1
|
Rodríguez-Montaño ÓL, Santoro L, Vaiani L, Lamberti L, Uva AE, Boccaccio A. Cell adhesion on substrates with variable curvature: Effects on genetic transcription processes. Comput Biol Med 2025; 189:109917. [PMID: 40023074 DOI: 10.1016/j.compbiomed.2025.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Several studies suggest that changes in nuclear morphology due to forces and deformations as result of cell adhesion on biological substrates can induce molecular streaming through nuclear pore openings and alter chromatin structure. The condensed state of chromatin hinders transcription and replication, while its decompaction, induced by adhesion, plays a key role in differentiation. However, assessing nuclear stress/strain in vivo remains challenging, and the impact of substrate curvature on nuclear mechanics and chromatin structures is still unclear. In this study, we developed an axisymmetric finite element model of a mesenchymal stem cell adhering to substrates with different curvatures to analyze nuclear stress distribution and identify locations where adhesion-induced gene expression may occur. Results reveal a nuclear stress field with principal stresses in radial and circumferential directions, leading to chromatin decondensation and nuclear pore opening. The predicted forces acting on chromatin fibers, estimated and compared with experimental data, remain slightly below 5 pN-the threshold at which internucleosomal attraction is disrupted, triggering chromatin condensation-decondensation transition-. During early spreading, nuclear forces achieved through adhesion on convex substrates approach this threshold more closely than in concave or flat cases. These findings provide insights for tissue engineering and regenerative medicine, where early control of stem cell fate through substrate design is crucial. Understanding how mesenchymal stem cells respond to substrate curvature could lead to improved biomaterial surface topographies for guiding cell behavior. Tailoring curvature and mechanical properties may enhance early lineage commitment, optimizing regenerative strategies for tissue repair and organ regeneration.
Collapse
Affiliation(s)
| | - Lorenzo Santoro
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy
| | - Lorenzo Vaiani
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy
| | - Antonio E Uva
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy
| | - Antonio Boccaccio
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Bari, 70125, Italy.
| |
Collapse
|
2
|
Buglione A, Alloisio G, Ciaccio C, Rodriguez DB, Dogali S, Luce M, Marini S, Cricenti A, Gioia M. GsMTx-4 venom toxin antagonizes biophysical modulation of metastatic traits in human osteosarcoma cells. Eur J Cell Biol 2025; 104:151469. [PMID: 39671774 DOI: 10.1016/j.ejcb.2024.151469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Despite their genetic diversity, metastatic cells converge on similar physical constraints during tumor progression. At the nanoscale, these forces can induce substantial molecular deformations, altering the structure and behavior of cancer cells. To address the challenges of osteosarcoma (OS), a highly aggressive cancer, we explored the mechanobiology of OS cells, in vitro. Using uniaxial-stretching technology, we examined the biophysical modulation of metastatic traits in SAOS-2, U-2 OS, and non-tumorigenic hFOB cells. Changes in cell morphology were quantified using confocal and fluorescence microscopy. To elucidate the molecular mechanisms that translate biomechanical alterations into biochemical responses, we employed Western blotting, real-time quantitative RT-PCR, reactive oxygen species ROS assay, and the mechanosensitive channel blocker Grammostola MechanoToxin4 (GsMTx-4). Our study reveals that mechanical stimulation uniquely affects OS cells, increasing nuclear size and altering the N/C ratio. We found that mechanosensitive (MS) channels are activated, leading to ROS accumulation, Src protein modulation, and histone H3 acetylation. These changes influence OS cell motility and adhesion but not proliferation. Importantly, mechanical preconditioning differentially impacts doxorubicin resistance, correlating with the Src-H3 acetylation axis. This study underscores the critical role of MS channels in OS cells and highlights the importance of mechanobiology in identifying molecular pathways that traditional biochemical approaches may not reveal. Notably, the GsMTx-4 venom peptide effectively countered mechanically induced responses, particularly by inhibiting OS cell migration, without harming healthy cells. Thus, suggesting its potential as a promising therapeutic agent for targeting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Arianna Buglione
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Simone Dogali
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy.
| |
Collapse
|
3
|
Campo Verde Arbocco F, Pascual LI, García D, Ortiz I, Gamarra-Luques C, Carón RW, Hapon MB. Epigenetic impact of hypothyroidism on the functional differentiation of the mammary gland in rats. Mol Cell Endocrinol 2024; 590:112267. [PMID: 38729597 DOI: 10.1016/j.mce.2024.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Mammary gland (MG) lactogenic differentiation involves epigenetic mechanisms. We have previously shown that hypothyroidism (HypoT) alters the MG transcriptome in lactation. However, the role of thyroid hormones (T3 and T4 a. k.a. THs) in epigenetic differentiation of MG is still unknown. We used a model of post-lactating HypoT rats to study in MG: a) Methylation and expression level of Gata3, Elf5, Stat6, Stat5a, Stat5b; b) Expression of Lalba, IL-4Rα and Ncoa1 mRNA; c) Histone H3 acetylation and d) Estrogen and progesterone concentration in serum. HypoT increases the estrogen serum level, decreases the progesterone level, promotes methylation of Stat5a, Stat5b and Stat6, decreasing their mRNA level and of its target genes (Lalba and IL-4Rα) and increases the Ncoa1 mRNA expression and histone H3 acetylation level. Our results proved that HypoT alters the post-lactation MG epigenome and could compromise mammary functional differentiation.
Collapse
Affiliation(s)
- Fiorella Campo Verde Arbocco
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad de Mendoza, Facultad de Ciencias Médicas, Argentina.
| | - Lourdes Inés Pascual
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Daiana García
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Irina Ortiz
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Rubén Walter Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina
| | - María Belén Hapon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU, CONICET) Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
4
|
Buonvino S, Arciero I, Martinelli E, Seliktar D, Melino S. Modelling the disease: H 2S-sensitivity and drug-resistance of triple negative breast cancer cells can be modulated by embedding in isotropic micro-environment. Mater Today Bio 2023; 23:100862. [PMID: 38046276 PMCID: PMC10689286 DOI: 10.1016/j.mtbio.2023.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Three-dimensional (3D) cell culture systems provide more physiologically relevant information, representing more accurately the actual microenvironment where cells reside in tissues. However, the differences between the tissue culture plate (TCP) and 3D culture systems in terms of tumour cell growth, proliferation, migration, differentiation and response to the treatment have not been fully elucidated. Tumoroid microspheres containing the MDA-MB 231 breast cancer cell line were prepared using either tunable PEG-fibrinogen (PFs) or tunable PEG-silk fibroin (PSFs) hydrogels, respectively named MDAPFs and MDAPSFs. The cancer cells in the tumoroids showed changes both in globular morphology and at the protein expression level. A decrease of both Histone H3 acetylation and cyclin D1 expression in all 3D systems, compared to the 2D cell culture, was detected in parallel to changes of the matrix stiffness. The effects of a glutathionylated garlic extract (GSGa), a slow H2S-releasing donor, were investigated on both tumoroid systems. A pro-apoptotic effect of GSGa on tumour cell growth in 2D culture was observed as opposed to a pro-proliferative effect apparent in both MDAPFs and MDAPSFs. A dedicated ad hoc 3D cell migration chip was designed and optimized for studying tumour cell invasion in a gel-in-gel configuration. An anti-cell-invasion effect of the GSGa was observed in the 2D cell culture, whereas a pro-migratory effect in both MDAPFs and MDAPSFs was observed in the 3D cell migration chip assay. An increase of cyclin D1 expression after GSGa treatment was observed in agreement with an increase of the cell invasion index. Our results suggest that the "dimensionality" and the stiffness of the 3D cell culture milieu can change the response to both the gasotransmitter H2S and doxorubicin due to differences in both H2S diffusion and changes in protein expression. Moreover, we uncovered a direct relation between the cyclin D1 expression and the stiffness of the 3D cell culture milieu, suggesting the potential causal involvement of the cyclin D1 as a bio-marker for sensitivity of the tumour cells to their matrix stiffness. Therefore, our hydrogel-based tumoroids represent a valid tunable model for studying the physically induced transdifferentiation (PiT) of cancer cells and as a more reliable and predictive in vitro screening platform to investigate the effects of anti-tumour drugs.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Ilaria Arciero
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
- Interdisciplinary Center for Advanced Studies on Lab-on -Chip and Organ-on-Chip Applications, University of Rome Tor Vergata, Rome, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133, Rome, Italy
- NAST Centre, University of Rome ‘Tor Vergata’, Rome, Italy
| |
Collapse
|
5
|
Hebisch M, Klostermeier S, Wolf K, Boccaccini AR, Wolf SE, Tanzi RE, Kim DY. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205037. [PMID: 36642841 PMCID: PMC10015857 DOI: 10.1002/advs.202205037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models. Aging, the greatest risk factor for AD, significantly alters brain ECM properties. Therefore, it is important to understand how age-associated changes in ECM affect accumulation of pathogenic molecules, neuroinflammation, and neurodegeneration in AD patients and in vitro models. In this review, mechanistic hypotheses is presented to address the impact of the ECM properties and their changes with aging on AD and AD-related dementias. Altered ECM characteristics in aged brains, including matrix stiffness, pore size, and composition, will contribute to disease pathogenesis by modulating the accumulation, propagation, and spreading of pathogenic molecules of AD. Emerging hydrogel-based disease models with differing ECM properties provide an exciting opportunity to study the impact of brain ECM aging on AD pathogenesis, providing novel mechanistic insights. Understanding the role of ECM aging in AD pathogenesis should also improve modeling AD in 3D hydrogel systems.
Collapse
Affiliation(s)
- Matthias Hebisch
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Stefanie Klostermeier
- Institute of Medical PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91052ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Katharina Wolf
- Department of Medicine 1Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Stephan E. Wolf
- Institute of Glass and CeramicsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
6
|
Serjanov D, Hyde DR. Extracellular Matrix: The Unexplored Aspects of Retinal Pathologies and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:309-317. [PMID: 37440050 DOI: 10.1007/978-3-031-27681-1_45] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Nearly a billion people worldwide are affected by vision-impairing conditions, with retinal degenerative diseases being a major cause of blindness. Unfortunately, such diseases are often permanent and progressive, resulting in further degeneration and loss of sight, due to the human retina possessing little, if any, regenerative capacity. Despite numerous efforts and great progress being made to understand the molecular mechanisms of these diseases and possible therapies, the majority of investigations focused on cell-intrinsic factors. However, the microenvironment surrounding retinal cells throughout these processes also plays an important role, though our current understanding of its involvement remains limited. Here we present a brief overview of the current state of the field of extracellular matrix studies within the retina and its potential roles in retinal diseases and potential therapeutic approaches.
Collapse
Affiliation(s)
- Dmitri Serjanov
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
7
|
Vermeulen S, Van Puyvelde B, Bengtsson del Barrio L, Almey R, van der Veer BK, Deforce D, Dhaenens M, de Boer J. Micro-Topographies Induce Epigenetic Reprogramming and Quiescence in Human Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203880. [PMID: 36414384 PMCID: PMC9811462 DOI: 10.1002/advs.202203880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Biomaterials can control cell and nuclear morphology. Since the shape of the nucleus influences chromatin architecture, gene expression and cell identity, surface topography can control cell phenotype. This study provides fundamental insights into how surface topography influences nuclear morphology, histone modifications, and expression of histone-associated proteins through advanced histone mass spectrometry and microarray analysis. The authors find that nuclear confinement is associated with a loss of histone acetylation and nucleoli abundance, while pathway analysis reveals a substantial reduction in gene expression associated with chromosome organization. In light of previous observations where the authors found a decrease in proliferation and metabolism induced by micro-topographies, they connect these findings with a quiescent phenotype in mesenchymal stem cells, as further shown by a reduction of ribosomal proteins and the maintenance of multipotency on micro-topographies after long-term culture conditions. Also, this influence of micro-topographies on nuclear morphology and proliferation is reversible, as shown by a return of proliferation when re-cultured on a flat surface. The findings provide novel insights into how biophysical signaling influences the epigenetic landscape and subsequent cellular phenotype.
Collapse
Affiliation(s)
- Steven Vermeulen
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Laura Bengtsson del Barrio
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
| | - Ruben Almey
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU LeuvenLeuven3000Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
8
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
9
|
Lorber D, Volk T. Evaluation of chromatin mesoscale organization. APL Bioeng 2022; 6:010902. [PMID: 35071965 PMCID: PMC8758204 DOI: 10.1063/5.0069286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatin organization in the nucleus represents an important aspect of transcription regulation. Most of the studies so far focused on the chromatin structure in cultured cells or in fixed tissue preparations. Here, we discuss the various approaches for deciphering chromatin 3D organization with an emphasis on the advantages of live imaging approaches.
Collapse
Affiliation(s)
- Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Özkan H, Öztürk DG, Korkmaz G. Transcriptional Factor Repertoire of Breast Cancer in 3D Cell Culture Models. Cancers (Basel) 2022; 14:cancers14041023. [PMID: 35205770 PMCID: PMC8870600 DOI: 10.3390/cancers14041023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Knowledge of the transcriptional regulation of breast cancer tumorigenesis is largely based on studies performed in two-dimensional (2D) monolayer culture models, which lack tissue architecture and therefore fail to represent tumor heterogeneity. However, three-dimensional (3D) cell culture models are better at mimicking in vivo tumor microenvironment, which is critical in regulating cellular behavior. Hence, 3D cell culture models hold great promise for translational breast cancer research. Abstract Intratumor heterogeneity of breast cancer is driven by extrinsic factors from the tumor microenvironment (TME) as well as tumor cell–intrinsic parameters including genetic, epigenetic, and transcriptomic traits. The extracellular matrix (ECM), a major structural component of the TME, impacts every stage of tumorigenesis by providing necessary biochemical and biomechanical cues that are major regulators of cell shape/architecture, stiffness, cell proliferation, survival, invasion, and migration. Moreover, ECM and tissue architecture have a profound impact on chromatin structure, thereby altering gene expression. Considering the significant contribution of ECM to cellular behavior, a large body of work underlined that traditional two-dimensional (2D) cultures depriving cell–cell and cell–ECM interactions as well as spatial cellular distribution and organization of solid tumors fail to recapitulate in vivo properties of tumor cells residing in the complex TME. Thus, three-dimensional (3D) culture models are increasingly employed in cancer research, as these culture systems better mimic the physiological microenvironment and shape the cellular responses according to the microenvironmental cues that will regulate critical cell functions such as cell shape/architecture, survival, proliferation, differentiation, and drug response as well as gene expression. Therefore, 3D cell culture models that better resemble the patient transcriptome are critical in defining physiologically relevant transcriptional changes. This review will present the transcriptional factor (TF) repertoire of breast cancer in 3D culture models in the context of mammary tissue architecture, epithelial-to-mesenchymal transition and metastasis, cell death mechanisms, cancer therapy resistance and differential drug response, and stemness and will discuss the impact of culture dimensionality on breast cancer research.
Collapse
Affiliation(s)
- Hande Özkan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Deniz Gülfem Öztürk
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Correspondence: (D.G.Ö.); (G.K.)
| | - Gozde Korkmaz
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Correspondence: (D.G.Ö.); (G.K.)
| |
Collapse
|
11
|
Serjanov D, Bachay G, Hunter DD, Brunken WJ. Laminin β2 Chain Regulates Cell Cycle Dynamics in the Developing Retina. Front Cell Dev Biol 2022; 9:802593. [PMID: 35096830 PMCID: PMC8790539 DOI: 10.3389/fcell.2021.802593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinal development follows a highly stereotyped pattern, in which the retinal progenitor cells (RPCs) give rise to all retinal types in a conserved temporal sequence. Ensuring the proper control over RPC cell cycle exit and re-entry is, therefore, crucially important for the generation of properly functioning retina. In this study, we demonstrate that laminins, indispensible ECM components, at the retinal surface, regulate the mechanisms determining whether RPCs generate proliferative or post-mitotic progeny. In vivo deletion of laminin β2 in mice resulted in disturbing the RPC cell cycle dynamics, and premature cell cycle exit. Specifically, the RPC S-phase is shortened, with increased numbers of cells present in its late stages. This is followed by an accelerated G2-phase, leading to faster M-phase entry. Finally, the M-phase is extended, with RPCs dwelling longer in prophase. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants restored the appropriate RPC cell cycle dynamics, as well as S and M-phase progression, leading to proper cell cycle re-entry. Moreover, we show that disruption of dystroglycan, a laminin receptor, phenocopies the laminin β2 deletion cell cycle phenotype. Together, our findings suggest that dystroglycan-mediated ECM signaling plays a critical role in regulating the RPC cell cycle dynamics, and the ensuing cell fate decisions.
Collapse
Affiliation(s)
- Dmitri Serjanov
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - Dale D Hunter
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
12
|
Han P, Gomez GA, Duda GN, Ivanovski S, Poh PS. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater 2022; 163:259-274. [PMID: 35038587 DOI: 10.1016/j.actbio.2022.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/03/2023]
Abstract
The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.
Collapse
|
13
|
Abstract
Cells generate and sense mechanical forces that trigger biochemical signals to elicit cellular responses that control cell fate changes. Mechanical forces also physically distort neighboring cells and the surrounding connective tissue, which propagate mechanochemical signals over long distances to guide tissue patterning, organogenesis, and adult tissue homeostasis. As the largest and stiffest organelle, the nucleus is particularly sensitive to mechanical force and deformation. Nuclear responses to mechanical force include adaptations in chromatin architecture and transcriptional activity that trigger changes in cell state. These force-driven changes also influence the mechanical properties of chromatin and nuclei themselves to prevent aberrant alterations in nuclear shape and help maintain genome integrity. This review will discuss principles of nuclear mechanotransduction and chromatin mechanics and their role in DNA damage and cell fate regulation.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
14
|
Han P, Vaquette C, Abdal-hay A, Ivanovski S. The Mechanosensing and Global DNA Methylation of Human Osteoblasts on MEW Fibers. NANOMATERIALS 2021; 11:nano11112943. [PMID: 34835707 PMCID: PMC8621030 DOI: 10.3390/nano11112943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/02/2023]
Abstract
Cells interact with 3D fibrous platform topography via a nano-scaled focal adhesion complex, and more research is required on how osteoblasts sense and respond to random and aligned fibers through nano-sized focal adhesions and their downstream events. The present study assessed human primary osteoblast cells’ sensing and response to random and aligned medical-grade polycaprolactone (PCL) fibrous 3D scaffolds fabricated via the melt electrowriting (MEW) technique. Cells cultured on a tissue culture plate (TCP) were used as 2D controls. Compared to 2D TCP, 3D MEW fibrous substrates led to immature vinculin focal adhesion formation and significantly reduced nuclear localization of the mechanosensor-yes-associated protein (YAP). Notably, aligned MEW fibers induced elongated cell and nucleus shape and highly activated global DNA methylation of 5-methylcytosine, 5-hydroxymethylcytosine, and N-6 methylated deoxyadenosine compared to the random fibers. Furthermore, although osteogenic markers (osterix-OSX and bone sialoprotein-BSP) were significantly enhanced in PCL-R and PCL-A groups at seven days post-osteogenic differentiation, calcium deposits on all seeded samples did not show a difference after normalizing for DNA content after three weeks of osteogenic induction. Overall, our study linked 3D extracellular fiber alignment to nano-focal adhesion complex, nuclear mechanosensing, DNA epigenetics at an early point (24 h), and longer-term changes in osteoblast osteogenic differentiation.
Collapse
Affiliation(s)
- Pingping Han
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
| | - Abdalla Abdal-hay
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Sašo Ivanovski
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
- Correspondence:
| |
Collapse
|
15
|
Veerasubramanian PK, Shao H, Meli VS, Phan TAQ, Luu TU, Liu WF, Downing TL. A Src-H3 acetylation signaling axis integrates macrophage mechanosensation with inflammatory response. Biomaterials 2021; 279:121236. [PMID: 34753038 PMCID: PMC8939266 DOI: 10.1016/j.biomaterials.2021.121236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Macrophages are mechanosensitive cells that can exquisitely fine-tune their function in response to their microenvironment. While macrophage polarization results in concomitant changes in cell morphology and epigenetic reprogramming, how biophysically-induced signaling cascades contribute to gene regulatory programs that drive polarization remains unknown. We reveal a cytoskeleton-dependent Src-H3 acetylation (H3Ac) axis responsible for inflammation-associated histone hyperacetylation. Inflammatory stimuli caused increases in traction forces, Src activity and H3Ac marks in macrophages, accompanied by reduced cell elongation and motility. These effects were curtailed following disruption of H3Ac-signaling through either micropattern-induced cell elongation or inhibition of H3Ac readers (BRD proteins) directly. Src activation relieves the suppression of p300 histone acetyltransferase (HAT) activity by PKCδ. Furthermore, while inhibition of Src reduced p300 HAT activity and H3Ac marks globally, local H3Ac levels within the Src promoter were increased, suggesting H3Ac regulates Src levels through feedback. Together, our study reveals an adhesome-to-epigenome regulatory nexus underlying macrophage mechanosensation, where Src modulates H3Ac-associated epigenetic signaling as a means of tuning inflammatory gene activity and macrophage fate decisions in response to microenvironmental cues.
Collapse
Affiliation(s)
- Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA; UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, CA, USA
| | - Hanjuan Shao
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA; UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, CA, USA
| | - Vijaykumar S Meli
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA; UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, CA, USA
| | - Tri Andrew Q Phan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA; UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, CA, USA
| | - Thuy U Luu
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, CA, USA; Department of Pharmacological Sciences, University of California Irvine, Irvine, CA, USA
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA; UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, CA, USA; Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Timothy L Downing
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA; UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, USA; Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
16
|
Pan D, Du Y, Li R, Shen A, Liu X, Li C, Hu B. miR-29b-3p Increases Radiosensitivity in Stemness Cancer Cells via Modulating Oncogenes Axis. Front Cell Dev Biol 2021; 9:741074. [PMID: 34604239 PMCID: PMC8481616 DOI: 10.3389/fcell.2021.741074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Radioresistance conferred by cancer stem cells (CSCs) is the principal cause of the failure of cancer radiotherapy. Eradication of CSCs is a prime therapeutic target and a requirement for effective radiotherapy. Three dimensional (3D) cell-cultured model could mimic the morphology of cells in vivo and induce CSC properties. Emerging evidence suggests that microRNAs (miRNAs) play crucial roles in the regulation of radiosensitivity in cancers. In this study, we aim to investigate the effects of miRNAs on the radiosensitivity of 3D cultured stem-like cells. Using miRNA microarray analysis in 2D and 3D cell culture models, we found that the expression of miR-29b-3p was downregulated in 3D cultured A549 and MCF7 cells compared with monolayer (2D) cells. Clinic data analysis from The Cancer Genome Atlas database exhibited that miR-29b-3p high expression showed significant advantages in lung adenocarcinoma and breast invasive carcinoma patients’ prognosis. The subsequent experiments proved that miR-29b-3p overexpression decreased the radioresistance of cells in 3D culture and tumors in vivo through interfering kinetics process of DNA damage repair and inhibiting oncogenes RBL1, PIK3R1, AKT2, and Bcl-2. In addition, miR-29b-3p knockdown enhanced cancer cells invasion and migration capability. MiR-29b-3p overexpression decreased the stemness of 3D cultured cells. In conclusion, our results demonstrate that miR-29b-3p could be a sensitizer of radiation killing in CSC-like cells via inhibiting oncogenes expression. MiR-29b-3p could be a novel therapeutic candidate target for radiotherapy.
Collapse
Affiliation(s)
- Dong Pan
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Yarong Du
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Rong Li
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chuanyuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| |
Collapse
|
17
|
Alcaraz J, Ikemori R, Llorente A, Díaz-Valdivia N, Reguart N, Vizoso M. Epigenetic Reprogramming of Tumor-Associated Fibroblasts in Lung Cancer: Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13153782. [PMID: 34359678 PMCID: PMC8345093 DOI: 10.3390/cancers13153782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death among both men and women, partly due to limited therapy responses. New avenues of knowledge are indicating that lung cancer cells do not form a tumor in isolation but rather obtain essential support from their surrounding host tissue rich in altered fibroblasts. Notably, there is growing evidence that tumor progression and even the current limited responses to therapies could be prevented by rescuing the normal behavior of fibroblasts, which are critical housekeepers of normal tissue function. For this purpose, it is key to improve our understanding of the molecular mechanisms driving the pathologic alterations of fibroblasts in cancer. This work provides a comprehensive review of the main molecular mechanisms involved in fibroblast transformation based on epigenetic reprogramming, and summarizes emerging therapeutic approaches to prevent or overcome the pathologic effects of tumor-associated fibroblasts. Abstract Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Correspondence: (J.A.); (M.V.)
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Alejandro Llorente
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, 08036 Barcelona, Spain; (R.I.); (A.L.); (N.D.-V.)
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Miguel Vizoso
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: (J.A.); (M.V.)
| |
Collapse
|
18
|
Grandy C, Kolb P, Port F, Gottschalk KE. Micropatterning of Cells on Gold Surfaces for Biophysical Applications. STAR Protoc 2020; 1:100106. [PMID: 33377002 PMCID: PMC7756938 DOI: 10.1016/j.xpro.2020.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We developed a reproducible micropatterning method to manipulate and normalize cell shape and cell-cell separation on gold. We used methoxy polyethylene glycol thiol (PEG-SH) to create a self-assembled monolayer that can be oxidized at desired shapes through a photomask with deep UV light. The oxidized PEG can be coated with extracellular matrix proteins and seeded with cells adopting the pre-defined shape. The developed and analyzed surfaces can be used in a wide range of biophysical applications.
Collapse
Affiliation(s)
- Carolin Grandy
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg 89081, Germany
| | - Peter Kolb
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg 89081, Germany
| | - Fabian Port
- University Ulm, Institute of Experimental Physics, Ulm, Baden-Württemberg 89081, Germany
| | | |
Collapse
|
19
|
Patteson AE, Carroll RJ, Iwamoto DV, Janmey PA. The vimentin cytoskeleton: when polymer physics meets cell biology. Phys Biol 2020; 18:011001. [PMID: 32992303 PMCID: PMC8240483 DOI: 10.1088/1478-3975/abbcc2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proper functions of tissues depend on the ability of cells to withstand stress and maintain shape. Central to this process is the cytoskeleton, comprised of three polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). IF proteins are among the most abundant cytoskeletal proteins in cells; yet they remain some of the least understood. Their structure and function deviate from those of their cytoskeletal partners, F-actin and microtubules. IF networks show a unique combination of extensibility, flexibility and toughness that confers mechanical resilience to the cell. Vimentin is an IF protein expressed in mesenchymal cells. This review highlights exciting new results on the physical biology of vimentin intermediate filaments and their role in allowing whole cells and tissues to cope with stress.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Robert J Carroll
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Daniel V Iwamoto
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Dawson JC, Serrels B, Byron A, Muir MT, Makda A, García-Muñoz A, von Kriegsheim A, Lietha D, Carragher NO, Frame MC. A Synergistic Anticancer FAK and HDAC Inhibitor Combination Discovered by a Novel Chemical-Genetic High-Content Phenotypic Screen. Mol Cancer Ther 2020; 19:637-649. [PMID: 31784455 PMCID: PMC7611632 DOI: 10.1158/1535-7163.mct-19-0330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/22/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022]
Abstract
We mutated the focal adhesion kinase (FAK) catalytic domain to inhibit binding of the chaperone Cdc37 and ATP, mimicking the actions of a FAK kinase inhibitor. We reexpressed mutant and wild-type FAK in squamous cell carcinoma (SCC) cells from which endogenous FAK had been deleted, genetically fixing one axis of a FAK inhibitor combination high-content phenotypic screen to discover drugs that may synergize with FAK inhibitors. Histone deacetylase (HDAC) inhibitors represented the major class of compounds that potently induced multiparametric phenotypic changes when FAK was rendered kinase-defective or inhibited pharmacologically in SCC cells. Combined FAK and HDAC inhibitors arrest proliferation and induce apoptosis in a subset of cancer cell lines in vitro and efficiently inhibit their growth as tumors in vivo Mechanistically, HDAC inhibitors potentiate inhibitor-induced FAK inactivation and impair FAK-associated nuclear YAP in sensitive cancer cell lines. Here, we report the discovery of a new, clinically actionable, synergistic combination between FAK and HDAC inhibitors.
Collapse
Affiliation(s)
- John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Morwenna T Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ashraff Makda
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Daniel Lietha
- Cell Signaling and Adhesion Group, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
21
|
Lin YH, Schmidt W, Fritz KS, Jeong MY, Cammarato A, Foster DB, Biesiadecki BJ, McKinsey TA, Woulfe KC. Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. J Mol Cell Cardiol 2020; 139:135-147. [PMID: 31981571 DOI: 10.1016/j.yjmcc.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cardiac troponin I (cTnI) is an essential physiological and pathological regulator of cardiac relaxation. Significant to this regulation, the post-translational modification of cTnI through phosphorylation functions as a key mechanism to accelerate myofibril relaxation. Similar to phosphorylation, post-translational modification by acetylation alters amino acid charge and protein function. Recent studies have demonstrated that the acetylation of cardiac myofibril proteins accelerates relaxation and that cTnI is acetylated in the heart. These findings highlight the potential significance of myofilament acetylation; however, it is not known if site-specific acetylation of cTnI can lead to changes in myofilament, myofibril, and/or cellular mechanics. The objective of this study was to determine the effects of mimicking acetylation at a single site of cTnI (lysine-132; K132) on myofilament, myofibril, and cellular mechanics and elucidate its influence on molecular function. METHODS To determine if pseudo-acetylation of cTnI at 132 modulates thin filament regulation of the acto-myosin interaction, we reconstituted thin filaments containing WT or K132Q (to mimic acetylation) cTnI and assessed in vitro motility. To test if mimicking acetylation at K132 alters cellular relaxation, adult rat ventricular cardiomyocytes were infected with adenoviral constructs expressing either cTnI K132Q or K132 replaced with arginine (K132R; to prevent acetylation) and cell shortening and isolated myofibril mechanics were measured. Finally, to confirm that changes in cell shortening and myofibril mechanics were directly due to pseudo-acetylation of cTnI at K132, we exchanged troponin containing WT or K132Q cTnI into isolated myofibrils and measured myofibril mechanical properties. RESULTS Reconstituted thin filaments containing K132Q cTnI exhibited decreased calcium sensitivity compared to thin filaments reconstituted with WT cTnI. Cardiomyocytes expressing K132Q cTnI had faster relengthening and myofibrils isolated from these cells had faster relaxation along with decreased calcium sensitivity compared to cardiomyocytes expressing WT or K132R cTnI. Myofibrils exchanged with K132Q cTnI ex vivo demonstrated faster relaxation and decreased calcium sensitivity. CONCLUSIONS Our results indicate for the first time that mimicking acetylation of a specific cTnI lysine accelerates myofilament, myofibril, and myocyte relaxation. This work underscores the importance of understanding how acetylation of specific sarcomeric proteins affects cardiac homeostasis and disease and suggests that modulation of myofilament lysine acetylation may represent a novel therapeutic target to alter cardiac relaxation.
Collapse
Affiliation(s)
- Ying H Lin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - William Schmidt
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Mark Y Jeong
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
22
|
Igaz N, Szőke K, Kovács D, Buhala A, Varga Z, Bélteky P, Rázga Z, Tiszlavicz L, Vizler C, Hideghéty K, Kónya Z, Kiricsi M. Synergistic Radiosensitization by Gold Nanoparticles and the Histone Deacetylase Inhibitor SAHA in 2D and 3D Cancer Cell Cultures. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:158. [PMID: 31963267 PMCID: PMC7023030 DOI: 10.3390/nano10010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
Abstract
Radiosensitizing agents are capable of augmenting the damage of ionizing radiation preferentially on cancer cells, thereby increasing the potency and the specificity of radiotherapy. Metal-based nanoparticles have recently gathered ground in radio-enhancement applications, owing to their exceptional competence in amplifying the cell-killing effects of irradiation. Our aim was to examine the radiosensitizing performance of gold nanoparticles (AuNPs) and the chromatin-modifying histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alone and in combination. We observed that the colony-forming capability of cancer cells decreased significantly and the DNA damage, detected by γH2AX immunostaining, was substantially greater after combinational treatments than upon individual drug exposures followed by irradiation. Synergistic radiosensitizing effects of AuNPs and SAHA were proven on various cell lines, including radioresistant A549 and DU-145 cancer cells. 3D cultures often manifest radio- and drug-resistance, nevertheless, AuNPs in combination with SAHA could effectively enhance the potency of irradiation as the number of viable cells decreased significantly when spheroids received AuNP + SAHA prior to radiotherapy. Our results imply that a relaxed chromatin structure induced by SAHA renders the DNA of cancerous cells more susceptible to the damaging effects of irradiation-triggered, AuNP-released reactive electrons. This feature of AuNPs should be exploited in multimodal treatment approaches.
Collapse
Affiliation(s)
- Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
- Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Krisztina Szőke
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
| | - Andrea Buhala
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; (A.B.); (C.V.)
| | - Zoltán Varga
- Department of Oncotherapy, University of Szeged, Korányi fasor 12, H-6720 Szeged, Hungary; (Z.V.); (K.H.)
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás utca 2, H-6720 Szeged, Hungary; (Z.R.); (L.T.)
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás utca 2, H-6720 Szeged, Hungary; (Z.R.); (L.T.)
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; (A.B.); (C.V.)
| | - Katalin Hideghéty
- Department of Oncotherapy, University of Szeged, Korányi fasor 12, H-6720 Szeged, Hungary; (Z.V.); (K.H.)
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (P.B.); (Z.K.)
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (N.I.); (K.S.); (D.K.)
| |
Collapse
|
23
|
Stowers RS, Shcherbina A, Israeli J, Gruber JJ, Chang J, Nam S, Rabiee A, Teruel MN, Snyder MP, Kundaje A, Chaudhuri O. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat Biomed Eng 2019; 3:1009-1019. [PMID: 31285581 PMCID: PMC6899165 DOI: 10.1038/s41551-019-0420-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/31/2019] [Indexed: 11/10/2022]
Abstract
In breast cancer, the increased stiffness of the extracellular matrix is a key driver of malignancy. Yet little is known about the epigenomic changes that underlie the tumorigenic impact of extracellular matrix mechanics. Here, we show in a three-dimensional culture model of breast cancer that stiff extracellular matrix induces a tumorigenic phenotype through changes in chromatin state. We found that increased stiffness yielded cells with more wrinkled nuclei and with increased lamina-associated chromatin, that cells cultured in stiff matrices displayed more accessible chromatin sites, which exhibited footprints of Sp1 binding, and that this transcription factor acts along with the histone deacetylases 3 and 8 to regulate the induction of stiffness-mediated tumorigenicity. Just as cell culture on soft environments or in them rather than on tissue-culture plastic better recapitulates the acinar morphology observed in mammary epithelium in vivo, mammary epithelial cells cultured on soft microenvironments or in them also more closely replicate the in vivo chromatin state. Our results emphasize the importance of culture conditions for epigenomic studies, and reveal that chromatin state is a critical mediator of mechanotransduction.
Collapse
Affiliation(s)
- Ryan S Stowers
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Anna Shcherbina
- Department of Biological Data Science, Stanford University, Stanford, CA, USA
| | - Johnny Israeli
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Joshua J Gruber
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Oncology Division, Stanford University, Stanford, CA, USA
| | - Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Atefeh Rabiee
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Mary N Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Wang J, Wu Y, Zhang X, Zhang F, Lü D, Shangguan B, Gao Y, Long M. Flow-enhanced priming of hESCs through H2B acetylation and chromatin decondensation. Stem Cell Res Ther 2019; 10:349. [PMID: 31775893 PMCID: PMC6880446 DOI: 10.1186/s13287-019-1454-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Distinct mechanical stimuli are known to manipulate the behaviors of embryonic stem cells (ESCs). Fundamental rationale of how ESCs respond to mechanical forces and the potential biological effects remain elusive. Here we conducted the mechanobiological study for hESCs upon mechanomics analysis to unravel typical mechanosensitive processes on hESC-specific fluid shear. METHODS hESC line H1 was subjected to systematically varied shear flow, and mechanosensitive proteins were obtained by mass spectrometry (MS) analysis. Then, function enrichment analysis was performed to identify the enriched gene sets. Under a steady shear flow of 1.1 Pa for 24 h, protein expressions were further detected using western blotting (WB), quantitative real-time PCR (qPCR), and immunofluorescence (IF) staining. Meanwhile, the cells were treated with 200 nM trichostatin (TSA) for 1 h as positive control to test chromatin decondensation. Actin, DNA, and RNA were then visualized with TRITC-labeled phalloidin, Hoechst 33342, and SYTO® RNASelect™ green fluorescent cell stain (Life Technologies), respectively. In addition, cell stiffness was determined with atomic force microscopy (AFM) and annexin V-PE was used to determine the apoptosis with a flow cytometer (FCM). RESULTS Typical mechanosensitive proteins were unraveled upon mechanomics analysis under fluid shear related to hESCs in vivo. Functional analyses revealed significant alterations in histone acetylation, nuclear size, and cytoskeleton for hESC under shear flow. Shear flow was able to induce H2B acetylation and nuclear spreading by CFL2/F-actin cytoskeletal reorganization. The resulting chromatin decondensation and a larger nucleus readily accommodate signaling molecules and transcription factors. CONCLUSIONS Shear flow regulated chromatin dynamics in hESCs via cytoskeleton and nucleus alterations and consolidated their primed state.
Collapse
Affiliation(s)
- Jiawen Wang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyuan Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Shangguan
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuxin Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China. .,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Alisafaei F, Jokhun DS, Shivashankar GV, Shenoy VB. Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proc Natl Acad Sci U S A 2019; 116:13200-13209. [PMID: 31209017 PMCID: PMC6613080 DOI: 10.1073/pnas.1902035116] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cells sense mechanical signals from their microenvironment and transduce them to the nucleus to regulate gene expression programs. To elucidate the physical mechanisms involved in this regulation, we developed an active 3D chemomechanical model to describe the three-way feedback between the adhesions, the cytoskeleton, and the nucleus. The model shows local tensile stresses generated at the interface of the cell and the extracellular matrix regulate the properties of the nucleus, including nuclear morphology, levels of lamin A,C, and histone deacetylation, as these tensile stresses 1) are transmitted to the nucleus through cytoskeletal physical links and 2) trigger an actomyosin-dependent shuttling of epigenetic factors. We then show how cell geometric constraints affect the local tensile stresses and subsequently the three-way feedback and induce cytoskeleton-mediated alterations in the properties of the nucleus such as nuclear lamina softening, chromatin stiffening, nuclear lamina invaginations, increase in nuclear height, and shrinkage of nuclear volume. We predict a phase diagram that describes how the disruption of cytoskeletal components impacts the feedback and subsequently induce contractility-dependent alterations in the properties of the nucleus. Our simulations show that these changes in contractility levels can be also used as predictors of nucleocytoplasmic shuttling of transcription factors and the level of chromatin condensation. The predictions are experimentally validated by studying the properties of nuclei of fibroblasts on micropatterned substrates with different shapes and areas.
Collapse
Affiliation(s)
- Farid Alisafaei
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 117411, Singapore
- FIRC Institute for Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104;
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
26
|
Gomes LR, Rocha CRR, Martins DJ, Fiore APZP, Kinker GS, Bruni-Cardoso A, Menck CFM. ATR mediates cisplatin resistance in 3D-cultured breast cancer cells via translesion DNA synthesis modulation. Cell Death Dis 2019; 10:459. [PMID: 31189884 PMCID: PMC6561919 DOI: 10.1038/s41419-019-1689-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Tissue architecture and cell–extracellular matrix (cell–ECM) interaction determine the organ specificity; however, the influences of these factors on anticancer drugs preclinical studies are highly neglected. For considering such aspects, three-dimensional (3D) cell culture models are relevant tools for accurate analysis of cellular responses to chemotherapy. Here we compared the MCF-7 breast cancer cells responses to cisplatin in traditional two-dimensional (2D) and in 3D-reconstituted basement membrane (3D-rBM) cell culture models. The results showed a substantial increase of cisplatin resistance mediated by 3D microenvironment. This phenotype was independent of p53 status and autophagy activity and was also observed for other cellular models, including lung cancer cells. Such strong decrease on cellular sensitivity was not due to differences on drug-induced DNA damage, since similar levels of γ-H2AX and cisplatin–DNA adducts were detected under both conditions. However, the processing of these cisplatin-induced DNA lesions was very different in 2D and 3D cultures. Unlike cells in monolayer, cisplatin-induced DNA damage is persistent in 3D-cultured cells, which, consequently, led to high senescence induction. Moreover, only 3D-cultured cells were able to progress through S cell cycle phase, with unaffected replication fork progression, due to the upregulation of translesion (TLS) DNA polymerase expression and activation of the ATR-Chk1 pathway. Co-treatment with VE-821, a pharmacological inhibitor of ATR, blocked the 3D-mediated changes on cisplatin response, including low sensitivity and high TLS capacity. In addition, ATR inhibition also reverted induction of REV3L by cisplatin treatment. By using REV3L-deficient cells, we showed that this TLS DNA polymerase is essential for the cisplatin sensitization effect mediated by VE-821. Altogether, our results demonstrate that 3D-cell architecture-associated resistance to cisplatin is due to an efficient induction of REV3L and TLS, dependent of ATR. Thus co-treatment with ATR inhibitors might be a promising strategy for enhancement of cisplatin treatment efficiency in breast cancer patients.
Collapse
Affiliation(s)
- Luciana Rodrigues Gomes
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil. .,Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil.
| | - Clarissa Ribeiro Reily Rocha
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Departamento de Oncologia Clínica e Experimental, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Davi Jardim Martins
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Gabriela Sarti Kinker
- Departamento de Fisiologia, Instituto de Biologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
27
|
Costa A, de Souza Carvalho-Wodarz C, Seabra V, Sarmento B, Lehr CM. Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier. Acta Biomater 2019; 91:235-247. [PMID: 31004840 DOI: 10.1016/j.actbio.2019.04.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Predictive in vitro models are valuable alternatives to animal experiments for evaluating the transport of molecules and (nano)particles across biological barriers. In this work, an improved triple co-culture of air-blood barrier was set-up, being exclusively constituted by human cell lines that allowed to perform experiments at air-liquid interface. Epithelial NCI-H441 cells and endothelial HPMEC-ST1.6R cells were seeded at the apical and basolateral sides of a Transwell® membrane, respectively. Differentiated THP-1 cells were also added on the top of the epithelial layer to mimetize alveolar macrophages. Translocation and permeability studies were also performed. It was observed that around 14-18% of 50-nm Fluorospheres®, but less than 1% of 1.0 µm-Fluorospheres® could pass through the triple co-culture as well as the epithelial monoculture and bi-cultures, leading to the conclusion that both in vitro models represented a significant biological barrier and could differentiate the translocation of different sized systems. The permeability of isoniazid was similar between the epithelial monoculture and bi-cultures when compared with the triple co-culture. However, when in vitro models were challenged with lipopolysaccharide, the release of interleukin-8 increased in the bi-cultures and triple co-culture, whereas the NCI-H441 monoculture did not show any proinflammatory response. Overall, this new in vitro model is a potential tool to assess the translocation of nanoparticles across the air-blood barrier both in healthy state and proinflammatory state. STATEMENT OF SIGNIFICANCE: The use of in vitro models for drug screening as an alternative to animal experiments is increasing over the last years, in particular, models to assess the permeation through biological membranes. Cell culture models are mainly constituted by one type of cells forming a confluent monolayer, but due to its oversimplicity they are being replaced by three-dimensional (3D) in vitro models, that present a higher complexity and reflect more the in vivo-like conditions. Being the pulmonary route one of the most studied approaches for drug administration, several in vitro models of alveolar epithelium have been used to assess the drug permeability and translocation and toxicity of nanocarriers. Nevertheless, there is still a lack of 3D in vitro models that mimic the morphology and the physiological behavior of the alveolar-capillary membrane. In this study, a 3D in vitro model of the air-blood barrier constituted by three different relevant cell lines was established and morphologically characterized. Different permeability/translocation studies were performed to achieve differences/similarities comparatively to each monoculture (epithelium, endothelium, and macrophages) and bi-cultures (epithelial cells either cultured with endothelial cells or macrophages). The release of pro-inflammatory cytokines (namely interleukin-8) after incubation of lipopolysaccharide, a pro-inflammatory inductor, was also evaluated in this work.
Collapse
|
28
|
Rombouts C, De Spiegeleer M, Van Meulebroek L, De Vos WH, Vanhaecke L. Validated comprehensive metabolomics and lipidomics analysis of colon tissue and cell lines. Anal Chim Acta 2019; 1066:79-92. [PMID: 31027537 DOI: 10.1016/j.aca.2019.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
Current untargeted approaches for metabolic fingerprinting of colon tissue and cell lines lack validation of reproducibility and/or focus on a selection of metabolites as opposed to the entire metabolome. Yet, both are critical to ensure reliable results and pursue a fully holistic analysis. Therefore, we have optimized and validated a platform for analyzing the polar metabolome and lipidome of colon-derived cell and tissue samples based on a consecutive extraction of polar and apolar components. Peak areas of selected targeted analytes and the number of untargeted components were assessed. Analysis was performed using ultra-high performance liquid-chromatography (UHPLC) coupled to hybrid quadrupole-Orbitrap high-resolution mass spectrometry (HRMS). This resulted in an optimized extraction protocol using 50% methanol/ultrapure water to obtain the polar fraction followed by a dichloromethane-based lipid extraction. Using this comprehensive approach, we have detected more than 15,000 components with CV < 30% in internal quality control (IQC) samples and were able to discriminate the non-transformed (NT) and transformed (T) state in human colon tissue and cell lines based on validated OPLS-DA models (R2Y > 0.719 and Q2 > 0.674). To conclude, our validated polar metabolomics and lipidomics fingerprinting approach could be of great value to reveal gastrointestinal disease-associated biomarkers and mechanisms.
Collapse
Affiliation(s)
- Caroline Rombouts
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium; Ghent University, Faculty of Bioscience Engineering, Department of Molecular Biotechnology, Cell Systems & Imaging, Coupure Links 653, 9000, Ghent, Belgium; Antwerp University, Faculty of Veterinary Medicine, Department of Veterinary Sciences, Laboratory of Cell Biology & Histology, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Margot De Spiegeleer
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Winnok H De Vos
- Ghent University, Faculty of Bioscience Engineering, Department of Molecular Biotechnology, Cell Systems & Imaging, Coupure Links 653, 9000, Ghent, Belgium; Antwerp University, Faculty of Veterinary Medicine, Department of Veterinary Sciences, Laboratory of Cell Biology & Histology, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Lynn Vanhaecke
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820, Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
29
|
Cox MC, Deng C, Naler LB, Lu C, Verbridge SS. Effects of culture condition on epigenomic profiles of brain tumor cells. ACS Biomater Sci Eng 2019; 5:1544-1552. [PMID: 31799379 PMCID: PMC6886720 DOI: 10.1021/acsbiomaterials.9b00161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Personalized cancer medicine offers the promise of more effective treatments that are tailored to an individual's own dynamic cancer phenotype. Meanwhile, tissue-engineering approaches to modeling tumors may complement these advances by providing a powerful new approach to understanding the adaptation dynamics occurring during treatment. However, in both of these areas new tools will be required to gain a full picture of the genetic and epigenetic regulators of phenotype dynamics occurring in the small populations of cells that drive resistance. In this study, we perform epigenomic analysis of brain tumor cells that are collected from micro-engineered three-dimensional tumor models, overcoming the challenges associated with the small numbers of cells contained within these micro-tissue niches, in this case collecting ~1,000 cells per sample. Specifically, we use a high-resolution epigenomic analysis method known as microfluidic-oscillatory-washing-based chromatin immunoprecipitation with sequencing (MOWChIP-seq) to analyze histone methylation patterns (H3K4me3). We identified gene loci that are associated with the H3K4me3 modification, which is generally a mark of active transcription. We compared methylation patterns in standard 2D cultures and 3D cultures based on type I collagen hydrogels, under both normoxic and hypoxic conditions. We found that culture dimensionality drastically impacted the H3k4me3 profile and resulted in differential modifications in response to hypoxic stress. Differentially H3K4me3-marked regions under the culture conditions used in this study have important implications for gene expression differences that have been previously observed. In total, our work illustrates a direct connection between cell culture or tissue niche condition and genome-wide alterations in histone modifications, providing the first steps towards analyzing the spatiotemporal variations in epigenetic regulation of cancer cell phenotypes. This study, to our knowledge, also represents the first time broad-spectrum epigenomic analysis has been applied to small cell samples collected from engineered micro-tissues.
Collapse
Affiliation(s)
- Megan C. Cox
- School of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University
| | - Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Lynette B. Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Scott S. Verbridge
- School of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University
| |
Collapse
|
30
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
31
|
Modulation of Inflammatory Reactions by Low-Dose Ionizing Radiation: Cytokine Release of Murine Endothelial Cells Is Dependent on Culture Conditions. J Immunol Res 2018; 2018:2856518. [PMID: 29967799 PMCID: PMC6008836 DOI: 10.1155/2018/2856518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/14/2018] [Accepted: 04/05/2018] [Indexed: 01/04/2023] Open
Abstract
Background In many European countries, patients with a variety of chronical inflammatory diseases are treated with low-dose radiotherapy (LD-RT). In contrast to high-dose irradiation given to tumor patients, little is known about radiobiological mechanisms underlying this clinical successful LD-RT application. The objective of this study was to gain a better insight into the modulation of inflammatory reactions after LD-RT on the basis of endothelial cells (EC) as major participants and regulators of inflammation. Methods Three murine EC lines were cultivated under 2D and 3D culture conditions and irradiated with doses from 0.01 Gy to 2 Gy. To simulate an inflammatory situation, cells were activated with TNF-α. After LD-RT, a screening of numerous inflammatory markers was determined by multiplex assay, followed by detailed analyses of four cytokines (KC, MCP-1, RANTES, and G-CSF). Additionally, the monocyte binding to EC was analyzed. Results Cytokine concentrations were dependent on culture condition, IR dose, time point after IR, and EC origin. IR caused nonlinear dose-dependent effects on secretion of the proinflammatory cytokines KC, MCP-1, and RANTES. The monocyte adhesion was significantly enhanced after IR as well as activation. Conclusions The study shows that LD-RT, also using very low radiation doses, has a clear immunomodulatory effect on EC as major participants and regulators of inflammation.
Collapse
|
32
|
Wang Y, Jiang M, Du C, Yu Y, Liu Y, Li M, Luo F. Utilization of lung cancer cell lines for the study of lung cancer stem cells. Oncol Lett 2018; 15:6791-6798. [PMID: 29731860 PMCID: PMC5920960 DOI: 10.3892/ol.2018.8265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/30/2017] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is one of the most lethal types of cancer, and its poor prognosis is primarily due to drug resistance and cancer recurrence. As it is associated with a low five-year survival rate, lung cancer stem cells (LCSCs) have been the subject of numerous recent studies. For these studies of LCSCs, lung cancer cell lines are more commonly used than lung cancer tissues obtained from patients, as they are easier to acquire. The methods utilized for the identification of LCSCs from lung cancer cell lines include fluorescence activated cell sorting (FACS), magnetic activated cell sorting (MACS), sphere-forming assay and bacterial surface display library screening. As LCSCs have certain proteins expressed on the surface (CD133, CD44 and CD24) or in the cytoplasm (ALDH and ABCG2), which may act as specific markers, the most frequently used technique to identify and obtain LCSCs is FACS. The current lack of recognized biomarkers in LCSCs makes the identification of LCSCs problematic. Furthermore, the various proportions of LCSCs in specific cell lines, as revealed by numerous previous studies, may cause the LCSC model to be questioned with regard to whether the utilization of certain lung cancer cell lines is dependable for LCSC studies. The current review focuses on lung cancer cell lines that are used for the study of LCSCs and the methods available to identify LCSCs with various markers. The present study also aimed to determine the proportion of LCSCs present in specific cell lines reported by various studies, and to discuss the suitability of specific lung cancer cell lines for the study of LCSCs.
Collapse
Affiliation(s)
- Yuyi Wang
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming Jiang
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chi Du
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oncology, The Second People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Yang Yu
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Li
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
33
|
Methylation of promoter of RBL1 enhances the radioresistance of three dimensional cultured carcinoma cells. Oncotarget 2018; 8:4422-4435. [PMID: 27779109 PMCID: PMC5354843 DOI: 10.18632/oncotarget.12647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 12/04/2022] Open
Abstract
Three dimensional (3D) culture in vitro is a new cell culture model that more closely mimics the physiology features of the in vivo environment and is being used widely in the field of medical and biological research. It has been demonstrated that cancer cells cultured in 3D matrices are more radioresistant compared with cells in monolayer (2D). However, the mechanisms causing this difference remain largely unclear. Here we found that the cell cycle distribution and expression of cell cycle regulation genes in 3D A549 cells are different from the 2D. The higher levels of the promotor methylation of cell cycle regulation genes such as RBL1 were observed in 3D A549 cells compared with cells in 2D. The treatments of irradiation or 5-Aza-CdR activated the demethylation of RBL1 promotor and resulted in the increased expression of RBL1 only in 3D A549 cells. Inhibition of RBL1 enhanced the radioresistance and decreased the G2/M phase arrest induced by irradiation in 2D A549 and MCF7 cells. Overexpression of RBL1 sensitized 3D cultured A549 and MCF7 cells to irradiation. Taken together, to our knowledge, it is the first time to revealthat the low expression of RBL1 due to itself promotor methylation in 3D cells enhances the radioresistance. Our finding sheds a new light on understanding the features of the 3D cultured cell model and its application in basic research into cancer radiotherapy and medcine development.
Collapse
|
34
|
CHEN YX, XIE GC, PAN D, DU YR, PANG LL, SONG JD, DUAN ZJ, HU BR. Three-dimensional Culture of Human Airway Epithelium in Matrigel for Evaluation of Human Rhinovirus C and Bocavirus Infections. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2018; 31:136-145. [PMID: 29606192 PMCID: PMC7134816 DOI: 10.3967/bes2018.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/01/2017] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Newly identified human rhinovirus C (HRV-C) and human bocavirus (HBoV) cannot propagate in vitro in traditional cell culture models; thus obtaining knowledge about these viruses and developing related vaccines are difficult. Therefore, it is necessary to develop a novel platform for the propagation of these types of viruses. METHODS A platform for culturing human airway epithelia in a three-dimensional (3D) pattern using Matrigel as scaffold was developed. The features of 3D culture were identified by immunochemical staining and transmission electron microscopy. Nucleic acid levels of HRV-C and HBoV in 3D cells at designated time points were quantitated by real-time polymerase chain reaction (PCR). Levels of cytokines, whose secretion was induced by the viruses, were measured by ELISA. RESULTS Properties of bronchial-like tissues, such as the expression of biomarkers CK5, ZO-1, and PCK, and the development of cilium-like protuberances indicative of the human respiration tract, were observed in 3D-cultured human airway epithelial (HAE) cultures, but not in monolayer-cultured cells. Nucleic acid levels of HRV-C and HBoV and levels of virus-induced cytokines were also measured using the 3D culture system. CONCLUSION Our data provide a preliminary indication that the 3D culture model of primary epithelia using a Matrigel scaffold in vitro can be used to propagate HRV-C and HBoV.
Collapse
Affiliation(s)
- Ya Xiong CHEN
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Guang Cheng XIE
- Department of Pathogenic Biology, Chengde Medical University, Chengde 067000, Hebei, China
| | - Dong PAN
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Ya Rong DU
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Li Li PANG
- Department for Viral Diarrhea, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Dong SONG
- Department for Viral Diarrhea, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhao Jun DUAN
- Department for Viral Diarrhea, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Bu Rong HU
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
- Correspondence should be addressed to HU Bu Rong
| |
Collapse
|
35
|
Guimarães DM, Almeida LO, Martins MD, Warner KA, Silva ARS, Vargas PA, Nunes FD, Squarize CH, Nör JE, Castilho RM. Sensitizing mucoepidermoid carcinomas to chemotherapy by targeted disruption of cancer stem cells. Oncotarget 2018; 7:42447-42460. [PMID: 27285758 PMCID: PMC5173147 DOI: 10.18632/oncotarget.9884] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/15/2016] [Indexed: 12/23/2022] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most common malignancy of salivary glands. The response of MEC to chemotherapy is unpredictable, and recent advances in cancer biology suggest the involvement of cancer stem cells (CSCs) in tumor progression and chemoresistance and radioresistance phenotype. We found that histone acetyltransferase inhibitors (HDACi) were capable of disrupting CSCs in MEC. Furthermore, administration of HDACi prior to Cisplatin (two-hit approach) disrupts CSCs and sensitizes tumor cells to Cisplatin. Our findings corroborate to emerging evidence that CSCs play a key role in tumor resistance to chemotherapy, and highlights a pharmacological two-hit approach that disrupts tumor resistance to conventional therapy.
Collapse
Affiliation(s)
- Douglas M Guimarães
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.,Department of Oral Pathology, School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Luciana O Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA
| | - Manoela D Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.,Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kristy A Warner
- Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Alan R S Silva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas, SP, Brazil
| | - Pablo A Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas, SP, Brazil
| | - Fabio D Nunes
- Department of Oral Pathology, School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jacques E Nör
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA.,Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Zhang C, Wang X, Zhang E, Yang L, Yuan H, Tu W, Zhang H, Yin Z, Shen W, Chen X, Zhang Y, Ouyang H. An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Acta Biomater 2018; 66:141-156. [PMID: 28963019 DOI: 10.1016/j.actbio.2017.09.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
Poor tendon repair is often a clinical challenge due to the lack of ideal biomaterials. Electrospun aligned fibers, resembling the ultrastructure of tendon, have been previously reported to promote tenogenesis. However, the underlying mechanism is unclear and the aligned fibers alone are not capable enough to commit teno-differentiation of stem cells. Here, based on our observation of reduced expression of histone deacetylases (HDACs) in tendon stem/progenitor cells (TSPCs) cultured on aligned fibers, we proposed a strategy to enhance the tenogenesis effect of aligned fibers by using a small molecule Trichostatin A (TSA), an HDAC inhibitor. Such a TSA-laden poly (l-lactic acid) (PLLA) aligned fiber (A-TSA) scaffold was successfully fabricated by a stable jet electrospinning method, and demonstrated its sustained capability in releasing TSA. We found that TSA incorporated aligned fibers of PLLA had an additive effect in directing tenogenic differentiation. Moreover, the in situ implantation study in rat model further confirmed that A-TSA scaffold promoted the structural and mechanical properties of the regenerated Achilles tendon. This study demonstrated that HDAC was involved in the teno-differentiation with aligned fiber topography, and the combination of HDAC with aligned topography might be a more efficient strategy to promote tenogenesis of stem cells. STATEMENT OF SIGNIFICANCE Electrospun aligned fibers, resembling the ultrastructure of tendon, have been previously reported to promote tenogenesis. However, the underlying mechanism is unclear and the aligned fibers alone are not capable enough to commit teno-differentiation of stem cells. The uniqueness of our studies are as follows, based on our observation of reduced expression of histone deacetylases (HDACs) in tendon stem/progenitor cells (TSPCs) cultured on aligned fibers, we proposed a strategy to enhance the tenogenesis effect of aligned fibers by using a small molecule Trichostatin A (TSA), a HDAC inhibitor. Such a TSA-laden poly (l-lactic acid) (PLLA) aligned fiber (A-TSA) scaffold was successfully fabricated by a stable jet electrospinning method, and demonstrated its sustained capability in releasing TSA. The incorporation and subsequent release of bioactive small molecule TSA into electrospun aligned fibers allows a controllable manner for both biochemical and physical regulation of tenogenesis of stem cells both in vitro and in vivo. Collectively, the present study provides a model of "translating the biological knowledge learned from cell-material interaction into optimizing biomaterials (from Biomat-to-Biomat)".
Collapse
Affiliation(s)
- Can Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China; Institute of Bionanotechnology and Tissue Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Xianliu Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Erchen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Long Yang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Huihua Yuan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wenjing Tu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Huilan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China.
| | - Yanzhong Zhang
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Carlini MJ, Shrivastava N, Sosa MS. Epigenetic and Pluripotency Aspects of Disseminated Cancer Cells During Minimal Residual Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:1-18. [DOI: 10.1007/978-3-319-97746-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Giménez A, Duch P, Puig M, Gabasa M, Xaubet A, Alcaraz J. Dysregulated Collagen Homeostasis by Matrix Stiffening and TGF-β1 in Fibroblasts from Idiopathic Pulmonary Fibrosis Patients: Role of FAK/Akt. Int J Mol Sci 2017; 18:ijms18112431. [PMID: 29144435 PMCID: PMC5713399 DOI: 10.3390/ijms18112431] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive disease in which normal lung parenchyma is replaced by a stiff dysfunctional scar rich in activated fibroblasts and collagen-I. We examined how the mechanochemical pro-fibrotic microenvironment provided by matrix stiffening and TGF-β1 cooperates in the transcriptional control of collagen homeostasis in normal and fibrotic conditions. For this purpose we cultured fibroblasts from IPF patients or control donors on hydrogels with tunable elasticity, including 3D collagen-I gels and 2D polyacrylamide (PAA) gels. We found that TGF-β1 consistently increased COL1A1 while decreasing MMP1 mRNA levels in hydrogels exhibiting pre-fibrotic or fibrotic-like rigidities concomitantly with an enhanced activation of the FAK/Akt pathway, whereas FAK depletion was sufficient to abrogate these effects. We also demonstrate a synergy between matrix stiffening and TGF-β1 that was positive for COL1A1 and negative for MMP1. Remarkably, the COL1A1 expression upregulation elicited by TGF-β1 alone or synergistically with matrix stiffening were higher in IPF-fibroblasts compared to control fibroblasts in association with larger FAK and Akt activities in the former cells. These findings provide new insights on how matrix stiffening and TGF-β1 cooperate to elicit excessive collagen-I deposition in IPF, and support a major role of the FAK/Akt pathway in this cooperation.
Collapse
Affiliation(s)
- Alícia Giménez
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Marta Puig
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Antoni Xaubet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Pneumology Service, Hospital Clínic, 08036 Barcelona, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
39
|
Griess B, Tom E, Domann F, Teoh-Fitzgerald M. Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med 2017; 112:464-479. [PMID: 28842347 PMCID: PMC5685559 DOI: 10.1016/j.freeradbiomed.2017.08.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) are increasingly recognized as critical determinants of cellular signaling and a strict balance of ROS levels must be maintained to ensure proper cellular function and survival. Notably, ROS is increased in cancer cells. The superoxide dismutase family plays an essential physiological role in mitigating deleterious effects of ROS. Due to the compartmentalization of ROS signaling, EcSOD, the only superoxide dismutase in the extracellular space, has unique characteristics and functions in cellular signal transduction. In comparison to the other two intracellular SODs, EcSOD is a relatively new comer in terms of its tumor suppressive role in cancer and the mechanisms involved are less well understood. Nevertheless, the degree of differential expression of this extracellular antioxidant in cancer versus normal cells/tissues is more pronounced and prevalent than the other SODs. A significant association of low EcSOD expression with reduced cancer patient survival further suggests that loss of extracellular redox regulation promotes a conducive microenvironment that favors cancer progression. The vast array of mechanisms reported in mediating deregulation of EcSOD expression, function, and cellular distribution also supports that loss of this extracellular antioxidant provides a selective advantage to cancer cells. Moreover, overexpression of EcSOD inhibits tumor growth and metastasis, indicating a role as a tumor suppressor. This review focuses on the current understanding of the mechanisms of deregulation and tumor suppressive function of EcSOD in cancer.
Collapse
Affiliation(s)
- Brandon Griess
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Eric Tom
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Frederick Domann
- Free Radical and Radiation Biology Program, Radiation Oncology, University of Iowa, Iowa, IA 52242, United States
| | - Melissa Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
40
|
Lv L, Tang Y, Zhang P, Liu Y, Bai X, Zhou Y. Biomaterial Cues Regulate Epigenetic State and Cell Functions-A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:112-132. [PMID: 28903618 DOI: 10.1089/ten.teb.2017.0287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomaterial cues can act as potent regulators of cell niche and microenvironment. Epigenetic regulation plays an important role in cell functions, including proliferation, differentiation, and reprogramming. It is now well appreciated that biomaterials can alter epigenetic states of cells. In this study, we systematically reviewed the underlying epigenetic mechanisms of how different biomaterial cues, including material chemistry, topography, elasticity, and mechanical stimulus, influence cell functions, such as nuclear deformation, cell proliferation, differentiation, and reprogramming, to summarize the differences and similarities among each biomaterial cues and their mechanisms, and to find common and unique properties of different biomaterial cues. Moreover, this work aims to establish a mechanogenomic map facilitating highly functionalized biomaterial design, and renders new thoughts of epigenetic regulation in controlling cell fates in disease treatment and regenerative medicine.
Collapse
Affiliation(s)
- Longwei Lv
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Yiman Tang
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Ping Zhang
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Yunsong Liu
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Xiangsong Bai
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
| | - Yongsheng Zhou
- 1 Department of Prosthodontics, Peking University School and Hospital of Stomatology , Beijing, People's Republic of China
- 2 National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Beijing, People's Republic of China
| |
Collapse
|
41
|
Tong J, Qi Y, Wang X, Yu L, Su C, Xie W, Zhang J. Cell micropatterning reveals the modulatory effect of cell shape on proliferation through intracellular calcium transients. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2389-2401. [PMID: 28962833 DOI: 10.1016/j.bbamcr.2017.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/09/2017] [Accepted: 09/24/2017] [Indexed: 12/14/2022]
Abstract
The mechanism by which cell shape regulates the function of the cell is one of the most important biological issues, but it remains unclear. Here, we investigated the effect of the regulation of cell shape on proliferation by using a micropatterning approach to confine MC3T3-E1 cells into specific shapes. Our results show that the proliferation rate for rectangle-, triangle-, square- and circle-shaped osteoblasts increased sequentially and was related to the nuclear shape index (NSI) but not the cell shape index (CSI). Interestingly, intracellular calcium transients also displayed different patterns, with the number of Ca2+ peaks increasing with the NSI in shaped cells. Further causal investigation revealed that the gene expression levels of the inositol 1,4,5-triphosphate receptor 1 (IP3R1) and sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2), two major calcium cycling proteins in the endoplasmic reticulum (ER), were increased with an increase in NSI as a result of nuclear volume changes. Moreover, the down-regulation of IP3R1 and/or SERCA2 using shRNAs in circle-shaped or control osteoblasts resulted in changes in intracellular calcium transient patterns and cell proliferation rates towards that of smaller-NSI-shaped cells. Our results indicate that changes in cell shape changed nuclear morphology and then the gene expression of IP3R1 and SERCA2, which produced different intracellular calcium transient patterns. The patterns of intracellular calcium transients then determined the proliferation rate of the shaped osteoblasts.
Collapse
Affiliation(s)
- Jie Tong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Ying Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiangmiao Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Liyin Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Chang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Wenjun Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Jianbao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
42
|
Liu X, Liu Y, Zhao F, Hun T, Li S, Wang Y, Sun W, Wang W, Sun Y, Fan Y. Regulation of cell arrangement using a novel composite micropattern. J Biomed Mater Res A 2017; 105:3093-3101. [DOI: 10.1002/jbm.a.36157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoyi Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
| | - Feng Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Tingting Hun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Shan Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yuguang Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Weijie Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Wei Wang
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing 100871 China
- Innovation Center for Micro-Nano-electronics and Integrated System; Beijing 100871 China
| | - Yan Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- National Research Center for Rehabilitation Technical Aids; Beijing 100176 People's Republic of China
| |
Collapse
|
43
|
Larsson L, Pilipchuk SP, Giannobile WV, Castilho RM. When epigenetics meets bioengineering-A material characteristics and surface topography perspective. J Biomed Mater Res B Appl Biomater 2017; 106:2065-2071. [PMID: 28741893 DOI: 10.1002/jbm.b.33953] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/05/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022]
Abstract
The field of tissue engineering and regenerative medicine (TE/RM) involves regeneration of tissues and organs using implantable biomaterials. The term epigenetics refers to changes in gene expression that are not encoded in the DNA sequence, leading to remodeling of the chromatin and activation or inactivation of gene expression. Recently, studies have demonstrated that these modifications are influenced not only by biological cues but also by mechanical and topographical signals. This review highlights the current knowledge on emerging approaches in TE/RM with a focus on the effect of materials and topography on the epigenetic expression pattern in cells with potential impacts on modulating regenerative biology. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2065-2071, 2018.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.,Department of Periodontology, Institute of Odontology, University of Gothenburg, Sweden
| | - Sophia P Pilipchuk
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.,Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.,Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| |
Collapse
|
44
|
Wang Y, Nagarajan M, Uhler C, Shivashankar GV. Orientation and repositioning of chromosomes correlate with cell geometry-dependent gene expression. Mol Biol Cell 2017; 28:1997-2009. [PMID: 28615317 PMCID: PMC5541849 DOI: 10.1091/mbc.e16-12-0825] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix signals from the microenvironment regulate gene expression patterns and cell behavior. Using a combination of experiments and geometric models, we demonstrate correlations between cell geometry, three-dimensional (3D) organization of chromosome territories, and gene expression. Fluorescence in situ hybridization experiments showed that micropatterned fibroblasts cultured on anisotropic versus isotropic substrates resulted in repositioning of specific chromosomes, which contained genes that were differentially regulated by cell geometries. Experiments combined with ellipsoid packing models revealed that the mechanosensitivity of chromosomes was correlated with their orientation in the nucleus. Transcription inhibition experiments suggested that the intermingling degree was more sensitive to global changes in transcription than to chromosome radial positioning and its orientations. These results suggested that cell geometry modulated 3D chromosome arrangement, and their neighborhoods correlated with gene expression patterns in a predictable manner. This is central to understanding geometric control of genetic programs involved in cellular homeostasis and the associated diseases.
Collapse
Affiliation(s)
- Yejun Wang
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Mallika Nagarajan
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Caroline Uhler
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore
- FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
45
|
Lelièvre SA, Kwok T, Chittiboyina S. Architecture in 3D cell culture: An essential feature for in vitro toxicology. Toxicol In Vitro 2017; 45:287-295. [PMID: 28366709 DOI: 10.1016/j.tiv.2017.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
Abstract
Three-dimensional cell culture has the potential to revolutionize toxicology studies by allowing human-based reproduction of essential elements of organs. Beyond the study of toxicants on the most susceptible organs such as liver, kidney, skin, lung, gastrointestinal tract, testis, heart and brain, carcinogenesis research will also greatly benefit from 3D cell culture models representing any normal tissue. No tissue function can be suitably reproduced without the appropriate tissue architecture whether mimicking acini, ducts or tubes, sheets of cells or more complex cellular organizations like hepatic cords. In this review, we illustrate the fundamental characteristics of polarity that is an essential architectural feature of organs for which different 3D cell culture models are available for toxicology studies in vitro. The value of tissue polarity for the development of more accurate carcinogenesis studies is also exemplified, and the concept of using extracellular gradients of gaseous or chemical substances produced with microfluidics in 3D cell culture is discussed. Indeed such gradients-on-a-chip might bring unprecedented information to better determine permissible exposure levels. Finally, the impact of tissue architecture, established via cell-matrix interactions, on the cell nucleus is emphasized in light of the importance in toxicology of morphological and epigenetic alterations of this organelle.
Collapse
Affiliation(s)
- Sophie A Lelièvre
- Purdue University, Department of Basic Medical Sciences, 625 Harrison Street, West Lafayette, IN 47907, USA; 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, 201 S University Street, West Lafayette, IN 47907, USA.
| | - Tim Kwok
- 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA
| | - Shirisha Chittiboyina
- Purdue University, Department of Basic Medical Sciences, 625 Harrison Street, West Lafayette, IN 47907, USA; 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
Rose M, Kloten V, Noetzel E, Gola L, Ehling J, Heide T, Meurer SK, Gaiko-Shcherbak A, Sechi AS, Huth S, Weiskirchen R, Klaas O, Antonopoulos W, Lin Q, Wagner W, Veeck J, Gremse F, Steitz J, Knüchel R, Dahl E. ITIH5 mediates epigenetic reprogramming of breast cancer cells. Mol Cancer 2017; 16:44. [PMID: 28231808 PMCID: PMC5322623 DOI: 10.1186/s12943-017-0610-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular matrix (ECM) is known to maintain epithelial integrity. In carcinogenesis ECM degradation triggers metastasis by controlling migration and differentiation including cancer stem cell (CSC) characteristics. The ECM-modulator inter- α-trypsin inhibitor heavy chain family member five (ITIH5) was recently identified as tumor suppressor potentially involved in impairing breast cancer progression but molecular mechanisms underlying its function are still elusive. Methods ITIH5 expression was analyzed using the public TCGA portal. ITIH5-overexpressing single-cell clones were established based on T47D and MDA-MB-231 cell lines. Colony formation, growth, apoptosis, migration, matrix adhesion, traction force analyses and polarization of tumor cells were studied in vitro. Tumor-initiating characteristics were analyzed by generating a metastasis mouse model. To identify ITIH5-affected pathways we utilized genome wide gene expression and DNA methylation profiles. RNA-interference targeting the ITIH5-downstream regulated gene DAPK1 was used to confirm functional involvement. Results ITIH5 loss was pronounced in breast cancer subtypes with unfavorable prognosis like basal-type tumors. Functionally, cell and colony formation was impaired after ITIH5 re-expression in both cell lines. In a metastasis mouse model, ITIH5 expressing MDA-MB-231 cells almost completely failed to initiate lung metastases. In these metastatic cells ITIH5 modulated cell-matrix adhesion dynamics and altered biomechanical cues. The profile of integrin receptors was shifted towards β1-integrin accompanied by decreased Rac1 and increased RhoA activity in ITIH5-expressing clones while cell polarization and single-cell migration was impaired. Instead ITIH5 expression triggered the formation of epithelial-like cell clusters that underwent an epigenetic reprogramming. 214 promoter regions potentially marked with either H3K4 and /or H3K27 methylation showed a hyper- or hypomethylated DNA configuration due to ITIH5 expression finally leading to re-expression of the tumor suppressor DAPK1. In turn, RNAi-mediated knockdown of DAPK1 in ITIH5-expressing MDA-MB-231 single-cell clones clearly restored cell motility. Conclusions Our results provide evidence that ITIH5 triggers a reprogramming of breast cancer cells with known stem CSC properties towards an epithelial-like phenotype through global epigenetic changes effecting known tumor suppressor genes like DAPK1. Therewith, ITIH5 may represent an ECM modulator in epithelial breast tissue mediating suppression of tumor initiating cancer cell characteristics which are thought being responsible for the metastasis of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0610-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Vera Kloten
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Erik Noetzel
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lukas Gola
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Josef Ehling
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Timon Heide
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Steffen K Meurer
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Aljona Gaiko-Shcherbak
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antonio S Sechi
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Sebastian Huth
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Oliver Klaas
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Qiong Lin
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Jürgen Veeck
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Division of Medical Oncology, Department of Internal Medicine, Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Felix Gremse
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
47
|
Abdeen AA, Lee J, Li Y, Kilian KA. Cytoskeletal Priming of Mesenchymal Stem Cells to a Medicinal Phenotype. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-016-0021-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Altamirano GA, Ramos JG, Gomez AL, Luque EH, Muñoz-de-Toro M, Kass L. Perinatal exposure to bisphenol A modifies the transcriptional regulation of the β-Casein gene during secretory activation of the rat mammary gland. Mol Cell Endocrinol 2017; 439:407-418. [PMID: 27697584 DOI: 10.1016/j.mce.2016.09.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022]
Abstract
With the aim to analyze whether bisphenol A (BPA) modifies β-Casein (β-Cas) synthesis and transcriptional regulation in perinatally exposed animals, here, pregnant F0 rats were orally exposed to 0, 0.6 or 52 μg BPA/kg/day from gestation day 9 until weaning. Then, F1 females were bred and mammary glands were obtained on lactation day 2. Perinatal BPA exposure decreased β-Cas expression without modifying the activation of prolactin receptor. It also decreased the expression of glucocorticoid receptor in BPA52-exposed dams and β1 and α6 integrins as well as dystroglycan in both BPA groups. In addition, BPA exposure altered the expression of histone-modifying enzymes and induced histone modifications and DNA methylation in the promoter, enhancer and exon VII of the β-Cas gene. An impaired crosstalk between the extracellular matrix and lactogenic hormone signaling pathways and epigenetic modifications of the β-Cas gene could be the molecular mechanisms by which BPA decreased β-Cas expression.
Collapse
MESH Headings
- Animals
- Benzhydryl Compounds/toxicity
- Caseins/genetics
- Caseins/metabolism
- Cell Communication/drug effects
- DNA Methylation/genetics
- Enhancer Elements, Genetic/genetics
- Exons/genetics
- Female
- Gene Expression Regulation, Developmental/drug effects
- Histones/metabolism
- Lactation/genetics
- Laminin/metabolism
- Mammary Glands, Animal/metabolism
- Phenols/toxicity
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/pathology
- Promoter Regions, Genetic
- Protein Processing, Post-Translational/drug effects
- Rats, Wistar
- Receptors, Glucocorticoid/metabolism
- Receptors, Laminin/metabolism
- Receptors, Prolactin/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Monica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
49
|
Weltin A, Hammer S, Noor F, Kaminski Y, Kieninger J, Urban GA. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids. Biosens Bioelectron 2016; 87:941-948. [PMID: 27665516 DOI: 10.1016/j.bios.2016.07.094] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
3D hepatic microtissues, unlike 2D cell cultures, retain many of the in-vivo-like functionalities even after long-term cultivation. Such 3D cultures are increasingly applied to investigate liver damage due to drug exposure in toxicology. However, there is a need for thorough metabolic characterization of these microtissues for mechanistic understanding of effects on culture behaviour. We measured metabolic parameters from single human HepaRG hepatocyte spheroids online and continuously with electrochemical microsensors. A microsensor platform for lactate and oxygen was integrated in a standard 96-well plate. Electrochemical microsensors for lactate and oxygen allow fast, precise and continuous long-term measurement of metabolic parameters directly in the microwell. The demonstrated capability to precisely detect small concentration changes by single spheroids is the key to access their metabolism. Lactate levels in the culture medium starting from 50µM with production rates of 5µMh-1 were monitored and precisely quantified over three days. Parallel long-term oxygen measurements showed no oxygen depletion or hypoxic conditions in the microwell. Increased lactate production by spheroids upon suppression of the aerobic metabolism was observed. The dose-dependent decrease in lactate production caused by the addition of the hepatotoxic drug Bosentan was determined. We showed that in a toxicological application, metabolic monitoring yields quantitative, online information on cell viability, which complements and supports other methods such as microscopy. The demonstrated continuous access to 3D cell culture metabolism within a standard setup improves in vitro toxicology models in replacement strategies of animal experiments. Controlling the microenvironment of such organotypic cultures has impact in tissue engineering, cancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Andreas Weltin
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| | - Steffen Hammer
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Fozia Noor
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| | - Yeda Kaminski
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization. Sci Rep 2016; 6:28685. [PMID: 27350000 PMCID: PMC4923894 DOI: 10.1038/srep28685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/08/2016] [Indexed: 01/02/2023] Open
Abstract
It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of a dominant-active form of ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress.
Collapse
|