1
|
Periasamy R, Surbek DV, Schoeberlein A. In vitro-microenvironment directs preconditioning of human chorion derived MSC promoting differentiation of OPC-like cells. Tissue Cell 2018; 52:65-70. [DOI: 10.1016/j.tice.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
|
2
|
Lim JH, Koh S, Thomas R, Breen M, Olby NJ. Evaluation of gene expression and DNA copy number profiles of adipose tissue-derived stromal cells and consecutive neurosphere-like cells generated from dogs with naturally occurring spinal cord injury. Am J Vet Res 2017; 78:371-380. [DOI: 10.2460/ajvr.78.3.371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Semaphorin 3A Shifts Adipose Mesenchymal Stem Cells towards Osteogenic Phenotype and Promotes Bone Regeneration In Vivo. Stem Cells Int 2016; 2016:2545214. [PMID: 27721834 PMCID: PMC5046026 DOI: 10.1155/2016/2545214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/08/2023] Open
Abstract
Adipose mesenchymal stem cells (ASCs) are considered as the promising seed cells for bone regeneration. However, the lower osteogenic differentiation capacity limits its therapeutic efficacy. Identification of the key molecules governing the differences between ASCs and BMSCs would shed light on manipulation of ASCs towards osteogenic phenotype. In this study, we screened semaphorin family members in ASCs and BMSCs and identified Sema3A as an osteogenic semaphorin that was significantly and predominantly expressed in BMSCs. The analyses in vitro showed that the overexpression of Sema3A in ASCs significantly enhanced the expression of bone-related genes and extracellular matrix calcium deposition, while decreasing the expression of adipose-related genes and thus lipid droplet formation, resembling a BMSCs phenotype. Furthermore, Sema3A modified ASCs were then engrafted into poly(lactic-co-glycolic acid) (PLGA) scaffolds to repair the critical-sized calvarial defects in rat model. As expected, Sema3A modified ASCs encapsulation significantly promoted new bone formation with higher bone volume fraction and bone mineral density. Additionally, Sema3A was found to simultaneously increase multiple Wnt related genes and thus activating Wnt pathway. Taken together, our study here identifies Sema3A as a critical gene for osteogenic phenotype and reveals that Sema3A-modified ASCs would serve as a promising candidate for bettering bone defect repair.
Collapse
|
4
|
Creatine Enhances Transdifferentiation of Bone Marrow Stromal Cell-Derived Neural Stem Cell Into GABAergic Neuron-Like Cells Characterized With Differential Gene Expression. Mol Neurobiol 2016; 54:1978-1991. [PMID: 26910814 DOI: 10.1007/s12035-016-9782-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
Creatine was reported to induce bone marrow stromal cells (BMSC) into GABAergic neuron-like cells (GNLC). In a previous study, creatine was used as a single inducer for BMSC into GNLC with low yield. In this study, BMSC-derived neurospheres (NS) have been used in generating GABAergic phenotype. The BMSC were isolated from adult rats and used in generating neurospheres and used for producing neural stem cells (NSC). A combination of all-trans-retinoic acid (RA), the ciliary neurotrophic factor (CNTF), and creatine was used in order to improve the yield of GNLC. We also used other protocols for the transdifferentiation including RA alone; RA and creatine; RA and CNTF; and RA, CNTF, and creatine. The BMSC, NSC, and GNLC were characterized by specific markers. The activity of the GNLC was evaluated using FM1-43. The isolated BMSC expressed Oct4, fibronectin, and CD44. The NS were immunoreactive to nestin and SOX2, the NSC were immunoreactive to nestin, NF68 and NF160, while the GNLC were immunoreactive to GAD1/2, VGAT, GABA, and synaptophysin. Oct4 and c-MYC, pluripotency genes, were expressed in the BMSC, while SOX2 and c-MYC were expressed in the NSC. The activity of GNLC indicates that the synaptic vesicles were released upon stimulation. The conclusion is that the combination of RA, CNTF, and creatine induced differentiation of neurosphere-derived NSC into GNLC within 1 week. This protocol gives higher yield than the other protocols used in this study. The mechanism of induction was clearly associated with several differential pluripotent genes.
Collapse
|
5
|
Turner EC, Huang CL, Sawhney N, Govindarajan K, Clover AJP, Martin K, Browne TC, Whelan D, Kumar AHS, Mackrill JJ, Wang S, Schmeckpeper J, Stocca A, Pierce WG, Leblond AL, Cai L, O'Sullivan DM, Buneker CK, Choi J, MacSharry J, Ikeda Y, Russell SJ, Caplice NM. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells. Stem Cells 2016; 34:1354-68. [PMID: 26840832 DOI: 10.1002/stem.2319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/17/2015] [Indexed: 11/08/2022]
Abstract
Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC. In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement. PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368.
Collapse
Affiliation(s)
- Elizabeth C Turner
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Chien-Ling Huang
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Neha Sawhney
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kalaimathi Govindarajan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Anthony J P Clover
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kenneth Martin
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Tara C Browne
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Derek Whelan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Arun H S Kumar
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - John J Mackrill
- Department of Physiology, University College Cork, Biosciences Institute, College Road, Cork, Ireland
| | - Shaohua Wang
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Jeffrey Schmeckpeper
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Alessia Stocca
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - William G Pierce
- Department of Physiology, University College Cork, Biosciences Institute, College Road, Cork, Ireland
| | - Anne-Laure Leblond
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Liquan Cai
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Donnchadh M O'Sullivan
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Chirlei K Buneker
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Janet Choi
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - John MacSharry
- Alimentary Pharmabiotic Centre (APC), Biosciences Institute, University College Cork, Cork, Ireland
| | - Yasuhiro Ikeda
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Stephen J Russell
- Molecular Medicine Program, Mayo Clinic and Foundation, 200 First St, Rochester, Minnesota, 55905
| | - Noel M Caplice
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Nakatsuka R, Iwaki R, Matsuoka Y, Sumide K, Kawamura H, Fujioka T, Sasaki Y, Uemura Y, Asano H, Kwon AH, Sonoda Y. Identification and Characterization of Lineage(-)CD45(-)Sca-1(+) VSEL Phenotypic Cells Residing in Adult Mouse Bone Tissue. Stem Cells Dev 2015; 25:27-42. [PMID: 26595762 DOI: 10.1089/scd.2015.0168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Murine bone marrow (BM)-derived very small embryonic-like stem cells (BM VSELs), defined by a lineage-negative (Lin(-)), CD45-negative (CD45(-)), Sca-1-positive (Sca-1(+)) immunophenotype, were previously reported as postnatal pluripotent stem cells (SCs). We developed a highly efficient method for isolating Lin(-)CD45(-)Sca-1(+) small cells using enzymatic treatment of murine bone. We designated these cells as bone-derived VSELs (BD VSELs). The incidences of BM VSELs in the BM-derived nucleated cells and that of BD VSELs in bone-derived nucleated cells were 0.002% and 0.15%, respectively. These BD VSELs expressed a variety of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and endothelial cell markers. The gene expression profile of the BD VSELs was clearly distinct from those of HSCs, MSCs, and ES cells. In the steady state, the BD VSELs proliferated slowly, however, the number of BD VSELs significantly increased in the bone after acute liver injury. Moreover, green fluorescent protein-mouse derived BD VSELs transplanted via tail vein injection after acute liver injury were detected in the liver parenchyma of recipient mice. Immunohistological analyses suggested that these BD VSELs might transdifferentiate into hepatocytes. This study demonstrated that the majority of the Lin(-)CD45(-)Sca-1(+) VSEL phenotypic cells reside in the bone rather than the BM. However, the immunophenotype and the gene expression profile of BD VSELs were clearly different from those of other types of SCs, including BM VSELs, MSCs, HSCs, and ES cells. Further studies will therefore be required to elucidate their cellular and/or SC characteristics and the potential relationship between BD VSELs and BM VSELs.
Collapse
Affiliation(s)
- Ryusuke Nakatsuka
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Ryuji Iwaki
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan .,2 Department of Surgery, Kansai Medical University , Hirakata, Japan
| | - Yoshikazu Matsuoka
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Keisuke Sumide
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Hiroshi Kawamura
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan .,3 Department of Orthopedic Surgery, Kansai Medical University , Hirakata, Japan
| | - Tatsuya Fujioka
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Yutaka Sasaki
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| | - Yasushi Uemura
- 4 Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center National Cancer Center , Chiba, Japan
| | - Hiroaki Asano
- 5 School of Nursing, Kyoto Prefectural University of Medicine , Kyoto, Japan
| | - A-Hon Kwon
- 2 Department of Surgery, Kansai Medical University , Hirakata, Japan
| | - Yoshiaki Sonoda
- 1 Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University , Hirakata, Japan
| |
Collapse
|
7
|
Im CN, Yun HH, Yoo HJ, Park MJ, Lee JH. Enhancement of SOX-2 expression and ROS accumulation by culture of A172 glioblastoma cells under non-adherent culture conditions. Oncol Rep 2015; 34:920-8. [PMID: 26035068 DOI: 10.3892/or.2015.4021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
Abstract
More efficient isolation and identification of cancer stem cells (CSCs) would help in determining their fundamental roles in tumor biology. The classical tool for this purpose is anchorage-independent tumorsphere culture. We compared the effects of differently textured culture plates and serum deprivation on the acquisition of CSC properties of A172 glioblastoma cells. Cells were cultured on standard polystyrene-treated plates, ultra-low attachment, poly (2-hydroxyethyl methacrylate)-coated plates, and 1% agar-coated plates with 10% serum or in serum-free glioblastoma sphere medium (GBM). Based on mitochondrial reductase activity and subG1 proportions, non-adherent conditions had a greater impact on A172 cell viability than serum deprivation. Among the stemness-related genes, SOX-2 expression was significantly upregulated by serum deprivation under non-adherent conditions, while several epithelial-to-mesenchymal transition (EMT)-related genes were less dependent on serum. In addition, reactive oxygen species (ROS) accumulation in A172 cells was significantly increased in GBM under non-adherent conditions. Despite the correlation between SOX-2 induction and ROS accumulation, treatment with the ROS scavenger N-acetyl-l-cysteine did not prevent SOX-2 expression, suggesting that ROS accumulation is not an essential requirement for induction of SOX-2. Our results suggested that cultivation of cancer cells under conditions of serum deprivation in an anchorage-independent manner may enrich SOX-2-expressing CSC-like cells in vitro.
Collapse
Affiliation(s)
- Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Hyung Jae Yoo
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| |
Collapse
|
8
|
Rafiee MR, Malekzadeh Shafaroudi A, Rohban S, Khayatzadeh H, Kalhor HR, Mowla SJ. Enrichment of A Rare Subpopulation of miR-302-Expressing Glioma Cells by Serum Deprivation. CELL JOURNAL 2015; 16:494-505. [PMID: 25685740 PMCID: PMC4297488 DOI: 10.22074/cellj.2015.495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/01/2013] [Indexed: 12/30/2022]
Abstract
Objective MiR-302-367 is a cluster of polycistronic microRNAs that are exclusively expressed in embryonic stem (ES) cells. The miR-302-367 promoter is functional during
embryonic development but is turned off in later stages. Motivated by the cancer stem
cell hypothesis, we explored the potential expression of miR-302 in brain tumor cell lines.
Materials and Methods In the present experimental study, we have tried to expand
our knowledge on the expression pattern and functionality of miR302 cluster by quantifying its expression in a series of glioma (A-172, 1321N1, U87MG) and medulloblastoma (DAOY) cell lines. To further assess the functionality of miR-302 in these cell
lines, we cloned its promoter core region upstream of the enhanced green fluorescent
protein (EGFP) or luciferase encoding genes.
Results Our data demonstrated a very low expression of miR-302 in glioma cell lines,
compared with that of embryonal carcinoma cell line NT2 being used as a positive
control. The expression of miR-302 promoter-EGFP construct in the aforementioned
cell lines demonstrated GFP expression in a rare subpopulation of the cells. Serum
deprivation led to the generation of tumorospheres, enrichment of miR-302 positive
cells and upregulation of a number of pluripotency genes.
Conclusion Taken together, our data suggest that miR-302 could potentially be used as
a novel putative cancer stem cell marker to identify and target cancer stem cells within
tumor tissues.
Collapse
Affiliation(s)
- Mahmoud-Reza Rafiee
- Nanomedicine and Tissue Engineering Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Malekzadeh Shafaroudi
- Nanomedicine and Tissue Engineering Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ; Department of Non-coding RNA Research, Pars Genome Company, Tehran, Iran
| | - Sara Rohban
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Khayatzadeh
- Nanomedicine and Tissue Engineering Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Jian Q, Li Y, Yin ZQ. Rat BMSCs initiate retinal endogenous repair through NGF/TrkA signaling. Exp Eye Res 2015; 132:34-47. [PMID: 25584870 DOI: 10.1016/j.exer.2015.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/16/2014] [Accepted: 01/09/2015] [Indexed: 12/18/2022]
Abstract
Müller cells can completely repair retinal injury by acting as endogenous stem/progenitor cells in lower-order vertebrates. However, a safe and effective approach to activate progenitor potential of retinal Müller cells in higher-order vertebrates, which rarely re-enter the cell cycle, is a bottleneck problem. In the present study, Royal College of Surgeon's (RCS) rats were subjected to rat bone marrow mesenchymal stem cells (rBMSCs) subretinal space transplantation. Electroretinography (ERG) recordings showed that the b-wave amplitudes and ONL thicknesses statistically increased after transplantation. The number of Müller cells expressing proliferative, stem/progenitor and neuronal markers significantly increased after rBMSCs transplantation in vivo or after co-culturing with rBMSCs in vitro. The cultured rBMSCs could secrete nerve growth factor (NGF). In addition, we confirmed that NGF or NGF-neutralizing antibody could activate or depress Müller cells dedifferentiation, both in vivo and in vitro. Furthermore, Müller cells expressing high levels of the NGF receptor neurotrophic tyrosine kinase receptor type 1 (TrkA) were observed in the retinas of rats transplanted with rBMSCs. Moreover, the protein expression of downstream elements of NGF/TrkA signaling, such as p-PI3K, p-Akt and p-CREB, increased in Müller cells in the retinas of rBMSCs-treated rats in vivo or in Müller cells co-cultured with rBMSCs in vitro. Blocking TrkA with K-252a reduced the number of dedifferentiated Müller cells and the expression of NGF/TrkA signaling in vitro. Thus, rBMSCs might initiate endogenous regenerative mechanisms, which may constitute a new therapeutic strategy for retinal dystrophic diseases.
Collapse
Affiliation(s)
- Qian Jian
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yaochen Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
10
|
Guo L, Zhou Y, Wang S, Wu Y. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J Cell Mol Med 2014; 18:2009-19. [PMID: 25090911 PMCID: PMC4244016 DOI: 10.1111/jcmm.12336] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 04/28/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold profound promise in tissue repair/regeneration. However, MSCs undergo remarkable spontaneous differentiation and aging during monolayer culture expansion. In this study, we found that 2-3 days of three-dimensional (3D) spheroid culture of human MSCs (hMSCs) that had been expanded in monolayer for six passages increased their clonogenicity and differentiation potency to neuronal cells. Moreover, in accordance with these changes, the expression levels of miRNA which were involved in stem cell potency were changed and levels of histone H3 acetylation in K9 in promoter regions of Oct4, Sox2 and Nanog were elevated. Our results indicate that spheroid culture increases their multi-potency and changes the epigenetic status of pluripotent genes in hMSCs.
Collapse
Affiliation(s)
- Ling Guo
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | | | | | | |
Collapse
|
11
|
Balseanu AT, Buga AM, Catalin B, Wagner DC, Boltze J, Zagrean AM, Reymann K, Schaebitz W, Popa-Wagner A. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone. Front Aging Neurosci 2014; 6:130. [PMID: 25002846 PMCID: PMC4066299 DOI: 10.3389/fnagi.2014.00130] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 06/03/2014] [Indexed: 01/01/2023] Open
Abstract
Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilization and homing by the stem cell mobilizer granulocyte colony-stimulating factor (G-CSF). We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM-MSCs) in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 μg/kg) or in combination with a single dose (106 cells) of rat BM MSCs was administered intravenously to Sprague-Dawley rats at 6 h after transient occlusion (90 min) of the middle cerebral artery. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the “islet of regeneration.” However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time.
Collapse
Affiliation(s)
- Adrian Tudor Balseanu
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova , Craiova , Romania
| | - Ana-Maria Buga
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova , Craiova , Romania ; Department of Psychiatry, University Medicine of Rostock , Rostock , Germany
| | - Bogdan Catalin
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova , Craiova , Romania
| | | | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology , Leipzig , Germany ; Translational Center for Regenerative Medicine, University of Leipzig , Leipzig , Germany ; Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital and Harvard Medical School , Charlestown, MA , USA
| | - Ana-Maria Zagrean
- Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | - Klaus Reymann
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg in collobaration with Leibniz Institute for Neurobiology , Magdeburg , Germany
| | - Wolf Schaebitz
- Evangelisches Krankenhaus Bielefeld gGmbH Akademisches Lehrkrankenhaus der Universität Münster , Münster , Germany
| | - Aurel Popa-Wagner
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova , Craiova , Romania ; Department of Psychiatry, University Medicine of Rostock , Rostock , Germany
| |
Collapse
|
12
|
Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS. Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Cytotherapy 2013; 15:961-70. [DOI: 10.1016/j.jcyt.2013.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/08/2013] [Indexed: 12/21/2022]
|
13
|
Alvarez-Gonzalez C, Duggleby R, Vagaska B, Querol S, Gomez SG, Ferretti P, Madrigal A. Cord blood Lin(-)CD45(-) embryonic-like stem cells are a heterogeneous population that lack self-renewal capacity. PLoS One 2013; 8:e67968. [PMID: 23840798 PMCID: PMC3695943 DOI: 10.1371/journal.pone.0067968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/24/2013] [Indexed: 02/02/2023] Open
Abstract
Human umbilical cord blood (hUCB) has been proposed to contain not only haematopoietic stem cells, but also a rare pluripotent embryonic-like stem cell (ELSc) population that is negative for hematopoietic markers (Lin−CD45−) and expresses markers typical of pluripotent cells. The aim of this work was to isolate, characterise and expand this ELSc fraction from hUCB, as it may provide a valuable cell source for regenerative medicine applications. We found that we could indeed isolate a Lin−CD45− population of small cells (3–10 µm diameter) with a high nucleus to cytoplasm ratio that expressed the stem cell markers CD34 and CXCR4. However, in contrast to some previous reports, this fraction was not positive for CD133. Furthermore, although these cells expressed transcripts typical of pluripotent cells, such as SOX2, OCT3/4, and NANOG, they were not able to proliferate in any of the culture media known to support stem cell growth that we tested. Further analysis of the Lin−CD45− population by flow cytometry showed the presence of a Lin−CD45−Nestin+ population that were also positive for CD34 (20%) but negative for CXCR4. These data suggest that the Lin−CD45− stem cell fraction present in the cord blood represents a small heterogeneous population with phenotypic characteristics of stem cells, including a Lin−CD45−Nestin+ population not previously described. This study also suggests that heterogeneity within the Lin−CD45− cell fraction is the likely explanation for differences in the hUCB cell populations described by different groups that were isolated using different methods. These populations have been widely called “embryonic-like stem cell” on the basis of their phenotypical similarity to embryonic stem cells. However, the fact they do not seem to be able to self-renew casts some doubt on their identity, and warns against defining them as “embryonic-like stem cell” at this stage.
Collapse
Affiliation(s)
- Cesar Alvarez-Gonzalez
- Anthony Nolan Research Institute, London, United Kingdom
- Cancer Institute, University College London, London, United Kingdom
| | | | - Barbora Vagaska
- Development Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Sergio Querol
- Anthony Nolan Research Institute, London, United Kingdom
- Banc de Sang i Teixits, Barcelona, Spain
| | - Susana G. Gomez
- Anthony Nolan Research Institute, London, United Kingdom
- Anthony Nolan Cell Therapy Centre, Nottingham, United Kingdom
| | - Patrizia Ferretti
- Development Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | | |
Collapse
|
14
|
Virant-Klun I, Stimpfel M, Cvjeticanin B, Vrtacnik-Bokal E, Skutella T. Small SSEA-4-positive cells from human ovarian cell cultures: related to embryonic stem cells and germinal lineage? J Ovarian Res 2013; 6:24. [PMID: 23570331 PMCID: PMC3660272 DOI: 10.1186/1757-2215-6-24] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/24/2013] [Indexed: 01/06/2023] Open
Abstract
Background It has already been found that very small embyronic-like stem cells (VSELs) are present in adult human tissues and organs. The aim of this study was to find if there exists any similar population of cells in cell cultures of reproductive tissues and embryonic stem cells, and if these cells have any relation to pluripotency and germinal lineage. Methods and results Here we report that a population of small SSEA-4-positive cells with diameters of up to 4 μm was isolated by fluorescence-activated cell sorting (FACS) from the human ovarian cell cultures after enzymatic degradation of adult cortex tissues. These small cells – putative ovarian stem cells – were also observed during cell culturing of up to 6 months and more. In general, small putative ovarian stem cells, isolated by FACS, showed a relatively low gene expression profile when compared to human embryonic stem cells (hESCs) and human adult fibroblasts; this may reflect the quiescent state of these cells. In spite of that, small putative ovarian stem cells expressed several genes related to primordial germ cells (PGCs), pluripotency and germinal lineage, including VASA. The PGC-related gene PRDM1 was strongly expressed in small putative ovarian stem cells; in both hESCs and fibroblasts it was significantly down-regulated. In addition, putative ovarian stem cells expressed other PGC-related genes, such as PRDM14 and DPPA3. Most of the pluripotency and germinal lineage-related genes were up-regulated in hESCs (except VASA). When compared to fibroblasts, there were several pluripotency-related genes, which were up-regulated in small putative ovarian stem cells. Similar populations of small cells were also isolated by FACS from human testicular and hESC cultures. Conclusions Our results confirm the potential embryonic-like character of small putative stem cells isolated from human adult ovaries and their possible relation to germinal lineage.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Martin Stimpfel
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Branko Cvjeticanin
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Eda Vrtacnik-Bokal
- Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, Ljubljana, 1000, Republic of Slovenia
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, 69120, Germany
| |
Collapse
|
15
|
Kassmer SH, Krause DS. Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol Reprod Dev 2013; 80:677-90. [PMID: 23440892 DOI: 10.1002/mrd.22168] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/17/2013] [Indexed: 01/15/2023]
Abstract
Very small embryonic-like cells (VSELs), found in murine bone marrow and other adult tissues, are small, non-hematopoietic cells expressing markers of pluripotent embryonic and primordial germ cells. A similar cell type in humans has begun to be characterized, though with a slightly different phenotype and surface markers. Consistent with expression of pluripotency genes, murine VSELs differentiate into cell types from three germ-layer lineages in vitro, though pluripotency has yet to be shown at the single-cell level or in vivo. VSELs appear to be quiescent under steady state conditions, apparently due to partially erased imprinting and overexpression of cell cycle inhibitory genes. In vivo, VSELs can enter the cell cycle under stress conditions, but which factors regulate quiescence versus proliferation and self-renewal versus differentiation are as yet unknown, and in vitro conditions that induce proliferation and self-renewal have yet to be defined. Future experiments are needed to address whether a VSEL niche actively regulates quiescence in vivo or quiescence is cell autonomous under steady state conditions. Insights into these mechanisms may help to address whether or not VSELs could play a role in regenerative medicine in the future.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
16
|
Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690415. [PMID: 23509763 PMCID: PMC3590614 DOI: 10.1155/2013/690415] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/27/2012] [Indexed: 12/02/2022]
Abstract
The adult ovarian surface epithelium has already been proposed as a source of stem cells and germinal cells in the literature, therefore it has been termed the “germinal epithelium”. At present more studies have confirmed the presence of stem cells expressing markers of pluripotency in adult mammalian ovaries, including humans. The aim of this study was to isolate a population of stem cells, based on the expression of pluripotency-related stage-specific embryonic antigen-4 (SSEA-4) from adult human ovarian surface epithelium by two different methods: magnetic-activated cell sorting and fluorescence-activated cell sorting. Both methods made it possible to isolate a similar, relatively homogenous population of small, SSEA-4-positive cells with diameters of up to 4 μm from the suspension of cells retrieved by brushing of the ovarian cortex biopsies in reproductive-age and postmenopausal women and in women with premature ovarian failure. The immunocytochemistry and genetic analyses revealed that these small cells—putative stem cells—expressed some primordial germ cell and pluripotency-related markers and might be related to the in vitro development of oocyte-like cells expressing some oocyte-specific transcription factors in the presence of donated follicular fluid with substances important for oocyte growth and development. The stemness of these cells needs to be further researched.
Collapse
|
17
|
Peripheral blood stem cells: phenotypic diversity and potential clinical applications. Stem Cell Rev Rep 2012; 8:917-25. [PMID: 22451417 DOI: 10.1007/s12015-012-9361-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A small proportion of cells in peripheral blood are actually pluripotent stem cells. These peripheral blood stem cells (PBSCs) are thought to be heterogeneous and could be exploited for a variety of clinical applications. The exact number of distinct populations is unknown. It is likely that individual PBSC populations detected by different experimental strategies are similar or overlapping but have been assigned different names. In this mini review, we divide PBSCs into seven groups: hematopoietic stem cells (HSCs), CD34- stem cells, CD14+ stem cells, mesenchymal stem cells (MSCs), very small embryonic-like (VSEL) stem cells, endothelial progenitor cells (EPCs), and other pluripotent stem cells. We review the major characteristics of these stem/progenitor cell populations and their potential applications in ophthalmology.
Collapse
|
18
|
Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 2012; 7:e39500. [PMID: 22745769 PMCID: PMC3380009 DOI: 10.1371/journal.pone.0039500] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/21/2012] [Indexed: 12/13/2022] Open
Abstract
Numerous strategies have been managed to improve functional recovery after spinal cord injury (SCI) but an optimal strategy doesn't exist yet. Actually, it is the complexity of the injured spinal cord pathophysiology that begets the multifactorial approaches assessed to favour tissue protection, axonal regrowth and functional recovery. In this context, it appears that mesenchymal stem cells (MSCs) could take an interesting part. The aim of this study is to graft MSCs after a spinal cord compression injury in adult rat to assess their effect on functional recovery and to highlight their mechanisms of action. We found that in intravenously grafted animals, MSCs induce, as early as 1 week after the graft, an improvement of their open field and grid navigation scores compared to control animals. At the histological analysis of their dissected spinal cord, no MSCs were found within the host despite their BrdU labelling performed before the graft, whatever the delay observed: 7, 14 or 21 days. However, a cytokine array performed on spinal cord extracts 3 days after MSC graft reveals a significant increase of NGF expression in the injured tissue. Also, a significant tissue sparing effect of MSC graft was observed. Finally, we also show that MSCs promote vascularisation, as the density of blood vessels within the lesioned area was higher in grafted rats. In conclusion, we bring here some new evidences that MSCs most likely act throughout their secretions and not via their own integration/differentiation within the host tissue.
Collapse
Affiliation(s)
- Renaud Quertainmont
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Dorothée Cantinieaux
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Olivier Botman
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Selim Sid
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Jean Schoenen
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
| | - Rachelle Franzen
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain Unit, University of Liege, Liege, Belgium
- * E-mail:
| |
Collapse
|
19
|
Burns JS, Safwat A, Grisendi G, Kassem M, Dominici M. Sarcomas as a mise en abyme of mesenchymal stem cells: exploiting interrelationships for cell mediated anticancer therapy. Cancer Lett 2012; 325:1-10. [PMID: 22659735 DOI: 10.1016/j.canlet.2012.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/24/2022]
Abstract
Mise en abyme meaning "placed into abyss or infinite recurrence" is an apt paradigm for the relentless growth of sarcoma cells. Its alternative meaning, "self-reflexive embedding" fits the central role attributed to cancer stem cells (CSCs). Diversely sourced and defined, mesenchymal stem cells (MSCs) may be the cells of sarcoma origin, evolve a CSC phenotype and/or contribute to tumor growth through inherent qualities for homing, neovascularization, paracrine cross-feeding, microvesicle secretion, cell fusion, entosis and immune modulation. Exploiting these qualities, MSC expressing modified forms of the TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) are being developed to complement more conventional radiation and chemotherapy.
Collapse
Affiliation(s)
- Jorge S Burns
- Laboratory of Cell Biology and Advanced Cancer Therapies, Department of Oncology, Hematology and Respiratory Disease, University Hospital of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | |
Collapse
|
20
|
Genome-wide expression profiling and functional network analysis upon neuroectodermal conversion of human mesenchymal stem cells suggest HIF-1 and miR-124a as important regulators. Exp Cell Res 2010; 316:2760-78. [DOI: 10.1016/j.yexcr.2010.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 11/17/2022]
|
21
|
Rajagopalan MS, Stone B, Rwigema JC, Salimi U, Epperly MW, Goff J, Franicola D, Dixon T, Cao S, Zhang X, Buchholz BM, Bauer AJ, Choi S, Bakkenist C, Wang H, Greenberger JS. Intraesophageal manganese superoxide dismutase-plasmid liposomes ameliorates novel total-body and thoracic radiation sensitivity of NOS1-/- mice. Radiat Res 2010; 174:297-312. [PMID: 20726721 DOI: 10.1667/rr2019.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effect of deletion of the nitric oxide synthase 1 gene (NOS1(-/-)) on radiosensitivity was determined. In vitro, long-term cultures of bone marrow stromal cells derived from NOS1(-/-) were more radioresistant than cells from C57BL/6NHsd (wild-type), NOS2(-/-) or NOS3(-/-) mice. Mice from each strain received 20 Gy thoracic irradiation or 9.5 Gy total-body irradiation (TBI), and NOS1(-/-) mice were more sensitive to both. To determine the etiology of radiosensitivity, studies of histopathology, lower esophageal contractility, gastrointestinal transit, blood counts, electrolytes and inflammatory markers were performed; no significant differences between irradiated NOS1(-/-) and control mice were found. Video camera surveillance revealed the cause of death in NOS1(-/-) mice to be grand mal seizures; control mice died with fatigue and listlessness associated with low blood counts after TBI. NOS1(-/-) mice were not sensitive to brain-only irradiation. MnSOD-PL therapy delivered to the esophagus of wild-type and NOS1(-/-) mice resulted in equivalent biochemical levels in both; however, in NOS1(-/-) mice, MnSOD-PL significantly increased survival after both thoracic and total-body irradiation. The mechanism of radiosensitivity of NOS1(-/-) mice and its reversal by MnSOD-PL may be related to the developmental esophageal enteric neuronal innervation abnormalities described in these mice.
Collapse
Affiliation(s)
- Malolan S Rajagopalan
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Meyer AK, Maisel M, Hermann A, Stirl K, Storch A. Restorative approaches in Parkinson's Disease: Which cell type wins the race? J Neurol Sci 2010; 289:93-103. [DOI: 10.1016/j.jns.2009.08.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Lepski G, Jannes CE, Maciaczyk J, Papazoglou A, Mehlhorn AT, Kaiser S, Teixeira MJ, Marie SK, Bischofberger J, Nikkhah G. Limited Ca2+ and PKA-pathway dependent neurogenic differentiation of human adult mesenchymal stem cells as compared to fetal neuronal stem cells. Exp Cell Res 2010; 316:216-31. [DOI: 10.1016/j.yexcr.2009.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/03/2009] [Accepted: 08/11/2009] [Indexed: 11/16/2022]
|
24
|
Hermann A, List C, Habisch HJ, Vukicevic V, Ehrhart-Bornstein M, Brenner R, Bernstein P, Fickert S, Storch A. Age-dependent neuroectodermal differentiation capacity of human mesenchymal stromal cells: limitations for autologous cell replacement strategies. Cytotherapy 2010; 12:17-30. [DOI: 10.3109/14653240903313941] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation. Brain Res 2009; 1295:192-202. [PMID: 19651108 DOI: 10.1016/j.brainres.2009.07.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 01/05/2023]
Abstract
In light of reports that the administration of fasudil, a Rho-kinase inhibitor, improved rats locomotor abilities following spinal cord injury, we hypothesized that combining fasudil with another type of therapy, such as stem cell transplantation, might further improve the level of locomotor recovery. Bone marrow stromal cells (BMSCs) are readily available for stem cell therapy. In the present study, we examined whether fasudil combined with BMSC transplantation would produce synergistic effects on recovery. Adult female Sprague-Dawley rats were subjected to spinal cord contusion injury at the T10 vertebral level using an IH impactor (200 Kdyn). Immediately after contusion, they were administrated fasudil intrathecally for 4 weeks. GFP rat-derived BMSCs (2.5x10(6)) were injected into the lesion site 14 days after contusion. Locomotor recovery was assessed for 9 weeks with BBB scoring. Sensory tests were conducted at 8 weeks. Biotinylated dextran amine (BDA) was injected into the sensory-motor cortex at 9 weeks. In addition to an untreated control group, the study also included a fasudil-only group and a BMSC-only group in order to compare the effects of combined therapy vs. single-agent therapy. Animals were perfused transcardially 11 weeks after contusion, and histological examinations were performed. The combined therapy group showed statistically better locomotor recovery than the untreated control group at 8 and 9 weeks after contusion. Neither of the two single-agent treatments improved open field locomotor function. Sensory tests showed no statistically significant difference by treatment. Histological and immunohistochemical studies provided some supporting evidence for better locomotor recovery following combined therapy. The average area of the cystic cavity was significantly smaller in the fasudil+BMSC group than in the control group. The number of 5-HT nerve fibers was significantly higher in the fasudil+BMSC group than in the control group on the rostral side of the lesion site. BDA-labeled fibers on the caudal side of the lesion epicenter were observed only in the fasudil+BMSC group. On the other hand, only small numbers of GFP-labeled grafted cells remained 9 weeks after transplantation, and these were mainly localized at the site of injection. Double immunofluorescence studies showed no evidence of differentiation of grafted BMSCs into glial cells or neurons. The Rho-kinase inhibitor fasudil combined with BMSC transplantation resulted in better locomotor recovery than occurred in the untreated control group. However, the data failed to demonstrate significant synergism from combined therapy compared with the levels of recovery following single-agent treatment.
Collapse
|
26
|
Sarnowska A, Braun H, Sauerzweig S, Reymann KG. The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue. Exp Neurol 2008; 215:317-27. [PMID: 19063882 DOI: 10.1016/j.expneurol.2008.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 08/12/2008] [Accepted: 10/24/2008] [Indexed: 12/22/2022]
Abstract
Bone marrow stem cells (BMSCs) are able to confer beneficial effects after transplantation into animals with ischemic brain injuries. This effect is probably mainly caused by the release of trophic factors, though the possibility of dead neural cells being replaced by BMSCs cannot be excluded. The aim of this study was to determine whether the neuroprotective effects in question are dependent on direct cell-cell contacts between BMSCs and injured tissue. We therefore investigated that interplay in an in vitro model of hippocampal organotypic slice cultures (OHCs), in order to avoid the interference due to immunological rejection processes following transplantation in vivo. To perform ischemic injury in vitro, OHCs were made subject to oxygen-glucose deprivation (OGD). The possible direct or indirect neuroprotective effects induced by BMSCs were evaluated 24 h after injury by reference to two experimental paradigms using ischemic injured hippocampal slices: (i) cell transplantation on the top of OGD-treated OHC, (ii) co-cultivation of cell culture with OHC space separated for 24 h. In both paradigms, the BMSC treatment induced comparable and significant neuroprotection in OGD-injured OHCs. This effect increased after treatment with serum-deprived BMSCs, enriched with cells expressing nestin and GFAP. Comparing cell transplantation and cell co-cultivation with injured tissue, we concluded that the neuroprotective effect of BMSCs evoked shortly after ischemia (24 h) does not depend on cell-cell contacts. Additionally OGD-treated OHC was found to stimulate co-cultured BMSCs into expressing higher levels of bFGF and NGF. Finally, ischemic hippocampal slices increased the expression of nestin and GFAP in co-cultivated BMSCs, as well as changing their morphology.
Collapse
Affiliation(s)
- Anna Sarnowska
- Research Institute for Applied Neuroscience, (FAN) GmbH, Leipziger Str., 44, D-39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|