1
|
Ramírez Moreno M, Bulgakova NA. The Cross-Talk Between EGFR and E-Cadherin. Front Cell Dev Biol 2022; 9:828673. [PMID: 35127732 PMCID: PMC8811214 DOI: 10.3389/fcell.2021.828673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and adhesion protein E-cadherin are major regulators of proliferation and differentiation in epithelial cells. Consistently, defects in both EGFR and E-cadherin-mediated intercellular adhesion are linked to various malignancies. These defects in either are further exacerbated by the reciprocal interactions between the two transmembrane proteins. On the one hand, EGFR can destabilize E-cadherin adhesion by increasing E-cadherin endocytosis, modifying its interactions with cytoskeleton and decreasing its expression, thus promoting tumorigenesis. On the other hand, E-cadherin regulates EGFR localization and tunes its activity. As a result, loss and mutations of E-cadherin promote cancer cell invasion due to uncontrolled activation of EGFR, which displays enhanced surface motility and changes in endocytosis. In this minireview, we discuss the molecular and cellular mechanisms of the cross-talk between E-cadherin and EGFR, highlighting emerging evidence for the role of endocytosis in this feedback, as well as its relevance to tissue morphogenesis, homeostasis and cancer progression.
Collapse
Affiliation(s)
| | - Natalia A. Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Casalou C, Ferreira A, Barral DC. The Role of ARF Family Proteins and Their Regulators and Effectors in Cancer Progression: A Therapeutic Perspective. Front Cell Dev Biol 2020; 8:217. [PMID: 32426352 PMCID: PMC7212444 DOI: 10.3389/fcell.2020.00217] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The Adenosine diphosphate-Ribosylation Factor (ARF) family belongs to the RAS superfamily of small GTPases and is involved in a wide variety of physiological processes, such as cell proliferation, motility and differentiation by regulating membrane traffic and associating with the cytoskeleton. Like other members of the RAS superfamily, ARF family proteins are activated by Guanine nucleotide Exchange Factors (GEFs) and inactivated by GTPase-Activating Proteins (GAPs). When active, they bind effectors, which mediate downstream functions. Several studies have reported that cancer cells are able to subvert membrane traffic regulators to enhance migration and invasion. Indeed, members of the ARF family, including ARF-Like (ARL) proteins have been implicated in tumorigenesis and progression of several types of cancer. Here, we review the role of ARF family members, their GEFs/GAPs and effectors in tumorigenesis and cancer progression, highlighting the ones that can have a pro-oncogenic behavior or function as tumor suppressors. Moreover, we propose possible mechanisms and approaches to target these proteins, toward the development of novel therapeutic strategies to impair tumor progression.
Collapse
Affiliation(s)
- Cristina Casalou
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Andreia Ferreira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Takahashi T, Honsho M, Abe Y, Fujiki Y. Plasmalogen mediates integration of adherens junction. J Biochem 2019; 166:423-432. [PMID: 31236591 DOI: 10.1093/jb/mvz049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Ether glycerolipids, plasmalogens are found in various mammalian cells and tissues. However, physiological role of plasmalogens in epithelial cells remains unknown. We herein show that synthesis of ethanolamine-containing plasmalogens, plasmenylethanolamine (PlsEtn), is deficient in MCF7 cells, an epithelial cell line, with severely reduced expression of alkyl-dihydroxyacetonephosphate synthase (ADAPS), the second enzyme in the PlsEtn biosynthesis. Moreover, expression of ADAPS or supplementation of PlsEtn containing C18-alkenyl residue delays the migration of MCF7 cells as compared to that mock-treated MCF7 and C16-alkenyl-PlsEtn-supplemented MCF7 cells. Localization of E-cadherin to cell-cell junctions is highly augmented in cells containing C18-alkenyl-PlsEtn. Together, these results suggest that PlsEtn containing C18-alkenyl residue plays a distinct role in the integrity of E-cadherin-mediated adherens junction.
Collapse
Affiliation(s)
- Takanori Takahashi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
4
|
Advedissian T, Proux-Gillardeaux V, Nkosi R, Peyret G, Nguyen T, Poirier F, Viguier M, Deshayes F. E-cadherin dynamics is regulated by galectin-7 at epithelial cell surface. Sci Rep 2017; 7:17086. [PMID: 29213102 PMCID: PMC5719072 DOI: 10.1038/s41598-017-17332-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023] Open
Abstract
Re-epithelialisation of wounded epidermis is ensured by collective cell migration of keratinocytes. Efficient collective migration requires the maintenance of intercellular adhesion, notably through adherens junctions, to favour cell communication, support tension forces and coordinated movement . Galectin-7, a soluble lectin expressed in stratified epithelia, has been previously implicated in cell migration and intercellular adhesion. Here, we revealed a new function of galectin-7 in the control of directionality and collective behaviour in migrating keratinocytes. Consistently, we identified galectin-7 as a direct partner of E-cadherin, a key component of adherens junctions. Unexpectedly, this interaction does not require glycosylation motifs. Focusing on the underlying mechanisms, we showed that galectin-7 stabilizes E-cadherin at the plasma membrane, restraining its endocytosis. Interestingly, galectin-7 silencing decreases E-cadherin-mediated intercellular adhesion. Consequently, this study not only identifies a new stabilizer of adherens junctions but also emphasises the importance of the interplay between E-cadherin turnover and intercellular adhesion strength.
Collapse
Affiliation(s)
- Tamara Advedissian
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Véronique Proux-Gillardeaux
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France.,Team Membrane Traffic in Health & Disease, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Rachel Nkosi
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Grégoire Peyret
- Team Cell Adhesion and Mechanics, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Thao Nguyen
- Team Cell Adhesion and Mechanics, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Françoise Poirier
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France
| | - Mireille Viguier
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France.
| | - Frédérique Deshayes
- Team Morphogenesis, Homeostasis and Pathologies, University Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013, Paris, France.
| |
Collapse
|
5
|
Klein RH, Lin Z, Hopkin AS, Gordon W, Tsoi LC, Liang Y, Gudjonsson JE, Andersen B. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states. PLoS Genet 2017; 13:e1006745. [PMID: 28445475 PMCID: PMC5425218 DOI: 10.1371/journal.pgen.1006745] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/10/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.
Collapse
Affiliation(s)
- Rachel Herndon Klein
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ziguang Lin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Amelia Soto Hopkin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - William Gordon
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yun Liang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
6
|
Grossmann AH, Zhao H, Jenkins N, Zhu W, Richards JR, Yoo JH, Winter JM, Rich B, Mleynek TM, Li DY, Odelberg SJ. The small GTPase ARF6 regulates protein trafficking to control cellular function during development and in disease. Small GTPases 2016; 10:1-12. [PMID: 28001501 DOI: 10.1080/21541248.2016.1259710] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The activation of the small GTPase ARF6 has been implicated in promoting several pathological processes related to vascular instability and tumor formation, growth, and metastasis. ARF6 also plays a vital role during embryonic development. Recent studies have suggested that ARF6 carries out these disparate functions primarily by controlling protein trafficking within the cell. ARF6 helps direct proteins to intracellular or extracellular locations where they function in normal cellular responses during development and in pathological processes later in life. This transport of proteins is accomplished through a variety of mechanisms, including endocytosis and recycling, microvesicle release, and as yet uncharacterized processes. This Commentary will explore the functions of ARF6, while focusing on the role of this small GTPase in development and postnatal physiology, regulating barrier function and diseases associated with its loss, and tumor formation, growth, and metastasis.
Collapse
Affiliation(s)
- Allie H Grossmann
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,b Department of Pathology , University of Utah , Salt Lake City , UT , USA.,c ARUP Laboratories, University of Utah , Salt Lake City , UT , USA
| | - Helong Zhao
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Noah Jenkins
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Weiquan Zhu
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,d Department of Medicine , Division of Cardiovascular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Jackson R Richards
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,e Department of Oncological Sciences , University of Utah , Salt Lake City , UT , USA
| | - Jae Hyuk Yoo
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,e Department of Oncological Sciences , University of Utah , Salt Lake City , UT , USA
| | - Jacob M Winter
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Bianca Rich
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Tara M Mleynek
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Dean Y Li
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,d Department of Medicine , Division of Cardiovascular Medicine, University of Utah , Salt Lake City , UT , USA.,e Department of Oncological Sciences , University of Utah , Salt Lake City , UT , USA.,f Department of Human Genetics , University of Utah , Salt Lake City , UT , USA.,g Sichuan Provincial Key Laboratory for Human Disease Gene Study , Sichuan Provincial People's Hospital, Chinese Academy of Sciences , Chengdu , China.,h Department of Cardiology , VA Salt Lake City Health Care System , Salt Lake City , UT , USA.,i Navigen Inc. , Salt Lake City , UT , USA
| | - Shannon J Odelberg
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,d Department of Medicine , Division of Cardiovascular Medicine, University of Utah , Salt Lake City , UT , USA.,j Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
7
|
Abstract
Members of the ADP-ribosylation factor (Arf) family of small GTP-binding (G) proteins regulate several aspects of membrane trafficking, such as vesicle budding, tethering and cytoskeleton organization. Arf family members, including Arf-like (Arl) proteins have been implicated in several essential cellular functions, like cell spreading and migration. These functions are used by cancer cells to disseminate and invade the tissues surrounding the primary tumor, leading to the formation of metastases. Indeed, Arf and Arl proteins, as well as their guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) have been found to be abnormally expressed in different cancer cell types and human cancers. Here, we review the current evidence supporting the involvement of Arf family proteins and their GEFs and GAPs in cancer progression, focusing on 3 different mechanisms: cell-cell adhesion, integrin internalization and recycling, and actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Cristina Casalou
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Alexandra Faustino
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal.,b ProRegeM PhD Program, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Duarte C Barral
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| |
Collapse
|
8
|
Nighot P, Ma T. Role of autophagy in the regulation of epithelial cell junctions. Tissue Barriers 2016; 4:e1171284. [PMID: 27583189 DOI: 10.1080/21688370.2016.1171284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, NM, USA
| | - Thomas Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA; Veterans Affairs Medical Center, Albuquerque, NM, USA
| |
Collapse
|
9
|
Hongu T, Yamauchi Y, Funakoshi Y, Katagiri N, Ohbayashi N, Kanaho Y. Pathological functions of the small GTPase Arf6 in cancer progression: Tumor angiogenesis and metastasis. Small GTPases 2016; 7:47-53. [PMID: 26909552 PMCID: PMC4905277 DOI: 10.1080/21541248.2016.1154640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although several lines of evidence have shown that the small GTPase ADP-ribosylation factor 6 (Arf6) plays pivotal roles in cancer progression of several types of cancers, little is known about the functions of Arf6 in tumor microenvironment. We demonstrated that Arf6 in vascular endothelial cells (VECs) plays a crucial role in tumor angiogenesis and growth using endothelial cell-specific Arf6 conditional knockout mice into which B16 melanoma and Lewis lung carcinoma cells were implanted. It was also found that Arf6 in VECs positively regulates hepatocyte growth factor (HGF)-induced β1 integrin recycling, which is a critical event for tumor angiogenesis by promoting cell migration. Importantly, pharmacological inhibition of HGF-induced Arf6 activation significantly suppresses tumor angiogenesis and growth in mice, suggesting that Arf6 signaling would be a potential target for anti-angiogenic therapy. In this manuscript, we summarize the multiple roles of Arf6 in cancer progression, particularly in cancer cell invasion/metastasis and our recent findings on tumor angiogenesis, and discuss a possible approach to develop innovative anti-cancer drugs.
Collapse
Affiliation(s)
- Tsunaki Hongu
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yohei Yamauchi
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yuji Funakoshi
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Naohiro Katagiri
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Norihiko Ohbayashi
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yasunori Kanaho
- a Department of Physiological Chemistry , Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
10
|
Regulators and Effectors of Arf GTPases in Neutrophils. J Immunol Res 2015; 2015:235170. [PMID: 26609537 PMCID: PMC4644846 DOI: 10.1155/2015/235170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology.
Collapse
|
11
|
Satcher RL, Pan T, Bilen MA, Li X, Lee YC, Ortiz A, Kowalczyk AP, Yu-Lee LY, Lin SH. Cadherin-11 endocytosis through binding to clathrin promotes cadherin-11-mediated migration in prostate cancer cells. J Cell Sci 2015; 128:4629-41. [PMID: 26519476 DOI: 10.1242/jcs.176081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022] Open
Abstract
Cadherin-11 (Cad11) cell adhesion molecule plays a role in prostate cancer cell migration. Because disassembly of adhesion complexes through endocytosis of adhesion proteins has been shown to play a role in cell migration, we examined whether Cad11 endocytosis plays a role in Cad11-mediated migration. The mechanism by which Cad11 is internalized is unknown. Using a GST pulldown assay, we found that clathrin binds to the Cad11 cytoplasmic domain but not to that of E-cadherin. Using deletion analysis, we identified a unique sequence motif, VFEEE, in the Cad11 membrane proximal region (amino acid residues 11-15) that binds to clathrin. Endocytosis assays using K(+)-depletion buffer showed that Cad11 internalization is clathrin dependent. Proximity ligation assays showed that Cad11 colocalizes with clathrin, and immunofluorescence assays showed that Cad11 localizes in vesicles that stain for the early endosomal marker Rab5. Deletion of the VFEEE sequence from the Cad11 cytoplasmic domain (Cad11-cla-Δ5) leads to inhibition of Cad11 internalization and reduces Cad11-mediated cell migration in C4-2B and PC3-mm2 prostate cancer cells. These observations suggest that clathrin-mediated internalization of Cad11 regulates surface trafficking of Cad11 and that dynamic turnover of Cad11 regulates the migratory function of Cad11 in prostate cancer cells.
Collapse
Affiliation(s)
- Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mehmet A Bilen
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoxia Li
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Angelica Ortiz
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Hunter MV, Lee DM, Harris TJC, Fernandez-Gonzalez R. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair. J Cell Biol 2015; 210:801-16. [PMID: 26304727 PMCID: PMC4555830 DOI: 10.1083/jcb.201501076] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022] Open
Abstract
Clathrin, dynamin, and ARF6 accumulate around wounds in Drosophila embryos in a calcium- and actomyosin-dependent manner and drive polarized E-cadherin endocytosis, which is necessary for actomyosin remodeling during wound repair. Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair.
Collapse
Affiliation(s)
- Miranda V Hunter
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Donghoon M Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
13
|
Sumiyoshi M, Masuda N, Tanuma N, Ogoh H, Imai E, Otsuka M, Hayakawa N, Ohno K, Matsui Y, Hara K, Gotoh R, Suzuki M, Rai S, Tanaka H, Matsumura I, Shima H, Watanabe T. Mice doubly-deficient in the Arf GAPs SMAP1 and SMAP2 exhibit embryonic lethality. FEBS Lett 2015; 589:2754-62. [PMID: 26296315 DOI: 10.1016/j.febslet.2015.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
In mammals, the small Arf GTPase-activating protein (SMAP) subfamily of Arf GTPase-activating proteins consists of closely related members, SMAP1 and SMAP2. These factors reportedly exert distinct functions in membrane trafficking, as manifested by different phenotypes seen in single knockout mice. The present study investigated whether SMAP proteins interact genetically. We report for the first time that simultaneous loss of SMAP1 and SMAP2 promotes apoptosis in the distal region of E7.5 mouse embryos, likely resulting in embryonic lethality. Thus, at least one SMAP gene, either SMAP1 or SMAP2, is required for proper embryogenesis.
Collapse
Affiliation(s)
- Mami Sumiyoshi
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Narumi Masuda
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Eri Imai
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Mizuki Otsuka
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Natsuki Hayakawa
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Kinuyo Ohno
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Kanae Hara
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Risa Gotoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Mai Suzuki
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan.
| |
Collapse
|
14
|
Xu R, Zhang Y, Gu L, Zheng J, Cui J, Dong J, Du J. Arf6 regulates EGF-induced internalization of E-cadherin in breast cancer cells. Cancer Cell Int 2015; 15:11. [PMID: 25678857 PMCID: PMC4326200 DOI: 10.1186/s12935-015-0159-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/05/2015] [Indexed: 01/06/2023] Open
Abstract
E-cadherin internalization facilitates dissolution of adherens junctions and promotes tumor cell epithelial-mesenchymal transition (EMT) and migration. Our previous results have shown that Arf6 exerts pro-migratory action in breast cancer cells after EGF stimulation. Despite the fact that EGF signaling stimulates EMT of breast cancer cells, the effect of Arf6 on internalization of E-cadherin of breast cancer cells under EGF treatment remains to be determined. Here, we showed that EGF dose-dependently stimulated E-cadherin internalization by MCF-7 cells with the maximal effect at 50 ng/ml. Meanwhile, EGF treatment markedly increased Arf6 activation. Arf6 was involved in complexes of E-cadherin, and more E-cadherin was pulled down with Arf6 when the activity of the latter was increased. Immunoblotting and immunofluorescence assays showed that transfection breast cancer cells with Arf6-T27N or Arf6 siRNA suppressed EGF-induced E-cadherin internalization. Taken together, our study demonstrated that Arf6 activation plays a potential role in EGF-induced E-cadherin internalization, providing new mechanism underlying the effect of Arf6 on promoting breast cancer cell metastasis.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China ; Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029 China ; Department of Biotechnology, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029 China ; Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Luo Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China ; Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Jie Cui
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Jing Dong
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029 China ; Department of Epidemiology and Biostatistics and Ministry of Education (MOE) Key Lab for Modern Toxicology, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Jun Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 China ; Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| |
Collapse
|
15
|
Kon S, Funaki T, Satake M. Putative terminator and/or effector functions of Arf GAPs in the trafficking of clathrin-coated vesicles. CELLULAR LOGISTICS 2014; 1:86-89. [PMID: 21922072 DOI: 10.4161/cl.1.3.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 11/19/2022]
Abstract
The role of ArfGAP1 as a terminator or effector in COPi-vesicle formation has been the subject of ongoing discussions. Here, the discussion on the putative terminator/effector functions has been enlarged to include Arf GAP members involved in the formation of clathrin-coated vesicles. ACAP1, whose role has been studied extensively, enhances the recycling of endocytosed proteins to the plasma membrane. Importantly, this positive role appears to be an overall reflection of both the terminator and effector activities attributed to ACAP1. Other Arf GAP subtypes have also been suggested to possess both terminator and effector activities. Interestingly, while most Arf GAP proteins regulate membrane trafficking by acting as facilitators, a few Arf GAP subtypes act as inhibitors.
Collapse
Affiliation(s)
- Shunsuke Kon
- Institute of Development, Aging and Cancer; Tohoku University; Sendai, Japan
| | | | | |
Collapse
|
16
|
The ADP-ribosylation factor 1 gene is indispensable for mouse embryonic development after implantation. Biochem Biophys Res Commun 2014; 453:748-53. [DOI: 10.1016/j.bbrc.2014.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 11/24/2022]
|
17
|
The Arf GTPase-activating protein SMAP1 promotes transferrin receptor endocytosis and interacts with SMAP2. Biochem Biophys Res Commun 2014; 453:473-9. [DOI: 10.1016/j.bbrc.2014.09.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/24/2014] [Indexed: 12/18/2022]
|
18
|
Wächter K, Kowarz E, Marschalek R. Functional characterisation of different MLL fusion proteins by using inducible Sleeping Beauty vectors. Cancer Lett 2014; 352:196-202. [PMID: 25016062 DOI: 10.1016/j.canlet.2014.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
Abstract
Our focus is the identification, characterisation and functional analysis of different MLL fusions. In general, MLL fusion proteins are encoded by large cDNA cassettes that are difficult to transduce into haematopoietic stem cells. This is due to the size limitations of the packaging process of those vector-encoded RNAs into retro- or lentiviral particles. Here, we present our efforts in establishing a universal vector system to analyse different MLL fusions. The universal cloning system was embedded into the backbone of the Sleeping Beauty transposable element. This transposon has no size limitation and displays no integration preference, thereby avoiding the integration into active genes or their promoter regions. We utilised this novel system to test different MLL fusion alleles (MLL-NEBL, NEBL-MLL, MLL-LASP1, LASP1-MLL, MLL-MAML2, MAML2-MLL, MLL-SMAP1 and SMAP1-MLL) in appropriate cell lines. Stable cell lines were analysed for their growth behaviour, focus formation and colony formation capacity and ectopic Hoxa gene transcription. Our results show that only 1/4 tested direct MLL fusions, but 3/4 tested reciprocal MLL fusions exhibit oncogenic functions. From these pilot experiments, we conclude that a systematic analysis of more MLL fusions will result in a more differentiated picture about the oncogenic capacity of distinct MLL fusions.
Collapse
Affiliation(s)
- K Wächter
- Institute of Pharm. Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - E Kowarz
- Institute of Pharm. Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - R Marschalek
- Institute of Pharm. Biology/DCAL, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
19
|
Abstract
Mammalian cells have many membranous organelles that require proper composition of proteins and lipids. Cargo sorting is a process required for transporting specific proteins and lipids to appropriate organelles, and if this process is disrupted, organelle function as well as cell function is disrupted. ArfGAP family proteins have been found to be critical for receptor sorting. In this review, we summarize our recent knowledge about the mechanism of cargo sorting that require function of ArfGAPs in promoting the formation of transport vesicles, and discuss the involvement of specific ArfGAPs for the sorting of a variety of receptors, such as MPR, EGFR, TfR, Glut4, TRAIL-R1/DR4, M5-muscarinic receptor, c-KIT, rhodopsin and β1-integrin. Given the importance of many of these receptors to human disease, the studies of ArfGAPs may provide novel therapeutic strategies in addition to providing mechanistic insight of receptor sorting.
Collapse
Affiliation(s)
- Yoko Shiba
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD20892, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD20892, USA
| |
Collapse
|
20
|
Kon S, Kobayashi N, Satake M. Altered trafficking of mutated growth factor receptors and their associated molecules: implication for human cancers. CELLULAR LOGISTICS 2014; 4:e28461. [PMID: 25210647 PMCID: PMC4156482 DOI: 10.4161/cl.28461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/01/2023]
Abstract
Ligand-stimulated receptor tyrosine kinases (RTKs) are phosphorylated/ubiquitinated, endocytosed and transported to the lysosomes via endosomes/multivesicular bodies, resulting in the attenuation of signal transmission. If this physiological mechanism of RTK signal downregulation is perturbed, signal transduction persists and may contribute to cellular transformation. This article presents several such examples. In some cases, endocytosis is impaired, and the activated RTK remains on the plasma membrane. In other cases, the activated RTK is endocytosed into endosomes/multivesicular bodies, but not subsequently sorted to the lysosomes for degradation. The latter cases indicate that even endocytosed RTKs can transmit signals. Transport of RTKs is accomplished via the formation and movement of membrane vesicles. Blockage or delay of endocytosis/trafficking can be caused by genetic alterations in the RTK itself or by mutations in CBL, Arf GAPs, or other components involved in internalization and vesicle transport. A survey of the literature indicates that, in some cases, even RTKs synthesized de novo can initiate signaling at the endoplasmic reticulum/Golgi before reaching the plasma membrane. The spectrum of molecules targeted by the signal is likely to be different between cell surface- and endoplasmic reticulum/Golgi-localized RTKs.
Collapse
Affiliation(s)
- Shunsuke Kon
- Institute of Development, Aging and Cancer, Tohoku University; Sendai, Japan
| | - Nobuhide Kobayashi
- Institute of Development, Aging and Cancer, Tohoku University; Sendai, Japan
| | - Masanobu Satake
- Institute of Development, Aging and Cancer, Tohoku University; Sendai, Japan
| |
Collapse
|
21
|
Identification of differentially coexpressed genes in gonadotrope tumors and normal pituitary using bioinformatics methods. Pathol Oncol Res 2013; 20:375-80. [PMID: 24198235 DOI: 10.1007/s12253-013-9706-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
To investigate the underlying molecular mechanisms of pituitary tumor by using the microarray expression profiles of pituitary tumor and normal tissue samples. The gene expression profile of GSE26966 was downloaded from Gene Expression Omnibus, including nine normal samples and 14 pituitary tumor samples. The differentially coexpressed genes (DEGs) were identified by Affy package in R Software. The functional and pathway enrichment analysis of the screened DEGs were performed by DAVID. Then, differential coexpression networks were contructed and further analyzed. Functional and pathway enrichment analysis of the 1220 identified DEGs revealed that phosphatidylinositol signaling system, p53 signaling pathway and inositol phosphate metabolism were disturbed in pituitary tumors. The degree of DLK1, CDKN2A and ITGA4 in the constructed differential coexpression network was 46, 45 and 44, respectively. In addition, MPP2 and ASAP2 were the obvious hub genes in the constructed differential coexpression network. Through exploring genes in the differential coexpression networks, the results suggested that DLK1, CDKN2A, ITGA4, MPP2 and ASAP2 may potentially be used as biomarkers for pituitary tumor.
Collapse
|
22
|
Mukai A, Hashimoto N. Regulation of pre-fusion events: recruitment of M-cadherin to microrafts organized at fusion-competent sites of myogenic cells. BMC Cell Biol 2013; 14:37. [PMID: 23978243 PMCID: PMC3846853 DOI: 10.1186/1471-2121-14-37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/22/2013] [Indexed: 01/16/2023] Open
Abstract
Background Previous research indicates that the membrane ruffles and leading edge of lamellipodia of myogenic cells contain presumptive fusion sites. A micrometer-sized lipid raft (microraft) is organized at the presumptive fusion site of mouse myogenic cells in a cell-contact independent way and serves as a platform tethering adhesion proteins that are relevant to cell fusion. However, the mechanisms underlying recruitment of adhesion proteins to lipid rafts and microraft organization remain unknown. Results Here we show that small G-protein Rac1 was required for microraft organization and subsequent cell fusion. However, Rac1 activity was unnecessary for recruitment of M-cadherin to lipid rafts. We found that p120 catenin (p120) binds to M-cadherin exclusively in lipid rafts of differentiating myogenic cells. The Src kinase inhibitor SU6656 prevented p120 binding to M-cadherin and their recruitment to lipid rafts, then suppressed microraft organization, membrane ruffling, and myogenic cell fusion. Suppression of membrane ruffling in SU6656-treated cells was partially restored by pretreatment with the protein tyrosine phosphatase inhibitor vanadate. The present analyses using an antibody to tyrosine phosphorylated p120 suggest that Src family kinases play a role in binding of p120 to M-cadherin and the recruitment of M-cadherin to lipid rafts through phosphorylation of putative substrates other than p120. Conclusions The present study showed that the procedure establishing fusion-competent sites consists of two sequential events: recruitment of adhesion complexes to lipid rafts and organization of microrafts. The recruitment of M-cadherin to lipid rafts depended on interaction with p120 catenin, whereas the organization of microrafts was controlled by a small G protein, Rac1.
Collapse
Affiliation(s)
- Atsushi Mukai
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522, Japan.
| | | |
Collapse
|
23
|
Funaki T, Kon S, Tanabe K, Natsume W, Sato S, Shimizu T, Yoshida N, Wong WF, Ogura A, Ogawa T, Inoue K, Ogonuki N, Miki H, Mochida K, Endoh K, Yomogida K, Fukumoto M, Horai R, Iwakura Y, Ito C, Toshimori K, Watanabe T, Satake M. The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis. Mol Biol Cell 2013; 24:2633-44. [PMID: 23864717 PMCID: PMC3756916 DOI: 10.1091/mbc.e13-05-0234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SMAP2 is an Arf GAP and modulates clathrin-coated vesicle formation. SMAP2-deficient male mice exhibited globozoospermia due to acrosome deformation. In SMAP2(−/−) spermatids, budding of proacrosomal vesicles from the TGN was distorted and clathrin traffic–related molecules such as CALM and syntaxin2 were mislocated. The trans-Golgi network (TGN) functions as a hub organelle in the exocytosis of clathrin-coated membrane vesicles, and SMAP2 is an Arf GTPase-activating protein that binds to both clathrin and the clathrin assembly protein (CALM). In the present study, SMAP2 is detected on the TGN in the pachytene spermatocyte to the round spermatid stages of spermatogenesis. Gene targeting reveals that SMAP2-deficient male mice are healthy and survive to adulthood but are infertile and exhibit globozoospermia. In SMAP2-deficient spermatids, the diameter of proacrosomal vesicles budding from TGN increases, TGN structures are distorted, acrosome formation is severely impaired, and reorganization of the nucleus does not proceed properly. CALM functions to regulate vesicle sizes, and this study shows that CALM is not recruited to the TGN in the absence of SMAP2. Furthermore, syntaxin2, a component of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex, is not properly concentrated at the site of acrosome formation. Thus this study reveals a link between SMAP2 and CALM/syntaxin2 in clathrin-coated vesicle formation from the TGN and subsequent acrosome formation. SMAP2-deficient mice provide a model for globozoospermia in humans.
Collapse
Affiliation(s)
- Tomo Funaki
- Department of Molecular Immunology, Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sangar F, Schreurs AS, Umaña-Diaz C, Clapéron A, Desbois-Mouthon C, Calmel C, Mauger O, Zaanan A, Miquel C, Fléjou JF, Praz F. Involvement of small ArfGAP1 (SMAP1), a novel Arf6-specific GTPase-activating protein, in microsatellite instability oncogenesis. Oncogene 2013; 33:2758-67. [PMID: 23752192 DOI: 10.1038/onc.2013.211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 04/16/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
Small ArfGAP1 (stromal membrane-associated protein 1, SMAP1), a GTPase-activating protein specific for ADP-ribosylation factor 6 (Arf6), which is a small GTPase acting on membrane trafficking and actin remodeling, is frequently mutated in various tumors displaying microsatellite instability (MSI), notably in MSI colorectal cancers (CRC). Genotyping of 93 MSI CRCs (40 stage II, 32 stage III and 21 stage IV) allowed us to underscore that SMAP1 mutation frequency was inversely correlated with disease stage (P=0.01). Analysis of 46 cancer cell lines showed that SMAP1 mutations occurred only in MSI tumors, and consisted exclusively in short insertion or deletion in the coding 10-adenine repeat, generating a premature termination codon located downstream the ArfGAP domain. SMAP1 transcript levels were significant decreased (P=0.006), and truncated SMAP1 protein could not be detected in cells displaying biallelic SMAP1 mutations, owing to its sensitivity to proteasome degradation. To investigate the role of SMAP1 mutations, we used the SMAP1-null HCT116 cell line and we established three isogenic SMAP1-complemented clones. Cell proliferation was first assessed in vivo using subcutaneous xenografts into immunodeficient mice. Tumors developed in all animals regardless of the cell line injected, but tumor volumes were significantly smaller for both SMAP1-complemented clones compared with HCT116 (P<0.0001, at the time of killing). In vitro, SMAP1 mutations also increased cell clonogenicity (P=0.02-0.04), cell proliferation (P=0.008) by shortening the G2/M phase and decreased cell invasiveness (P=0.03-0.003). In keeping, SMAP1-complemented HCT116 gained several mesenchymal markers (Snail, Slug and vimentin) considered as a hallmark of epithelial-to-mesenchymal transition. These observations are reminiscent of some clinical characteristics of MSI CRCs, notably their larger size and lower rate of metastasis. Our observations suggest that SMAP1 loss-of-function mutations in MSI CRC may contribute to the emerging oncogenic pathway involving abnormal Arf6 regulation.
Collapse
Affiliation(s)
- F Sangar
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France
| | - A-S Schreurs
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France
| | - C Umaña-Diaz
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France
| | - A Clapéron
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France
| | - C Desbois-Mouthon
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France
| | - C Calmel
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France
| | - O Mauger
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France
| | - A Zaanan
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France
| | - C Miquel
- Department of Pathology, Sainte-Anne Hospital, University Paris Descartes, Paris, France
| | - J-F Fléjou
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France [3] Department of Pathology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - F Praz
- 1] INSERM, UMR_S 938, Saint-Antoine Research Center, Paris, France [2] UPMC Univ Paris 06, UMR_S 938, Saint-Antoine Research Center, Paris, France
| |
Collapse
|
25
|
ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia. Mol Cell Biol 2013; 33:2963-75. [PMID: 23716594 DOI: 10.1128/mcb.01698-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Wnt signaling has an essential role in embryonic development as well as stem/progenitor cell renewal, and its aberrant activation is implicated in many diseases, including several cancers. β-Catenin is a critical component of Wnt-mediated transcriptional activation. Here we show that ARF6 activation during canonical Wnt signaling promotes the intracellular accumulation of β-catenin via a mechanism that involves the endocytosis of growth factor receptors and robust activation of extracellular signal-regulated kinase (ERK). ERK promotes casein kinase 2-mediated phosphorylation of α-catenin, leading to destabilization of the adherens junctions and a subsequent increase in cytoplasmic pools of active β-catenin and E-cadherin. ERK also phosphorylates LRP6 to amplify the Wnt transduction pathway. The aforementioned Wnt-ERK signaling pathway initiates lumen filling of epithelial cysts by promoting cell proliferation in three-dimensional cell cultures. This study elucidates a mechanism responsible for the switch in β-catenin functions in cell adhesion at the adherens junctions and Wnt-induced nuclear signaling.
Collapse
|
26
|
Kon S, Minegishi N, Tanabe K, Watanabe T, Funaki T, Wong WF, Sakamoto D, Higuchi Y, Kiyonari H, Asano K, Iwakura Y, Fukumoto M, Osato M, Sanada M, Ogawa S, Nakamura T, Satake M. Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia. J Clin Invest 2013; 123:1123-37. [PMID: 23434593 DOI: 10.1172/jci63711] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
The formation of clathrin-coated vesicles is essential for intracellular membrane trafficking between subcellular compartments and is triggered by the ARF family of small GTPases. We previously identified SMAP1 as an ARF6 GTPase-activating protein that functions in clathrin-dependent endocytosis. Because abnormalities in clathrin-dependent trafficking are often associated with oncogenesis, we targeted Smap1 in mice to examine its physiological and pathological significance. Smap1-deficent mice exhibited healthy growth, but their erythroblasts showed enhanced transferrin endocytosis. In mast cells cultured in SCF, Smap1 deficiency did not affect the internalization of c-KIT but impaired the sorting of internalized c-KIT from multivesicular bodies to lysosomes, resulting in intracellular accumulation of undegraded c-KIT that was accompanied by enhanced activation of ERK and increased cell growth. Interestingly, approximately 50% of aged Smap1-deficient mice developed anemia associated with morphologically dysplastic cells of erythroid-myeloid lineage, which are hematological abnormalities similar to myelodysplastic syndrome (MDS) in humans. Furthermore, some Smap1-deficient mice developed acute myeloid leukemia (AML) of various subtypes. Collectively, to our knowledge these results provide the first evidence in a mouse model that the deregulation of clathrin-dependent membrane trafficking may be involved in the development of MDS and subsequent AML.
Collapse
Affiliation(s)
- Shunsuke Kon
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shiba Y, Randazzo PA. ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs. Histol Histopathol 2012; 27:1143-53. [PMID: 22806901 DOI: 10.14670/hh-27.1143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide binding-protein ADP-ribosylation factor (Arf). Functional models for Arfs, which are regulators of membrane traffic, are based on the idea that guanine nucleotide-binding proteins function as switches: Arf with GTP bound is active and binds to effector proteins; the conversion of GTP to GDP inactivates Arf. The cellular activities of ArfGAPs have been examined primarily as regulatory proteins that inactivate Arf; however, Arf function in membrane traffic does not strictly adhere to the concept of a simple switch, adding complexity to models explaining the role of ArfGAPs. Here, we review the literature addressing the function Arf and ArfGAP1 in COPI mediated transport, focusing on two critical and integrated functions of membrane traffic, cargo sorting and vesicle coat polymerization. We briefly discuss other ArfGAPs that may have similar function in Arf-dependent membrane traffic outside the ER-Golgi.
Collapse
Affiliation(s)
- Yoko Shiba
- National Cancer Institute, Laboratory of Cellular and Molecular Biology, Bethesda, MD 20892, USA
| | | |
Collapse
|
28
|
Smyth D, McKay CM, Gulbransen BD, Phan VC, Wang A, McKay DM. Interferon-gamma signals via an ERK1/2-ARF6 pathway to promote bacterial internalization by gut epithelia. Cell Microbiol 2012; 14:1257-70. [PMID: 22463716 DOI: 10.1111/j.1462-5822.2012.01796.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The barrier function of the epithelium lining the intestine is essential for health by preventing the free passage of colonic bacteria into the mucosa. Epithelia treated with interferon (IFN)-γ display increased bacteria transcytosis. Much is known of how IFNγ affects the tight junction and paracellular permeability, yet its role in modifying transcellular traffic of commensal bacteria remains poorly understood. Using immunoblotting, ELISA and immunolocalization, IFNγ was found to activate extracellular regulated kinase (ERK)1/2 in the human colon-like T84 epithelial cell line. Pharmacological inhibition of MEK/ERK1/2 signalling with U0126 significantly inhibited IFNγ-induced increases in the transcytosis of non-invasive Escherichia coli (strain HB101). IFNγ treatment enhanced epithelial internalization of E. coli, some of which subsequently escaped the enterocyte. Molecular analyses revealed that ERK1/2 inhibition prevented activation of the ADP-ribosylation factor (ARF)-6, a protein associated with endocytosis, and that siRNA knock-down of ARF6 expression reduced IFNγ-induced E. coli internalization into T84 cells. None of these interventions affected the drop in transepithelial resistance caused by IFNγ. Thus, increased transcellular passage may be a major component of IFNγ-induced increases in epithelial permeability, and ERK1/2 and ARF6 are presented as important molecules in IFNγ-evoked transcytosis of bacteria across gut epithelia.
Collapse
Affiliation(s)
- David Smyth
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Tsai MM, Lin PY, Cheng WL, Tsai CY, Chi HC, Chen CY, Tseng YH, Cheng YF, Chen CD, Liang Y, Liao CJ, Wu SM, Lin YH, Chung IH, Wang CS, Lin KH. Overexpression of ADP-ribosylation factor 1 in human gastric carcinoma and its clinicopathological significance. Cancer Sci 2012; 103:1136-44. [PMID: 22348287 DOI: 10.1111/j.1349-7006.2012.02243.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer is the sixth leading cause of cancer-related death in Taiwan, and the identification of related factors is essential to increase patient survival. ADP-ribosylation factor 1 (ARF1) was initially identified using 2-D electrophoresis combined with MALDI-time-of-flight mass spectrometry. ADP-ribosylation factor 1 belongs to the Ras superfamily or GTP-binding protein family and has been shown to enhance cell proliferation. In the current study, we evaluated the potential of ARF1 as a biomarker for gastric cancer detection. ADP-ribosylation factor 1 mRNA was upregulated in tumor tissues (compared with adjacent non-tumor tissues, n = 55) in approximately 67.2% of gastric cancer patients. Expression of ARF1 protein was additionally observed using Western blot and immunohistochemistry (IHC) analyses. The clinicopathological correlations of ARF1 were further evaluated. Elevated ARF1 expression was strongly correlated with lymph node metastasis (P = 0.008), serosal invasion (P = 0.046), lymphatic invasion (P = 0.035), and pathological staging (P = 0.010). Moreover, the 5-year survival rate for the lower ARF1 expression group (n = 50; IHC score < 90) was higher than that of the higher expression group (n = 60; IHC score ≥ 90) (P = 0.0228, log-rank test). To establish the specific function of ARF1 in human gastric cancer, isogenic ARF1-overexpressing cell lines were prepared. Our results showed that ARF1-overexpressing clones display enhanced cell proliferation, migration, and invasion. Furthermore, ARF1-overexpression might contribute to poor prognosis of patients. These findings collectively support the utility of ARF1 as a novel prognostic marker for gastric cancer and its role in cell invasion.
Collapse
Affiliation(s)
- Ming-Ming Tsai
- Department of Biochemistry, Chang-Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol 2012; 2012:723419. [PMID: 22505934 PMCID: PMC3299390 DOI: 10.1155/2012/723419] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.
Collapse
|
31
|
Suzuki M, Tanaka H, Tanimura A, Tanabe K, Oe N, Rai S, Kon S, Fukumoto M, Takei K, Abe T, Matsumura I, Kanakura Y, Watanabe T. The clathrin assembly protein PICALM is required for erythroid maturation and transferrin internalization in mice. PLoS One 2012; 7:e31854. [PMID: 22363754 PMCID: PMC3283694 DOI: 10.1371/journal.pone.0031854] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/17/2012] [Indexed: 11/21/2022] Open
Abstract
Phosphatidylinositol binding clathrin assembly protein (PICALM), also known as clathrin assembly lymphoid myeloid leukemia protein (CALM), was originally isolated as part of the fusion gene CALM/AF10, which results from the chromosomal translocation t(10;11)(p13;q14). CALM is sufficient to drive clathrin assembly in vitro on lipid monolayers and regulates clathrin-coated budding and the size and shape of the vesicles at the plasma membrane. However, the physiological role of CALM has yet to be elucidated. Here, the role of CALM in vivo was investigated using CALM-deficient mice. CALM-deficient mice exhibited retarded growth in utero and were dwarfed throughout their shortened life-spans. Moreover, CALM-deficient mice suffered from severe anemia, and the maturation and iron content in erythroid precursors were severely impaired. CALM-deficient erythroid cells and embryonic fibroblasts exhibited impaired clathrin-mediated endocytosis of transferrin. These results indicate that CALM is required for erythroid maturation and transferrin internalization in mice.
Collapse
Affiliation(s)
- Mai Suzuki
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Hirokazu Tanaka
- Division of Hematology, Department of Internal Medicine, Kinki University, Osaka, Japan
| | - Akira Tanimura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Tanabe
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Natsuko Oe
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinya Rai
- Division of Hematology, Department of Internal Medicine, Kinki University, Osaka, Japan
| | - Syunsuke Kon
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohji Takei
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Itaru Matsumura
- Division of Hematology, Department of Internal Medicine, Kinki University, Osaka, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
- * E-mail:
| |
Collapse
|
32
|
New Insights into the Regulation of E-cadherin Distribution by Endocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:63-108. [DOI: 10.1016/b978-0-12-394306-4.00008-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Sakakura I, Tanabe K, Nouki N, Suzuki M, Satake M, Watanabe T. The carboxy-terminal region of SMAP2 directs subcellular localization as well as Arf protein specificity. Biochem Biophys Res Commun 2011; 404:661-6. [DOI: 10.1016/j.bbrc.2010.12.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
|
34
|
Funaki T, Kon S, Ronn RE, Henmi Y, Kobayashi Y, Watanabe T, Nakayama K, Tanabe K, Satake M. Localization of SMAP2 to the TGN and its Function in the Regulation of TGN Protein Transport. Cell Struct Funct 2011; 36:83-95. [DOI: 10.1247/csf.10022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Tomo Funaki
- Institute of Development, Aging and Cancer, Graduate School of Life Sciences, Tohoku University
| | - Shunsuke Kon
- Institute of Development, Aging and Cancer, Graduate School of Life Sciences, Tohoku University
| | - Roger E. Ronn
- Institute of Development, Aging and Cancer, Graduate School of Life Sciences, Tohoku University
| | - Yuji Henmi
- Graduate School of Medicine and Dentistry, Okayama University
| | - Yuka Kobayashi
- Graduate School of Medicine and Dentistry, Okayama University
| | - Toshio Watanabe
- Institute of Development, Aging and Cancer, Graduate School of Life Sciences, Tohoku University
| | | | - Kenji Tanabe
- Graduate School of Medicine and Dentistry, Okayama University
| | - Masanobu Satake
- Institute of Development, Aging and Cancer, Graduate School of Life Sciences, Tohoku University
| |
Collapse
|
35
|
Harris TJC, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 2010; 11:502-14. [PMID: 20571587 DOI: 10.1038/nrm2927] [Citation(s) in RCA: 704] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How adhesive interactions between cells generate and maintain animal tissue structure remains one of the most challenging and long-standing questions in cell and developmental biology. Adherens junctions (AJs) and the cadherin-catenin complexes at their core are therefore the subjects of intense research. Recent work has greatly advanced our understanding of the molecular organization of AJs and how cadherin-catenin complexes engage actin, microtubules and the endocytic machinery. As a result, we have gained important insights into the molecular mechanisms of tissue morphogenesis.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | | |
Collapse
|
36
|
|
37
|
Abstract
The metastatic process, i.e. the dissemination of cancer cells throughout the body to seed secondary tumors at distant sites, requires cancer cells to leave the primary tumor and to acquire migratory and invasive capabilities. In a process of epithelial-mesenchymal transition (EMT), besides changing their adhesive repertoire, cancer cells employ developmental processes to gain migratory and invasive properties that involve a dramatic reorganization of the actin cytoskeleton and the concomitant formation of membrane protrusions required for invasive growth. The molecular processes underlying such cellular changes are still only poorly understood, and the various migratory organelles, including lamellipodia, filopodia, invadopodia and podosomes, still require a better functional and molecular characterization. Notably, direct experimental evidence linking the formation of migratory membrane protrusions and the process of EMT and tumor metastasis is still lacking. In this review, we have summarized recent novel insights into the molecular processes and players underlying EMT on one side and the formation of invasive membrane protrusions on the other side.
Collapse
Affiliation(s)
- Mahmut Yilmaz
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
38
|
Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract. Proc Natl Acad Sci U S A 2008; 105:16620-5. [PMID: 18948590 DOI: 10.1073/pnas.0808987105] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cell-cell interactions organize lens fiber cells into highly ordered structures to maintain transparency. However, signals regulating such interactions have not been well characterized. We report here that ephrin-A5, a ligand of the Eph receptor tyrosine kinases, plays a key role in lens fiber cell shape and cell-cell interactions. Lens fiber cells in mice lacking ephrin-A5 function appear rounded and irregular in cross-section, in contrast to their normal hexagonal appearance in WT lenses. Cataracts eventually develop in 87% of ephrin-A5 KO mice. We further demonstrate that ephrin-A5 interacts with the EphA2 receptor to regulate the adherens junction complex by enhancing recruitment of beta-catenin to N-cadherin. These results indicate that the Eph receptors and their ligands are critical regulators of lens development and maintenance.
Collapse
|
39
|
Tanabe K, Kon S, Ichijo N, Funaki T, Natsume W, Watanabe T, Satake M. A SMAP gene family encoding ARF GTPase-activating proteins and its implication in membrane trafficking. Methods Enzymol 2008; 438:155-70. [PMID: 18413247 DOI: 10.1016/s0076-6879(07)38011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SMAP1 and SMAP2 proteins constitute a subfamily of the Arf-specific GTPase-activating proteins. Both SMAP proteins bind to clathrin heavy chains and are involved in the trafficking of clathrin-coated vesicles. In cells, SMAP1 regulates Arf6-dependent endocytosis of transferrin receptors from the coated pits of the plasma membrane, whereas SMAP2 regulates Arf1-dependent retrograde transport of TGN38 from the early endosome to the trans-Golgi network. The common and distinct features of SMAP1 and SMAP2 activity provide a valuable opportunity to examine the differential regulation of membrane trafficking by these two proteins. In this chapter, we describe several basic experimental procedures that have been used to study the regulation of membrane trafficking using SMAP proteins, including a GAP assay as well as procedures to study the transport of transferrin receptors and TGN38. In addition, a yeast two-hybrid system is described because of its utility in identifying novel molecules that interact with SMAP.
Collapse
Affiliation(s)
- Kenji Tanabe
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|