, microstructure change in trabecular bone, or bone mineral density. However, a significant higher close pores/open pores ratio suggested an improvement on bone health of the FO group. Thus, this study indicates that maternal fish oil diet rich in n-3 PUFA could have a favorable impact on fat mass and skeletal integrity in broiler offspring.
Collapse
Affiliation(s)
- Yuguo H. Tompkins
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Kelly M. Sweeney
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Minjeong Kim
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Brynn H. Voy
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jeanna L. Wilson
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
2
|
Du Y, Mao L, Wang Z, Yan K, Zhang L, Zou J. Osteopontin - The stirring multifunctional regulatory factor in multisystem aging. Front Endocrinol (Lausanne) 2022; 13:1014853. [PMID: 36619570 PMCID: PMC9813443 DOI: 10.3389/fendo.2022.1014853] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional noncollagenous matrix phosphoprotein that is expressed both intracellularly and extracellularly in various tissues. As a growth regulatory protein and proinflammatory immunochemokine, OPN is involved in the pathological processes of many diseases. Recent studies have found that OPN is widely involved in the aging processes of multiple organs and tissues, such as T-cell senescence, atherosclerosis, skeletal muscle regeneration, osteoporosis, neurodegenerative changes, hematopoietic stem cell reconstruction, and retinal aging. However, the regulatory roles and mechanisms of OPN in the aging process of different tissues are not uniform, and OPN even has diverse roles in different developmental stages of the same tissue, generating uncertainty for the future study and utilization of OPN. In this review, we will summarize the regulatory role and molecular mechanism of OPN in different tissues and cells, such as the musculoskeletal system, central nervous system, cardiovascular system, liver, and eye, during senescence. We believe that a better understanding of the mechanism of OPN in the aging process will help us develop targeted and comprehensive therapeutic strategies to fight the spread of age-related diseases.
Collapse
|
3
|
Qiu X, Zhuang M, Lu Z, Liu Z, Cheng D, Zhu C, Liu J. RIPK1 suppresses apoptosis mediated by TNF and caspase-3 in intervertebral discs. J Transl Med 2019; 17:135. [PMID: 31029152 PMCID: PMC6487042 DOI: 10.1186/s12967-019-1886-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Low back pain has become a serious social and economic burden and the leading cause of disability worldwide. Among a variety of pathophysiological triggers, intervertebral disc (IVD) degeneration plays a primary underlying role in causing such pain. Specifically, multiple independent endplate changes have been implicated in the initiation and progression of IVD degeneration. METHODS In this study, we built a signaling network comprising both well-characterized IVD pathology-associated proteins as well as some potentially correlated proteins that have been associated with one or more of the currently known pathology-associated proteins. We then screened for the potential IVD degeneration-associated proteins using patients' normal and degenerative endplate specimens. Short hairpin RNAs for receptor interacting serine/threonine kinase 1 (RIPK1) were constructed to examine the effects of RIPK1 knockdown in primary chondrocyte cells and in animal models of caudal vertebra intervertebral disc degeneration in vivo. RESULTS RIPK1 was identified as a potential IVD degeneration-associated protein based on IVD pathology-associated signaling networks and the patients' degenerated endplate specimens. Construction of the short hairpin RNAs was successful, with short-term RIPK1 knockdown triggering inflammation in the primary chondrocytes, while long-term knockdown triggered apoptosis through cleavage of the caspase 3 pathway, down-regulated NF-κB and mitogen-activating protein kinase (MAPK)s cascades, and decreased cell survival and inflammation. Animal models of caudal vertebra intervertebral disc degeneration further demonstrated that apoptosis was induced by up-regulation of tumor necrosis factor (TNF) accompanied by down-regulation of NF-κB and MAPKs cascades that are dependent on caspase and RIPK1. CONCLUSIONS These results provide proof-of-concept for developing novel therapies to combat IVD degeneration through interfering with RIPK1-mediated apoptosis signaling pathways especially in patients with RIPK1 abnormality.
Collapse
Affiliation(s)
- Xubin Qiu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Ming Zhuang
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Zhiwei Liu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Dong Cheng
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Chenlei Zhu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| | - Jinbo Liu
- Department of Spine, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Tianning District, Changzhou, 213003 Jiangsu China
| |
Collapse
|
4
|
Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. Microgravity Stress: Bone and Connective Tissue. Compr Physiol 2016; 6:645-86. [PMID: 27065165 DOI: 10.1002/cphy.c130027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions.
Collapse
Affiliation(s)
- Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Daniel A Martinez
- Department of Mechanical Engineering, University of Houston, Houston, Texas, USA
| | - Ramon D Boudreaux
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Anita V Mantri
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA.,Health Science Center School of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Wei QS, Wang HB, Wang JL, Fang B, Zhou GQ, Tan X, He W, Deng WM. Combination treatment with whole body vibration and a kidney-tonifying herbal Fufang prevent osteoporosis in ovariectomized rats. Orthop Surg 2015; 7:57-65. [PMID: 25708037 DOI: 10.1111/os.12161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/30/2014] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To assess the ability of whole body vibration (WBV) with the kidney-tonifying herbal Fufang (Bushen Zhuanggu Granules, BZG) to prevent osteoporosis in ovariectomized rats. METHODS Fifty 6-month-old female Sprague Dawley rats were divided into five groups: sham-operated (SHAM), ovariectomized (OVX), OVX with WBV (OVX + WBV), OVX with BZG (OVX + BZG), OVX with both WBV and BZG (OVX + WBV + BZG). The SHAM group received normal saline. After 12 weeks of treatment, the rats were killed, their serum concentrations of osteopontin (OPN), receptor activator of nuclear factor kappa-B ligand RANKL and bone turnover markers assayed and bone mineral density (BMD), histomorphometry and bone strength evaluated. RESULTS Concentrations of OPN were significantly lower in the SHAM, OVX + WBV and OVX + WBV + BZG groups at 12 weeks, whereas concentrations of RANKL had decreased significantly in the SHAM, OVX + WBV, OVX + BZG and OVX + WBV + BZG groups. In the OVX + WBV, OVX + BZG and OVX + WBV + BZG groups the amount of bone turnover had been significantly antagonized. Compared with OVX group, BMD, % trabecular area (Tb.Ar), number of trabeculae (Tb.N) and assessed biomechanical variables were higher in OVX+WBV group, whereas and BMD, %Tb.Ar, Tb.N, maximal load and yield load were higher in the OVX + BZG group. All tested indices were significantly lower in the OVX + WBV and OVX + BZG groups than in the OVX + WBV + BZG group. CONCLUSION Either WBV or BZG alone prevents OVX-induced bone loss. However, BZG enhances the effect of WBV by further enhancing BMD, bone architecture and strength.
Collapse
Affiliation(s)
- Qiu-shi Wei
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Moriya S, Izu Y, Arayal S, Kawasaki M, Hata K, Pawaputanon Na Mahasarakhahm C, Izumi Y, Saftig P, Kaneko K, Noda M, Ezura Y. Cathepsin K Deficiency Suppresses Disuse-Induced Bone Loss. J Cell Physiol 2015; 231:1163-70. [DOI: 10.1002/jcp.25214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Shuichi Moriya
- Department of Molecular Pharmacology; Tokyo Medical and Dental University; Tokyo Japan
- Department of Orthopaedic Surgery; Juntendo University School of Medicine; Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology; Tokyo Medical and Dental University; Tokyo Japan
| | - Smriti Arayal
- Department of Molecular Pharmacology; Tokyo Medical and Dental University; Tokyo Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology; Tokyo Medical and Dental University; Tokyo Japan
| | - Koki Hata
- Department of Molecular Pharmacology; Tokyo Medical and Dental University; Tokyo Japan
| | - Chantida Pawaputanon Na Mahasarakhahm
- Department of Molecular Pharmacology; Tokyo Medical and Dental University; Tokyo Japan
- Department of Periodontology; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
| | - Yuichi Izumi
- Department of Periodontology; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
| | - Paul Saftig
- Zentrum Biochemie und Molekulare Zellbiologie; Abteilung Biochemie II; Universität Göttingen; Gosslerstrasse Göttingen Germany
| | - Kazuo Kaneko
- Department of Orthopaedic Surgery; Juntendo University School of Medicine; Japan
| | - Masaki Noda
- Department of Molecular Pharmacology; Tokyo Medical and Dental University; Tokyo Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
7
|
Wei QS, Huang L, Tan X, Chen ZQ, Chen SM, Deng WM. Serum osteopontin levels in relation to bone mineral density and bone turnover markers in postmenopausal women. Scandinavian Journal of Clinical and Laboratory Investigation 2015; 76:33-9. [DOI: 10.3109/00365513.2015.1087045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Effects of Hypergravity on Osteopontin Expression in Osteoblasts. PLoS One 2015; 10:e0128846. [PMID: 26046934 PMCID: PMC4457898 DOI: 10.1371/journal.pone.0128846] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
Mechanical stimuli play crucial roles in bone remodeling and resorption. Osteopontin (OPN), a marker for osteoblasts, is important in cell communication and matrix mineralization, and is known to function during mechanotransduction. Hypergravity is a convenient approach to forge mechanical stimuli on cells. It has positive effects on certain markers of osteoblast maturation, making it a possible strategy for bone tissue engineering. We investigated the effects of hypergravity on OPN expression and cell signaling in osteoblasts. Hypergravity treatment at 20 g for 24 hours upregulated OPN expression in MC3T3-E1 cells at the protein as well as mRNA level. Hypergravity promoted OPN expression by facilitating focal adhesion assembly, strengthening actin bundles, and increasing Runx2 expression. In the hypergravity-triggered OPN expression pathway, focal adhesion assembly-associated FAK phosphorylation was upstream of actin bundle assembly.
Collapse
|
9
|
Ezura Y, Nagata J, Nagao M, Hemmi H, Hayata T, Rittling S, Denhardt DT, Noda M. Hindlimb-unloading suppresses B cell population in the bone marrow and peripheral circulation associated with OPN expression in circulating blood cells. J Bone Miner Metab 2015; 33:48-54. [PMID: 24831120 DOI: 10.1007/s00774-014-0568-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/09/2014] [Indexed: 02/02/2023]
Abstract
Rodent hindlimb unloading (HU) by tail-suspension is a model to investigate disuse-induced bone loss in vivo. Previously, we have shown that osteopontin (OPN, also known as Spp1) is required for unloading-induced bone loss. However, how unloading affects OPN expression in the body is not fully understood. Here, we examined OPN expression in peripheral blood of mice subjected to HU. Real-time RT-PCR analysis indicated that OPN expression is increased in circulating peripheral blood cells. This HU-induced increase in OPN mRNA expression was specific in circulating peripheral blood cells, as OPN was not increased in the blood cells in bone marrow. HU-induced enhancement in OPN expression in peripheral blood cells was associated with an increase in the fraction of monocyte/macrophage lineage cells in the peripheral blood. In contrast, HU decreased the fraction size of B-lymphocytes in the peripheral blood. We further examined if B-lymphogenesis is affected in the mice deficient for osteopontin subjected to HU. In bone marrow, HU decreased the population of the B-lymphocyte lineage cells significantly, whereas it did not alter the population of monocyte/macrophage lineage cells. HU also increased the cells in T-lymphocyte lineage in bone marrow. Interestingly, these changes were observed similarly both in OPN-deficient and wild-type mice. These results indicate for the first time that HU increases OPN expression in circulating cells and suppresses bone marrow B-lymphogenesis.
Collapse
Affiliation(s)
- Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 5-45 Yushima 1-Chome, Bunkyo-ku, Tokyo, 113-8510, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Aoki M, Kawahata H, Sotobayashi D, Yu H, Moriguchi A, Nakagami H, Ogihara T, Morishita R. Effect of angiotensin II receptor blocker, olmesartan, on turnover of bone metabolism in bedridden elderly hypertensive women with disuse syndrome. Geriatr Gerontol Int 2014; 15:1064-72. [PMID: 25363367 DOI: 10.1111/ggi.12406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
AIMS Although recent studies suggest that several antihypertensive drugs could reduce the risk of bone fracture, it is still unclear how these drugs act on bone remodeling, especially in elderly women with severe osteoporosis with disuse syndrome. In the present study, we investigated the effects of a calcium channel blocker (CCB) and an angiotensin II receptor blocker (ARB) on bone metabolism in elderly bedridden women with hypertension and disuse syndrome. METHODS Elderly bedridden women (aged >75 years) receiving antihypertensive therapy treated with CCB were recruited in the present study. The participants were divided into two groups--CCB group and ARB group--and followed up to 12 months. RESULTS Markers of bone resorption were markedly increased, suggesting accelerated bone resorption in the participants of the present study. In the follow-up period, the patients treated with a CCB showed a significant decrease in bone mineral density in a time-dependent manner, accompanied by a significant increase in bone resorption markers, whereas treatment with olmesartan inhibited bone loss, associated with attenuation of increased bone resorption markers. Bone mineral density of femoral neck in the CCB group was significantly lower than that in the ARB group at 6 months. CONCLUSION The present study showed inhibitory effects of an ARB on bone resorption in hypertensive patients with accelerated bone resorption, such as elderly bedridden women, and indicated an important role of the renin-angiotensin system in bone metabolism. In elderly hypertensive patients, ARB might be expected to have additional beneficial potential to maintain bone health in bedridden patients.
Collapse
Affiliation(s)
- Motokuni Aoki
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Hirohisa Kawahata
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Daisuke Sotobayashi
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | | | | | - Hironori Nakagami
- Division of Vascular Medicine and Epigenetics, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Toshio Ogihara
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Morikawa D, Nojiri H, Saita Y, Kobayashi K, Watanabe K, Ozawa Y, Koike M, Asou Y, Takaku T, Kaneko K, Shimizu T. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading. J Bone Miner Res 2013; 28:2368-80. [PMID: 23674366 DOI: 10.1002/jbmr.1981] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/02/2013] [Accepted: 05/02/2013] [Indexed: 11/09/2022]
Abstract
Oxidative stress contributes to the pathogenesis of age-related diseases as well as bone fragility. Our previous study demonstrated that copper/zinc superoxide dismutase (Sod1)-deficient mice exhibit the induction of intracellular reactive oxygen species (ROS) and bone fragility resulting from low-turnover bone loss and impaired collagen cross-linking (Nojiri et al. J Bone Miner Res. 2011;26:2682-94). Mechanical stress also plays an important role in the maintenance of homeostasis in bone tissue. However, the molecular links between oxidative and mechanical stresses in bone tissue have not been fully elucidated. We herein report that mechanical unloading significantly increased intracellular ROS production and the specific upregulation of Sod1 in bone tissue in a tail-suspension experiment. We also reveal that Sod1 loss exacerbated bone loss via reduced osteoblastic abilities during mechanical unloading. Interestingly, we found that the administration of an antioxidant, vitamin C, significantly attenuated bone loss during unloading. These results indicate that mechanical unloading, in part, regulates bone mass via intracellular ROS generation and the Sod1 expression, suggesting that activating Sod1 may be a preventive strategy for ameliorating mechanical unloading-induced bone loss.
Collapse
Affiliation(s)
- Daichi Morikawa
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cho EH, Cho KH, Lee HA, Kim SW. High serum osteopontin levels are associated with low bone mineral density in postmenopausal women. J Korean Med Sci 2013; 28:1496-9. [PMID: 24133355 PMCID: PMC3792605 DOI: 10.3346/jkms.2013.28.10.1496] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/19/2013] [Indexed: 01/26/2023] Open
Abstract
Osteopontin (OPN) is an acidic, noncollagenous matrix protein produced by the bone and kidneys. It is reportedly involved in bone resorption and formation. We examined the association between serum OPN levels and bone mineral density in postmenopausal women. Premenopausal women (n=32) and postmenopausal women (n=409) participated in the study. We measured serum osteopontin levels and their relationships with bone mineral density and previous total fragility fractures. The postmenopausal women had higher mean serum OPN levels compared to the premenopausal women (43.6±25.9 vs 26.3±18.6 ng/mL; P<0.001). In the postmenopausal women, high serum OPN levels were negatively correlated with mean lumbar bone mineral density (BMD) (r=-0.113, P=0.023). In a stepwise multiple linear regression model, serum OPN levels were associated with BMD of the spine, femoral neck, and total hip after adjustment for age, body mass index, smoking, and physical activity in postmenopausal women. However, serum OPN levels did not differ between postmenopausal women with and without fractures. Postmenopausal women exhibit higher serum OPN levels than premenopausal women and higher serum OPN levels were associated with low BMD in postmenopausal women.
Collapse
Affiliation(s)
- Eun-Hee Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Keun-Hyok Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Hyang Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Sang-Wook Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
13
|
|
14
|
Chiang TI, Chang IC, Lee HS, Lee H, Huang CH, Cheng YW. Osteopontin regulates anabolic effect in human menopausal osteoporosis with intermittent parathyroid hormone treatment. Osteoporos Int 2011; 22:577-85. [PMID: 20734029 DOI: 10.1007/s00198-010-1327-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/14/2010] [Indexed: 01/16/2023]
Abstract
UNLABELLED In this pilot study, we demonstrated that women with osteopontin (OPN) over-expression show less resistance to postmenopausal osteoporosis than women with normal OPN levels. We hypothesized that the levels of plasma OPN could be used as a treatment indicator for intermittent parathyroid hormone (PTH)-treated menopausal osteoporosis. We demonstrated that plasma OPN levels could be used as a biomarker for early treatment response. INTRODUCTION Animal studies indicate that OPN-deficient mice are resistant to ovariectomy induced osteoporosis. Our pilot study also demonstrated women with OPN over expression may show less resistance to postmenopausal osteoporosis. The role of plasma OPN in PTH1-34-treated osteoporosis remains unclear. METHODS From September 2005 to September 2006, 31 menopausal women over 45 years of age with severe osteoporosis were enrolled in our study. Subjects were treated with PTH1-34 subcutaneously at a dose of 20 μg/day. Plasma OPN levels and BMD of the lumbar spine and hip were measured using ELISA and dual-energy X-ray absorptiometry at baseline, 3, 6, and 9 months. Response to the treatment was assessed by the sequential change in bone mineral density and OPN expression using a general linear mixed model. RESULTS The plasma OPN decreased sequentially and significantly throughout the 9-month treatment course from 20.75 ± 5.36 to 11.2 ± 4.37 ng/ml (p < 0.001). The sequential improvement in the T-score and Z-score was significant in the lumbar spine but not in the hip area. In the lumbar spine, when the plasma OPN decreased by 1 ng/ml the T-score increased by 0.0406 and the Z-score increased by 0.0572 of lumbar spine. CONCLUSION OPN levels are related to the anabolic effect of PTH in human postmenopausal osteoporosis. Plasma OPN levels could be used as a biomarker for early treatment response.
Collapse
Affiliation(s)
- T-I Chiang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo, N. Rd, Taichung, 40201, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Sasaki H, Suzuki N, AlShwaimi E, Xu Y, Battaglino R, Morse L, Stashenko P. 18β-glycyrrhetinic acid inhibits periodontitis via glucocorticoid-independent nuclear factor-κB inactivation in interleukin-10-deficient mice. J Periodontal Res 2010; 45:757-63. [PMID: 20682015 PMCID: PMC3075584 DOI: 10.1111/j.1600-0765.2010.01296.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE 18β-Glycyrrhetinic acid (GA) is a natural anti-inflammatory compound derived from licorice root extract (Glycyrrhiza glabra). The effect of GA on experimental periodontitis and its mechanism of action were determined in the present study. MATERIAL AND METHODS Periodontitis was induced by oral infection with Porphyromonas gingivalis W83 in interleukin-10-deficient mice. The effect of GA, which was delivered by subcutaneous injections in either prophylactic or therapeutic regimens, on alveolar bone loss and gingival gene expressions was determined on day 42 after initial infection. The effect of GA on lipopolysaccharide (LPS)-stimulated macrophages, T cell proliferation and osteoclastogenesis was also examined in vitro. RESULTS 18β-Glycyrrhetinic acid administered either prophylactically or therapeutically resulted in a dramatic reduction of infection-induced bone loss in interleukin-10-deficient mice, which are highly disease susceptible. Although GA has been reported to exert its anti-inflammatory activity via downregulation of 11β-hydroxysteroid dehydrogenase-2 (HSD2), which converts active glucocorticoids to their inactive forms, GA did not reduce HSD2 gene expression in gingival tissue. Rather, in glucocorticoid-free conditions, GA potently inhibited LPS-stimulated proinflammatory cytokine production and RANKL-stimulated osteoclastogenesis, both of which are dependent on nuclear factor-κB. Furthermore, GA suppressed LPS- and RANKL-stimulated phosphorylation of nuclear factor-κB p105 in vitro. CONCLUSION These findings indicate that GA inhibits periodontitis by inactivation of nuclear factor-κB in an interleukin-10- and glucocorticoid-independent fashion.
Collapse
Affiliation(s)
- Hajime Sasaki
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, U.S.A
| | - Noriyuki Suzuki
- Pulp Biology and Endodontics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Emad AlShwaimi
- Restorative Dental Sciences Department, Endodontic Division, College of Dentistry, King Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yan Xu
- Department of Medical Microbiology and Immunology, Kunming Medical University, Yunnan, China 650031
| | - Ricardo Battaglino
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, U.S.A
| | - Leslie Morse
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, 125 Nashua Street, Boston, MA 02114 USA
| | - Philip Stashenko
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, U.S.A
| |
Collapse
|
16
|
WALKER CAMERONG, DANGARIA SMIT, ITO YOSHIHIRO, LUAN XIANGHONG, DIEKWISCH THOMASGH. Osteopontin is required for unloading-induced osteoclast recruitment and modulation of RANKL expression during tooth drift-associated bone remodeling, but not for super-eruption. Bone 2010; 47:1020-9. [PMID: 20828639 PMCID: PMC2970729 DOI: 10.1016/j.bone.2010.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/25/2010] [Accepted: 08/28/2010] [Indexed: 01/26/2023]
Abstract
Unloading of teeth results in extensive alveolar bone remodeling, causing teeth to move in both vertical ("super-eruption") and horizontal direction ("drift"). In order to decipher the molecular mechanisms of unloading-induced bone remodeling during tooth movement, we focused on the role of osteopontin (OPN) in the un-opposed molar model, comparing wild-type (WT) and OPN-null mice. Our data indicated that OPN was not required for the continuous eruption of un-opposed teeth while OPN was necessary for the drift of teeth. OPN expression and osteoclast counts were greatly increased on alveolar bone surfaces facing the direction of the drift in WT mice, while osteoclast counts were diminished in OPN-/- mice. RANKL expression in the distal periodontal ligament of WT molars increased significantly by day 6 following unloading, while overall levels of RANKL expression were decreased in both WT and OPN-null mice. In vitro treatment of MC3T3 cells, WT BMCs and OPN-/- BMCs with recombinant OPN resulted in significantly increased RANKL expression in all three cell types. The PI3K and MEK/ERK pathway inhibitors Ly294002 and U0126 reduced RANKL expression levels in vitro. Treatment of BMCs and MC3T3 with OPN also resulted in increased ERK phosphorylation and reduced OPG levels. Together, our studies suggest that increased OPN expression during unloading-induced drifting of teeth enhances localized RANKL expression and osteoclast activity on drift-direction alveolar bone surfaces via extracellular matrix signaling pathways.
Collapse
Affiliation(s)
- CAMERON G. WALKER
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - SMIT DANGARIA
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - YOSHIHIRO ITO
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - XIANGHONG LUAN
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Orthodontics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - THOMAS G. H. DIEKWISCH
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Orthodontics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Chapman J, Miles PD, Ofrecio JM, Neels JG, Yu JG, Resnik JL, Wilkes J, Talukdar S, Thapar D, Johnson K, Sears DD. Osteopontin is required for the early onset of high fat diet-induced insulin resistance in mice. PLoS One 2010; 5:e13959. [PMID: 21103061 PMCID: PMC2980483 DOI: 10.1371/journal.pone.0013959] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 07/21/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insulin resistance is manifested in muscle, adipose tissue, and liver and is associated with adipose tissue inflammation. The cellular components and mechanisms that regulate the onset of diet-induced insulin resistance are not clearly defined. METHODOLOGY AND PRINCIPAL FINDINGS We initially observed osteopontin (OPN) mRNA over-expression in adipose tissue of obese, insulin resistant humans and rats which was normalized by thiazolidinedione (TZD) treatment in both species. OPN regulates inflammation and is implicated in pathogenic maladies resulting from chronic obesity. Thus, we tested the hypothesis that OPN is involved in the early development of insulin resistance using a 2-4 week high fat diet (HFD) model. OPN KO mice fed HFD for 2 weeks were completely protected from the severe skeletal muscle, liver and adipose tissue insulin resistance that developed in wild type (WT) controls, as determined by hyperinsulinemic euglycemic clamp and acute insulin-stimulation studies. Although two-week HFD did not alter body weight or plasma free fatty acids and cytokines in either strain, HFD-induced hyperleptinemia, increased adipose tissue inflammation (macrophages and cytokines), and adipocyte hypertrophy were significant in WT mice and blunted or absent in OPN KO mice. Adipose tissue OPN protein isoform expression was significantly altered in 2- and 4-week HFD-fed WT mice but total OPN protein was unchanged. OPN KO bone marrow stromal cells were more osteogenic and less adipogenic than WT cells in vitro. Interestingly, the two differentiation pathways were inversely affected by HFD in WT cells in vitro. CONCLUSIONS The OPN KO phenotypes we report reflect protection from insulin resistance that is associated with changes in adipocyte biology and adipose tissue inflammatory status. OPN is a key component in the development of HFD-induced insulin resistance.
Collapse
Affiliation(s)
- Justin Chapman
- Pfizer Inc., San Diego, California, United States of America
| | - Philip D. Miles
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jachelle M. Ofrecio
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jaap G. Neels
- Inserm U907, University of Nice-Sophia Antipolis, Nice, France
| | - Joseph G. Yu
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jamie L. Resnik
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jason Wilkes
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Saswata Talukdar
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Divya Thapar
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kristen Johnson
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dorothy D. Sears
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
18
|
Vo TKD, Godard P, de Saint-Hubert M, Morrhaye G, Debacq-Chainiaux F, Swine C, Geenen V, Martens HJ, Toussaint O. Differentially abundant transcripts in PBMC of hospitalized geriatric patients with hip fracture compared to healthy aged controls. Exp Gerontol 2010; 46:257-64. [PMID: 21074600 DOI: 10.1016/j.exger.2010.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
The abundance of a selection of transcript species involved in inflammation, immunosenescence and stress response was compared between PBMC of 35 geriatric patients with hip fracture in acute phase (days 2-4 after hospitalization) or convalescence phase (days 7-10) and 28 healthy aged controls. Twenty-nine differentially abundant transcripts were identified in acute phase versus healthy ageing. Twelve of these transcripts remained differentially abundant in convalescence phase, and 22 were similarly differentially abundant in acute phase of geriatric infectious diseases. Seven of these 22 transcripts were previously identified as differentially abundant in PBMC of healthy aged versus healthy young controls, with further alteration for CD28, CD69, LCK, CTSD, HMOX1, and TNFRSF1A in acute phase after geriatric hip fracture and infectious diseases. The next question is whether these alterations are common to other geriatric diseases and/or preexist before the clinical onset of the diseases.
Collapse
Affiliation(s)
- Thi Kim Duy Vo
- Unit of Research on Cellular Biology, NARILIS-Namur Research Institute for Life Sciences, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chang IC, Chiang TI, Yeh KT, Lee H, Cheng YW. Increased serum osteopontin is a risk factor for osteoporosis in menopausal women. Osteoporos Int 2010; 21:1401-9. [PMID: 20238102 DOI: 10.1007/s00198-009-1107-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 09/09/2009] [Indexed: 10/19/2022]
Abstract
SUMMARY Osteopontin (OPN)-deficient mice are resistant to ovariectomy-induced osteoporosis. Therefore, we hypothesized that women with OPN overexpression may show less resistance to postmenopausal osteoporosis. In this study, we first demonstrated that serum OPN levels could be used as a biomarker for the early diagnosis of osteoporosis in postmenopausal women. INTRODUCTION Animal studies indicate that OPN-deficient mice are resistant to ovariectomy-induced osteoporosis. METHODS From 2004 to 2006, 124 women over the age of 45 were enrolled in a menopausal group, while another 95 women, from 25 to 45 years of age with regular menstruation, were enrolled into a childbearing age group. The serum concentrations of OPN were calculated using the enzyme-link immunosorbent assay method, and bone mineral densities were determined with dual energy X-ray absorptiometry. RESULTS Serum OPN levels had a significant positive correlation with age (menopausal group, p < 0.0001) and a negative correlation with body weight, height, hip bone mineral density, and T-scores in the menopausal group. In contrast, there was a positive correlation with the E2 concentration and height, but there was no significant association with the above variables in the childbearing age group. Additionally, high serum OPN levels (>14.7 ng/ml) was a significant risk factor causing menopausal osteoporosis (odds ratio = 2.96, 95% confidence interval, 1.055-8.345). CONCLUSION Serum OPN levels could be used as a biomarker for the early diagnosis of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- I-C Chang
- Institute of Medicine, Chung Shan Medical University, Chien-Kuo N. Rd, Taichung, 402, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
20
|
Monfoulet L, Malaval L, Aubin JE, Rittling SR, Gadeau AP, Fricain JC, Chassande O. Bone sialoprotein, but not osteopontin, deficiency impairs the mineralization of regenerating bone during cortical defect healing. Bone 2010; 46:447-52. [PMID: 19761880 DOI: 10.1016/j.bone.2009.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 01/12/2023]
Abstract
Bone healing is a complex multi-step process, which depends on the position and size of the lesion, and on the mechanical stability of the wounded area. To address more specifically the mechanisms involved in cortical bone healing, we created drill-hole defects in the cortex of mouse femur, a lesion that triggers intramembranous repair, and compared the roles of bone sialoprotein (BSP) and osteopontin (OPN), two proteins of the extracellular matrix, in the repair process. Bone regeneration was analyzed by ex vivo microcomputerized X-ray tomography and histomorphometry of bones of BSP-deficient, OPN-deficient and wild-type mice. In all mouse strains, the cortical gap was bridged with woven bone within 2 weeks and no mineralized tissue was observed in the marrow. Within 3 weeks, lamellar cortical bone filled the gap. The amount and degree of mineralization of the woven bone was not affected by OPN deficiency, but cortical bone healing was delayed in BSP-deficient mice due to delayed mineralization. Gene expression studies showed a higher amount of BSP transcripts in the repair bone of OPN-deficient mice, suggesting a possible compensation of OPN function by BSP in OPN-null mice. Our data suggest that BSP, but not OPN, plays a role in primary bone formation and mineralization of newly formed bone during the process of cortical bone healing.
Collapse
|
21
|
Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone 2009; 44:87-101. [PMID: 18840552 DOI: 10.1016/j.bone.2008.08.120] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/06/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
Abstract
Osteoporosis (OP) is a common age-related systemic skeletal disease, with a strong genetic component, characterised by loss of bone mass and strength, which leads to increased bone fragility and susceptibility to fracture. Although some progress has been made in identifying genes that may contribute to OP disease, much of the genetic component of OP has yet to be accounted for. Therefore, to investigate the molecular basis for the changes in bone causally involved in OP and fragility fracture, we have used a microarray approach. We have analysed altered gene expression in human OP fracture bone by comparing mRNA in bone from individuals with fracture of the neck of the proximal femur (OP) with that from age-matched individuals with osteoarthritis (OA), and control (CTL) individuals with no known bone pathology. The OA sample set was included because an inverse association, with respect to bone density, has been reported between OA and the OP individuals. Compugen H19K oligo human microarray slides were used to compare the gene expression profiles of three sets of female samples comprising, 10 OP-CTL, 10 OP-OA, and 10 OA-CTL sample pairs. Using linear models for microarray analysis (Limma), 150 differentially expressed genes in OP bone with t scores >5 were identified. Differential expression of 32 genes in OP bone was confirmed by real time PCR analysis (p<0.01). Many of the genes identified have known or suspected roles in bone metabolism and in some cases have been implicated previously in OP pathogenesis. Three major sets of differentially expressed genes in OP bone were identified with known or suspected roles in either osteoblast maturation (PRRX1, ANXA2, ST14, CTSB, SPARC, FST, LGALS1, SPP1, ADM, and COL4A1), myelomonocytic differentiation and osteoclastogenesis (TREM2, ANXA2, IL10, CD14, CCR1, ADAM9, CCL2, CTGF, and KLF10), or adipogenesis, lipid and/or glucose metabolism (IL10, MARCO, CD14, AEBP1, FST, CCL2, CTGF, SLC14A1, ANGPTL4, ADM, TAZ, PEA15, and DOK4). Altered expression of these genes and others in these groups is consistent with previously suggested underlying molecular mechanisms for OP that include altered osteoblast and osteoclast differentiation and function, and an imbalance between osteoblastogenesis and adipogenesis.
Collapse
Affiliation(s)
- B Hopwood
- Division of Tissue Pathology, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
22
|
Gene expression profiles of dynamically compressed single chondrocytes and chondrons. Biochem Biophys Res Commun 2008; 379:738-42. [PMID: 19118531 DOI: 10.1016/j.bbrc.2008.12.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 11/21/2022]
Abstract
A chondrocyte produces a hydrated pericellular matrix (PCM); together they form a chondron. Previous work has shown that the presence of the PCM influences the biological response of chondrocytes to loading. The objective of this study was to determine the gene expression profiles of enzymatically isolated single chondrocytes and chondrons in response to dynamic compression. Cartilage specific extracellular matrix components and transcription factors were examined. Following dynamic compression, chondrocytes and chondrons showed variations in gene expression profiles. Aggrecan, Type II collagen and osteopontin gene expression were significantly increased in chondrons. Lubricin gene expression decreased in both chondrons and chondrocytes. Dynamic compression had no effect on SOX9 gene expression. Our results demonstrate a clear role for the PCM in interfacing the mechanical signalling in chondrocytes in response to dynamic compression. Further investigation of single chondrocytes and chondrons from different zones within articular cartilage may further our understanding of cartilage mechanobiology.
Collapse
|
23
|
Zhang P, Hamamura K, Yokota H. A brief review of bone adaptation to unloading. GENOMICS PROTEOMICS & BIOINFORMATICS 2008; 6:4-7. [PMID: 18558381 PMCID: PMC5054086 DOI: 10.1016/s1672-0229(08)60016-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Weight-bearing bone is constantly adapting its structure and function to mechanical environments. Loading through routine exercises stimulates bone formation and prevents bone loss, but unloading through bed rest and cast immobilization as well as exposure to weightlessness during spaceflight reduces its mass and strength. In order to elucidate the mechanism underlying unloading-driven bone adaptation, ground-based in vitro and in vivo analyses have been conducted using rotating cell culturing and hindlimb suspension. Focusing on gene expression studies in osteoblasts and hindlimb suspension studies, this minireview introduces our recent understanding on bone homeostasis under weightlessness in space. Most of the existing data indicate that unloading has the opposite effects to loading through common signaling pathways. However, a question remains as to whether any pathway unique to unloading (and not to loading) may exist.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Biomedical Engineering/Department of Anatomy and Cell Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
24
|
Wang KX, Denhardt DT. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 2008; 19:333-45. [PMID: 18952487 DOI: 10.1016/j.cytogfr.2008.08.001] [Citation(s) in RCA: 535] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent research has led to a better but as yet incomplete understanding of the complex roles osteopontin plays in mammalian physiology. A soluble protein found in all body fluids, it stimulates signal transduction pathways (via integrins and CD44 variants) similar to those stimulated by components of the extracellular matrix. This appears to promote the survival of cells exposed to potentially lethal insults such as ischemia/reperfusion or physical/chemical trauma. OPN is chemotactic for many cell types including macrophages, dendritic cells, and T cells; it enhances B lymphocyte immunoglobulin production and proliferation. In inflammatory situations it stimulates both pro- and anti-inflammatory processes, which on balance can be either beneficial or harmful depending on what other inputs the cell is receiving. OPN influences cell-mediated immunity and has been shown to have Th1-cytokine functions. OPN deficiency is linked to a reduced Th1 immune response in infectious diseases, autoimmunity and delayed type hypersensitivity. OPN's role in the central nervous system and in stress responses has also emerged as an important aspect related to its cytoprotective and immune functions. Evidence suggests that either OPN or anti-OPN monoclonal antibodies (depending on the circumstances) might be clinically useful in modulating OPN function. Manipulation of plasma OPN levels may be useful in the treatment of autoimmune disease, cancer metastasis, osteoporosis and some forms of stress.
Collapse
Affiliation(s)
- Kathryn X Wang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States.
| | | |
Collapse
|
25
|
Altintaş A, Saruhan-Direskeneli G, Benbir G, Demir M, Purisa S. The role of osteopontin: a shared pathway in the pathogenesis of multiple sclerosis and osteoporosis? J Neurol Sci 2008; 276:41-4. [PMID: 18845306 DOI: 10.1016/j.jns.2008.08.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 07/21/2008] [Accepted: 08/20/2008] [Indexed: 11/30/2022]
Abstract
Osteopontin (OPN) was suggested to have a role in the pathophysiology of MS and in bone metabolism. However, we formerly reported increased presence of osteoporosis in MS patients independent of corticosteroid treatment, there is only limited information about the mechanism of bone loss. In this study, we investigated the role of OPN on bone mineral density in MS patients. Thirty-three relapsing-remitting (RR), 12 secondary progressive (SP), and 5 primary progressive (PP) MS patients and 30 healthy controls were prospectively enrolled. Students' t test, chi-square test, and Pearson correlations were used. The mean OPN level was 155.4+/-81.8 ng/ml in controls, and 15.9+/-36.2 ng/ml in MS patients (p<0.001).No statistical difference was observed among RR, SP and PPMS patients (p=0.162). No relationship was found between OPN levels and age at onset of disease (p=0.830), gender (p=0.785), MS subtypes (p=0.330), disease duration (p=0.744), or EDSS scores (p=0.633).About 34% of MS patients versus 10.3% of controls had osteoporosis (p=0.017).Osteopontin levels showed no significant correlation with osteoporosis in controls, but were lower in MS patients with osteoporosis in femur neck (r=0.85, p=0.010).The cumulative dose of corticosteroid treatment did not correlate with OPN levels (p=0.285).In conclusion, our results suggest that OPN may have a role as a shared cytokine in pathogenesis of MS and osteoporosis.
Collapse
Affiliation(s)
- Ayse Altintaş
- Istanbul University Cerrahpasa School of Medicine, Department of Neurology, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
26
|
Biological Basis of Bone Formation, Remodeling, and Repair—Part III: Biomechanical Forces. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:285-93. [DOI: 10.1089/ten.teb.2008.0084] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Franzén A, Hultenby K, Reinholt FP, Onnerfjord P, Heinegård D. Altered osteoclast development and function in osteopontin deficient mice. J Orthop Res 2008; 26:721-8. [PMID: 18050311 DOI: 10.1002/jor.20544] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of osteopontin in bone resorption was elucidated by studies of mice with knock out of the osteopontin gene generated by a different approach compared to previous models. Thus, a targeting vector with the promoter region as well as exons 1, 2, and 3 of the osteopontin gene was replaced by a loxP-flanked Neo-TK cassette, and this cassette was eliminated through transient expression of Cre recombinase. The recombined ES cells were used to create mice lacking expression of the osteopontin gene. Tissues from these mice were subjected structural and molecular analyses including morphometry and proteomics. The bone of the null mice contained no osteopontin but showed no significant alterations with regard to other bone proteins. The bone volume was normal in young null animals but in the lower metaphysis, the volume and number of osteoclasts were increased. Notably, the volume and length of the osteoclast ruffled border was several folds lower, indicating a lower resorptive capacity. The null mice did not develop the bone loss characteristic for osteoporosis demonstrated in old wild-type female animals. This quantitative study demonstrates a bone phenotype in the osteopontin null mice of all ages. The data provides further evidence for a role of osteopontin in osteoclast activity.
Collapse
Affiliation(s)
- Ahnders Franzén
- Department of Experimental Medical Science, Lund University, BMC C12, SE-22184, Lund, Sweden
| | | | | | | | | |
Collapse
|
28
|
Guo Y, Yang TL, Pan F, Xu XH, Dong SS, Deng HW. Molecular genetic studies of gene identification for osteoporosis. Expert Rev Endocrinol Metab 2008; 3:223-267. [PMID: 30764094 DOI: 10.1586/17446651.3.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yan Guo
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tie-Lin Yang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Pan
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiang-Hong Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shan-Shan Dong
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hong-Wen Deng
- b The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China and Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
29
|
Wang KX, Shi Y, Denhardt DT. Osteopontin regulates hindlimb-unloading-induced lymphoid organ atrophy and weight loss by modulating corticosteroid production. Proc Natl Acad Sci U S A 2007; 104:14777-82. [PMID: 17785423 PMCID: PMC1976226 DOI: 10.1073/pnas.0703236104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN), a multifunctional secreted phosphoglycoprotein, plays diverse roles in bone biology, immune regulation, cell survival, inflammation, and cancer metastasis. Here we show its role in determining lymphocyte homeostasis and body mass in response to hindlimb unloading (HU), a model for evaluating effects of weightlessness on the musculoskeletal and other physiological systems. Using this stress model, we compared OPN(-/-) mice with OPN(+/+) mice subjected to HU for 3 days. Whereas OPN(+/+) mice suffered a marked reduction of body weight and significant spleen and thymus atrophy, OPN(-/-) mice exhibited minor weight loss and much less spleen and thymus atrophy. The HU-induced lymphoid organ atrophy was the result of dramatically diminished numbers, respectively, of T and B cells in the spleen and CD4(+)CD8(+) double-positive cells in the thymus of OPN(+/+) mice. Increased levels of corticosterone, which modulates lymphocyte activation responses and apoptosis during stress, were found only in OPN(+/+) mice. Apoptotic cell death was evident in the spleen and thymus of OPN(+/+) mice subjected to HU but not in OPN(-/-)mice. Importantly, lymphocytes from both OPN(+/+) and OPN(-/-) mice were equally sensitive to corticosteroid-induced apoptosis. These results reveal that OPN is required for enhanced corticosterone production, immune organ atrophy, and weight loss in mice subjected to HU.
Collapse
Affiliation(s)
| | - Yufang Shi
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854
| | - David T. Denhardt
- *Graduate Program in Cell and Developmental Biology
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Nelson Biological Laboratories, 604 Allison Road, Piscataway, NJ 08854; and
- To whom correspondence should be addressed at:
Nelson Laboratories, 604 Allison Road, Piscataway, NJ 08854. E-mail:
| |
Collapse
|