1
|
Yan Z, He A, Wan L, Gao Q, Jiang Y, Wang Y, Wang E, Li C, Yang Y, Li Y, Guo P, Han D. Structural Insights into an Antiparallel Chair-Type G-Quadruplex From the Intron of NOP56 Oncogene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406230. [PMID: 40047221 PMCID: PMC12021085 DOI: 10.1002/advs.202406230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/08/2025] [Indexed: 04/26/2025]
Abstract
G-quadruplex (G4) structures play important roles in various biological processes, especially the gene regulation. Nucleolar protein 56 (NOP56) is an essential component in ribosome biogenesis while its overexpression associates with various types of cancers, rendering it a significant therapeutic target. Here for the first time, an antiparallel chair-type G4 structure formed by a 21-nt DNA sequence from the intron 1 of NOP56 is reported, and its high-resolution structure is determined using solution nuclear magnetic resonance spectroscopy. The NOP56-G4 has a special fold containing two G-tetrads and a C·G·C·G tetrad, which is further capped by a C∙C base pair. The G4 ligand pyridostatin (PDS) binds at the terminal G-tetrad through π-π stacking and electrostatic interactions, increasing the melting temperature of NOP56-G4 by ≈14 °C. This study further shows that PDS can significantly reduce NOP56 mRNA levels in three cancer cell lines. This work provides an unprecedented high-resolution structural basis for a special G4 structure from the intron of NOP56 and suggests a feasibility of targeting intronic G4 for gene regulation, propelling new avenues for G4 structure-based drug design and therapeutic strategy.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Axin He
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| | - Liqi Wan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| | - Qian Gao
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310013China
| | - Yan Jiang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | | | - Changling Li
- College of Chemistry and Materials ScienceShanghai Normal UniversityShanghai200234China
| | - Yingquan Yang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yingjie Li
- Department of PharmacologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Pei Guo
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Da Han
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
2
|
Ulloa-Aguilar JM, Herrera Moro Huitron L, Benítez-Zeferino RY, Cerna-Cortes JF, García-Cordero J, León-Reyes G, Guzman-Bautista ER, Farfan-Morales CN, Reyes-Ruiz JM, Miranda-Labra RU, De Jesús-González LA, León-Juárez M. The Nucleolus and Its Interactions with Viral Proteins Required for Successful Infection. Cells 2024; 13:1591. [PMID: 39329772 PMCID: PMC11430610 DOI: 10.3390/cells13181591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear bodies are structures in eukaryotic cells that lack a plasma membrane and are considered protein condensates, DNA, or RNA molecules. Known nuclear bodies include the nucleolus, Cajal bodies, and promyelocytic leukemia nuclear bodies. These bodies are involved in the concentration, exclusion, sequestration, assembly, modification, and recycling of specific components involved in the regulation of ribosome biogenesis, RNA transcription, and RNA processing. Additionally, nuclear bodies have been shown to participate in cellular processes such as the regulation of transcription of the cell cycle, mitosis, apoptosis, and the cellular stress response. The dynamics and functions of these bodies depend on the state of the cell. It is now known that both DNA and RNA viruses can direct their proteins to nuclear bodies, causing alterations in their composition, dynamics, and functions. Although many of these mechanisms are still under investigation, it is well known that the interaction between viral and nuclear body proteins is necessary for the success of the viral infection cycle. In this review, we concisely describe the interaction between viral and nuclear body proteins. Furthermore, we focus on the role of the nucleolus in RNA virus infections. Finally, we discuss the possible implications of the interaction of viral proteins on cellular transcription and the formation/degradation of non-coding RNAs.
Collapse
Affiliation(s)
- José Manuel Ulloa-Aguilar
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Posgrado en Biología Experimental, Departamento de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico
| | - Luis Herrera Moro Huitron
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Rocío Yazmin Benítez-Zeferino
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Edgar Rodrigo Guzman-Bautista
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana (UAM), Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | - José Manuel Reyes-Ruiz
- Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
| | - Roxana U. Miranda-Labra
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico;
| | | | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| |
Collapse
|
3
|
Han Y, Haouel A, Georgii E, Priego-Cubero S, Wurm CJ, Hemmler D, Schmitt-Kopplin P, Becker C, Durner J, Lindermayr C. Histone Deacetylases HD2A and HD2B Undergo Feedback Regulation by ABA and Modulate Drought Tolerance via Mediating ABA-Induced Transcriptional Repression. Genes (Basel) 2023; 14:1199. [PMID: 37372378 DOI: 10.3390/genes14061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylation catalyzed by histone deacetylase plays a critical role in gene silencing and subsequently controls many important biological processes. It was reported that the expression of the plant-specific histone deacetylase subfamily HD2s is repressed by ABA in Arabidopsis. However, little is known about the molecular relationship between HD2A/HD2B and ABA during the vegetative phase. Here, we describe that the hd2ahd2b mutant shows hypersensitivity to exogenous ABA during the germination and post-germination period. Additionally, transcriptome analyses revealed that the transcription of ABA-responsive genes was reprogrammed and the global H4K5ac level is specifically up-regulated in hd2ahd2b plants. ChIP-Seq and ChIP-qPCR results further verified that both HD2A and HD2B could directly and specifically bind to certain ABA-responsive genes. As a consequence, Arabidopsis hd2ahd2b plants displayed enhanced drought resistance in comparison to WT, which is consistent with increased ROS content, reduced stomatal aperture, and up-regulated drought-resistance-related genes. Moreover, HD2A and HD2B repressed ABA biosynthesis via the deacetylation of H4K5ac at NCED9. Taken together, our results indicate that HD2A and HD2B partly function through ABA signaling and act as negative regulators during the drought resistance response via the regulation of ABA biosynthesis and response genes.
Collapse
Affiliation(s)
- Yongtao Han
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Amira Haouel
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | | | - Christoph J Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Daniel Hemmler
- Research Unit Analytical Biogeochemistry, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | | | - Claude Becker
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
4
|
Decle-Carrasco S, Rodríguez-Piña AL, Rodríguez-Zapata LC, Castano E. Current research on viral proteins that interact with fibrillarin. Mol Biol Rep 2023; 50:4631-4643. [PMID: 36928641 PMCID: PMC10018631 DOI: 10.1007/s11033-023-08343-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
The nucleolus is a multifunctional nuclear domain primarily dedicated to ribosome biogenesis. Certain viruses developed strategies to manipulate host nucleolar proteins to facilitate their replication by modulating ribosomal RNA (rRNA) processing. This association interferes with nucleolar functions resulting in overactivation or arrest of ribosome biogenesis, induction or inhibition of apoptosis, and affecting stress response. The nucleolar protein fibrillarin (FBL) is an important target of some plant and animal viruses. FBL is an essential and highly conserved S-adenosyl methionine (SAM) dependent methyltransferase, capable of rRNA degradation by its intrinsically disordered region (IDR), the glycine/arginine-rich (GAR) domain. It forms a ribonucleoprotein complex that directs 2'-O-methylations in more than 100 sites of pre-rRNAs. It is involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. The interaction with animal viruses, including human viruses, triggered its redistribution to the nucleoplasm and cytoplasm, interfering with its role in pre-rRNA processing. Viral-encoded proteins with IDRs as nucleocapsids, matrix, Tat protein, and even a viral snoRNA, can associate with FBL, forcing the nucleolar protein to undergo atypical functions. Here we review the molecular mechanisms employed by animal and human viruses to usurp FBL functions and the effect on cellular processes, particularly in ribosome biogenesis.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Alma Laura Rodríguez-Piña
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
5
|
Yi Y, Li Y, Chen K, Cao Q. Unveiling the non-canonical functions of EZH2 in prostate cancer. Oncotarget 2023; 14:127-128. [PMID: 36780304 PMCID: PMC9924823 DOI: 10.18632/oncotarget.28357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 02/13/2023] Open
Affiliation(s)
| | | | | | - Qi Cao
- Correspondence to:Qi Cao, Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA email:
| |
Collapse
|
6
|
A nop56 Zebrafish Loss-of-Function Model Exhibits a Severe Neurodegenerative Phenotype. Biomedicines 2022; 10:biomedicines10081814. [PMID: 36009362 PMCID: PMC9404972 DOI: 10.3390/biomedicines10081814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
NOP56 belongs to a C/D box small nucleolar ribonucleoprotein complex that is in charge of cleavage and modification of precursor ribosomal RNAs and assembly of the 60S ribosomal subunit. An intronic expansion in NOP56 gene causes Spinocerebellar Ataxia type 36, a typical late-onset autosomal dominant ataxia. Although vertebrate animal models were created for the intronic expansion, none was studied for the loss of function of NOP56. We studied a zebrafish loss-of-function model of the nop56 gene which shows 70% homology with the human gene. We observed a severe neurodegenerative phenotype in nop56 mutants, characterized mainly by absence of cerebellum, reduced numbers of spinal cord neurons, high levels of apoptosis in the central nervous system (CNS) and impaired movement, resulting in death before 7 days post-fertilization. Gene expression of genes related to C/D box complex, balance and CNS development was impaired in nop56 mutants. In our study, we characterized the first NOP56 loss-of-function vertebrate model, which is important to further understand the role of NOP56 in CNS function and development.
Collapse
|
7
|
Telomere and Telomerase-Associated Proteins in Endometrial Carcinogenesis and Cancer-Associated Survival. Int J Mol Sci 2022; 23:ijms23020626. [PMID: 35054812 PMCID: PMC8775816 DOI: 10.3390/ijms23020626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Risk of relapse of endometrial cancer (EC) after surgical treatment is 13% and recurrent disease carries a poor prognosis. Research into prognostic indicators is essential to improve EC management and outcome. "Immortality" of most cancer cells is dependent on telomerase, but the role of associated proteins in the endometrium is poorly understood. The Cancer Genome Atlas data highlighted telomere/telomerase associated genes (TTAGs) with prognostic relevance in the endometrium, and a recent in silico study identified a group of TTAGs and proteins as key regulators within a network of dysregulated genes in EC. We characterise relevant telomere/telomerase associated proteins (TTAPs) NOP10, NHP2, NOP56, TERF1, TERF2 and TERF2IP in the endometrium using quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). qPCR data demonstrated altered expression of multiple TTAPs; specifically, increased NOP10 (p = 0.03) and reduced NHP2 (p = 0.01), TERF2 (p = 0.01) and TERF2IP (p < 0.003) in EC relative to post-menopausal endometrium. Notably, we report reduced NHP2 in EC compared to post-menopausal endometrium in qPCR and IHC (p = 0.0001) data; with survival analysis indicating high immunoscore is favourable in EC (p = 0.0006). Our findings indicate a potential prognostic role for TTAPs in EC, particularly NHP2. Further evaluation of the prognostic and functional role of the examined TTAPs is warranted to develop novel treatment strategies.
Collapse
|
8
|
Höfler S, Lukat P, Blankenfeldt W, Carlomagno T. High-resolution structure of eukaryotic Fibrillarin interacting with Nop56 amino-terminal domain. RNA (NEW YORK, N.Y.) 2021; 27:496-512. [PMID: 33483369 PMCID: PMC7962484 DOI: 10.1261/rna.077396.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Ribosomal RNA (rRNA) carries extensive 2'-O-methyl marks at functionally important sites. This simple chemical modification is thought to confer stability, promote RNA folding, and contribute to generate a heterogenous ribosome population with a yet-uncharacterized function. 2'-O-methylation occurs both in archaea and eukaryotes and is accomplished by the Box C/D RNP enzyme in an RNA-guided manner. Extensive and partially conflicting structural information exists for the archaeal enzyme, while no structural data is available for the eukaryotic enzyme. The yeast Box C/D RNP consists of a guide RNA, the RNA-primary binding protein Snu13, the two scaffold proteins Nop56 and Nop58, and the enzymatic module Nop1. Here we present the high-resolution structure of the eukaryotic Box C/D methyltransferase Nop1 from Saccharomyces cerevisiae bound to the amino-terminal domain of Nop56. We discuss similarities and differences between the interaction modes of the two proteins in archaea and eukaryotes and demonstrate that eukaryotic Nop56 recruits the methyltransferase to the Box C/D RNP through a protein-protein interface that differs substantially from the archaeal orthologs. This study represents a first achievement in understanding the evolution of the structure and function of these proteins from archaea to eukaryotes.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Binding Sites
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Crystallography, X-Ray
- Gene Expression
- Methylation
- Models, Molecular
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Pyrococcus furiosus/genetics
- Pyrococcus furiosus/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Alignment
- Structural Homology, Protein
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Simone Höfler
- Leibniz University Hannover, Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), D-30167 Hannover, Germany
| | - Peer Lukat
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, D-38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, D-38124 Braunschweig, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), D-30167 Hannover, Germany
- Helmholtz Centre for Infection Research, Group of NMR-based Structural Chemistry, D-38124 Braunschweig, Germany
| |
Collapse
|
9
|
A PRC2-independent function for EZH2 in regulating rRNA 2'-O methylation and IRES-dependent translation. Nat Cell Biol 2021; 23:341-354. [PMID: 33795875 DOI: 10.1038/s41556-021-00653-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
Dysregulated translation is a common feature of cancer. Uncovering its governing factors and underlying mechanism are important for cancer therapy. Here, we report that enhancer of zeste homologue 2 (EZH2), previously known as a transcription repressor and lysine methyltransferase, can directly interact with fibrillarin (FBL) to exert its role in translational regulation. We demonstrate that EZH2 enhances rRNA 2'-O methylation via its direct interaction with FBL. Mechanistically, EZH2 strengthens the FBL-NOP56 interaction and facilitates the assembly of box C/D small nucleolar ribonucleoprotein. Strikingly, EZH2 deficiency impairs the translation process globally and reduces internal ribosome entry site (IRES)-dependent translation initiation in cancer cells. Our findings reveal a previously unrecognized role of EZH2 in cancer-related translational regulation.
Collapse
|
10
|
Differential role of cytosolic Hsp70s in longevity assurance and protein quality control. PLoS Genet 2021; 17:e1008951. [PMID: 33428620 PMCID: PMC7822560 DOI: 10.1371/journal.pgen.1008951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/22/2021] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70’s in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this ‘defect’ of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1Δ ssa2Δ mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast. All organisms have proteins that network together to stabilize and protect the cell throughout its lifetime. One of these types of proteins are the Hsp70s (heat shock protein 70). Hsp70 proteins take part in folding other proteins to their functional form, untangling proteins from aggregates, organize aggregates inside the cell and ensure that damaged proteins are destroyed. In this study, we investigated three closely related Hsp70 proteins in yeast; Ssa1, 2 and 4, in an effort to describe the functional difference of Ssa4 compared to Ssa1 and 2 and to answer the question: What types of cellular stress protection are necessary to reach a normal lifespan? We show that Ssa4 can perform many of the same tasks as Ssa1 and 2, but Ssa4 doesn’t interact in the same manner as Ssa1 and 2 with other types of proteins. This leads to a delay in removing protein aggregates created after heat stress. Ssa4 also cannot ensure that misfolded proteins aggregate correctly inside the nucleus of the cell. However, this turns out not to be necessary for yeast cells to achieve a full lifespan, which shows us that as long as cells can prevent aggregates from forming in the first place, they can reach a full lifespan.
Collapse
|
11
|
Sirri V, Grob A, Berthelet J, Jourdan N, Roussel P. Sirtuin 7 promotes 45S pre-rRNA cleavage at site 2 and determines the processing pathway. J Cell Sci 2019; 132:jcs228601. [PMID: 31331964 PMCID: PMC6771141 DOI: 10.1242/jcs.228601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/10/2019] [Indexed: 01/06/2023] Open
Abstract
In humans, ribosome biogenesis mainly occurs in nucleoli following two alternative pre-rRNA processing pathways differing in the order in which cleavages take place but not by the sites of cleavage. To uncover the role of the nucleolar NAD+-dependent deacetylase sirtuin 7 in the synthesis of ribosomal subunits, pre-rRNA processing was analyzed after sirtinol-mediated inhibition of sirtuin 7 activity or depletion of sirtuin 7 protein. We thus reveal that sirtuin 7 activity is a critical regulator of processing of 45S, 32S and 30S pre-rRNAs. Sirtuin 7 protein is primarily essential to 45S pre-rRNA cleavage at site 2, which is the first step of processing pathway 2. Furthermore, we demonstrate that sirtuin 7 physically interacts with Nop56 and the GAR domain of fibrillarin, and propose that this could interfere with fibrillarin-dependent cleavage. Sirtuin 7 depletion results in the accumulation of 5' extended forms of 32S pre-rRNA, and also influences the localization of fibrillarin. Thus, we establish a close relationship between sirtuin 7 and fibrillarin, which might determine the processing pathway used for ribosome biogenesis.
Collapse
Affiliation(s)
- Valentina Sirri
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75013 Paris, France
| | - Alice Grob
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England, UK
| | - Jérémy Berthelet
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75013 Paris, France
| | - Nathalie Jourdan
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR 8256, CNRS, 9 quai St Bernard, F-75005 Paris, France
| | - Pascal Roussel
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251, CNRS, 4 rue Marie-Andrée Lagroua Weill-Hallé, F-75013 Paris, France
| |
Collapse
|
12
|
Abetov DA, Kiyan VS, Zhylkibayev AA, Sarbassova DA, Alybayev SD, Spooner E, Song MS, Bersimbaev RI, Sarbassov DD. Formation of mammalian preribosomes proceeds from intermediate to composed state during ribosome maturation. J Biol Chem 2019; 294:10746-10757. [PMID: 31076509 DOI: 10.1074/jbc.ac119.008378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
In eukaryotes, ribosome assembly is a rate-limiting step in ribosomal biogenesis that takes place in a distinctive subnuclear organelle, the nucleolus. How ribosomes get assembled at the nucleolar site by forming initial preribosomal complexes remains poorly characterized. In this study, using several human and murine cell lines, we developed a method for isolation of native mammalian preribosomal complexes by lysing cell nuclei through mild sonication. A sucrose gradient fractionation of the nuclear lysate resolved several ribonucleoprotein (RNP) complexes containing rRNAs and ribosomal proteins. Characterization of the RNP complexes with MS-based protein identification and Northern blotting-based rRNA detection approaches identified two types of preribosomes we named here as intermediate preribosomes (IPRibs) and composed preribosome (CPRib). IPRib complexes comprised large preribosomes (105S to 125S in size) containing the rRNA modification factors and premature rRNAs. We further observed that a distinctive CPRib complex consists of an 85S preribosome assembled with mature rRNAs and a ribosomal biogenesis factor, Ly1 antibody-reactive (LYAR), that does not associate with premature rRNAs and rRNA modification factors. rRNA-labeling experiments uncovered that IPRib assembly precedes CPRib complex formation. We also found that formation of the preribosomal complexes is nutrient-dependent because the abundances of IPRib and CPRib decreased substantially when cells were either deprived of amino acids or exposed to an mTOR kinase inhibitor. These findings indicate that preribosomes form via dynamic and nutrient-dependent processing events and progress from an intermediate to a composed state during ribosome maturation.
Collapse
Affiliation(s)
- Danysh A Abetov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Vladimir S Kiyan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Assylbek A Zhylkibayev
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Dilara A Sarbassova
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sanzhar D Alybayev
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Rakhmetkazhy I Bersimbaev
- Department of Natural Sciences, L. N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan, and
| | - Dos D Sarbassov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030,; Department of Biology, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
13
|
Monteiro LF, Forti FL. Network analysis of DUSP12 partners in the nucleus under genotoxic stress. J Proteomics 2019; 197:42-52. [PMID: 30779967 DOI: 10.1016/j.jprot.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
Dual Specificity Phosphatase 12 is a member of the Atypical DUSP Protein Tyrosine Phosphatase family, meaning that it does not contain typical MAP kinase targeting motifs, while being able to dephosphorylate tyrosine and serine/threonine residues. DUSP12 contains, apart from its catalytic domain, a zinc finger domain, making it one of the largest DUSPs, which displays strong nuclear expression in several tissues. In this work we identified nuclear targets of DUSP12 in two different cancer cell lines (A549 and MCF-7), challenging them with genotoxic stimuli to observe the effect on the networks and to link existing information about DUSP12 functions to the data obtained though mass spectrometry. We found network connections to the cytoskeleton (e.g. IQGAP1), to the chromatin (e.g. HP1BP3), to the splicing machinery and to the previously known pathway of ribosome maturation (e.g. TCOF1), which draw insight into many of the functions of this phosphatase, much likely connecting it to distinct, previously unknown genomic stability mechanisms.
Collapse
Affiliation(s)
- Lucas Falcão Monteiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fábio Luís Forti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Urb-RIP - An Adaptable and Efficient Approach for Immunoprecipitation of RNAs and Associated RNAs/Proteins. PLoS One 2016; 11:e0167877. [PMID: 27930710 PMCID: PMC5145212 DOI: 10.1371/journal.pone.0167877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/22/2016] [Indexed: 12/03/2022] Open
Abstract
Post-transcriptional regulation of gene expression is an important process that is mediated by interactions between mRNAs and RNA binding proteins (RBP), non-coding RNAs (ncRNA) or ribonucleoproteins (RNP). Key to the study of post-transcriptional regulation of mRNAs and the function of ncRNAs such as long non-coding RNAs (lncRNAs) is an understanding of what factors are interacting with these transcripts. While several techniques exist for the enrichment of a transcript whether it is an mRNA or an ncRNA, many of these techniques are cumbersome or limited in their application. Here we present a novel method for the immunoprecipitation of mRNAs and ncRNAs, Urb—RNA immunoprecipitation (Urb-RIP). This method employs the RRM1 domain of the “resurrected” snRNA-binding protein Urb to enrich messages containing a stem-loop tag. Unlike techniques which employ the MS2 protein, which require large repeats of the MS2 binding element, Urb-RIP requires only one stem-loop. This method routinely provides over ~100-fold enrichment of tagged messages. Using this technique we have shown enrichment of tagged mRNAs and lncRNAs as well as miRNAs and RNA-binding proteins bound to those messages. We have confirmed, using Urb-RIP, interaction between RNA PolIII transcribed lncRNA BC200 and polyA binding protein.
Collapse
|
15
|
Zheng L, Yao J, Gao F, Chen L, Zhang C, Lian L, Xie L, Wu Z, Xie L. The Subcellular Localization and Functional Analysis of Fibrillarin2, a Nucleolar Protein in Nicotiana benthamiana. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2831287. [PMID: 26885505 PMCID: PMC4738988 DOI: 10.1155/2016/2831287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/01/2015] [Indexed: 01/28/2023]
Abstract
Nucleolar proteins play important roles in plant cytology, growth, and development. Fibrillarin2 is a nucleolar protein of Nicotiana benthamiana (N. benthamiana). Its cDNA was amplified by RT-PCR and inserted into expression vector pEarley101 labeled with yellow fluorescent protein (YFP). The fusion protein was localized in the nucleolus and Cajal body of leaf epidermal cells of N. benthamiana. The N. benthamiana fibrillarin2 (NbFib2) protein has three functional domains (i.e., glycine and arginine rich domain, RNA-binding domain, and α-helical domain) and a nuclear localization signal (NLS) in C-terminal. The protein 3D structure analysis predicted that NbFib2 is an α/β protein. In addition, the virus induced gene silencing (VIGS) approach was used to determine the function of NbFib2. Our results showed that symptoms including growth retardation, organ deformation, chlorosis, and necrosis appeared in NbFib2-silenced N. benthamiana.
Collapse
Affiliation(s)
- Luping Zheng
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Plant Virology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinai Yao
- Institute of Plant Protection, Fujian Provincial Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Fangluan Gao
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Plant Virology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Chen
- Key Laboratory of Plant Virology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhang
- Key Laboratory of Plant Virology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingli Lian
- Key Laboratory of Plant Virology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyan Xie
- Key Laboratory of Plant Virology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zujian Wu
- Key Laboratory of Plant Virology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianhui Xie
- Key Laboratory of Plant Virology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Rodriguez-Corona U, Sobol M, Rodriguez-Zapata LC, Hozak P, Castano E. Fibrillarin from Archaea to human. Biol Cell 2015; 107:159-74. [PMID: 25772805 DOI: 10.1111/boc.201400077] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/05/2015] [Indexed: 12/19/2022]
Abstract
Fibrillarin is an essential protein that is well known as a molecular marker of transcriptionally active RNA polymerase I. Fibrillarin methyltransferase activity is the primary known source of methylation for more than 100 methylated sites involved in the first steps of preribosomal processing and required for structural ribosome stability. High expression levels of fibrillarin have been observed in several types of cancer cells, particularly when p53 levels are reduced, because p53 is a direct negative regulator of fibrillarin transcription. Here, we show fibrillarin domain conservation, structure and interacting molecules in different cellular processes as well as with several viral proteins during virus infection.
Collapse
Affiliation(s)
- Ulises Rodriguez-Corona
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Luis Carlos Rodriguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Enrique Castano
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| |
Collapse
|
17
|
Deschênes-Simard X, Lessard F, Gaumont-Leclerc MF, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 2014; 13:1840-58. [PMID: 24866342 DOI: 10.4161/cc.29335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | | | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School; Boston, MA USA
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
18
|
Rakitina DV, Taliansky M, Brown JWS, Kalinina NO. Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res 2011; 39:8869-80. [PMID: 21785141 PMCID: PMC3203579 DOI: 10.1093/nar/gkr594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fibrillarin, one of the major proteins of the nucleolus, plays several essential roles in ribosome biogenesis including pre-rRNA processing and 2′-O-ribose methylation of rRNA and snRNAs. Recently, it has been shown that fibrillarin plays a role in virus infections and is associated with viral RNPs. Here, we demonstrate the ability of recombinant fibrillarin 2 from Arabidopsis thaliana (AtFib2) to interact with RNAs of different lengths and types including rRNA, snoRNA, snRNA, siRNA and viral RNAs in vitro. Our data also indicate that AtFib2 possesses two RNA-binding sites in the central (138–179 amino acids) and C-terminal (225–281 amino acids) parts of the protein, respectively. The conserved GCVYAVEF octamer does not bind RNA directly as suggested earlier, but may assist with the proper folding of the central RNA-binding site.
Collapse
Affiliation(s)
- D. V. Rakitina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - Michael Taliansky
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
- *To whom correspondence should be addressed. Tel: +44(0)1382562731; Fax: +44 (0)1382 562426;
| | - J. W. S. Brown
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - N. O. Kalinina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| |
Collapse
|
19
|
Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, Habu T, Liu W, Okuda H, Koizumi A. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet 2011; 89:121-30. [PMID: 21683323 DOI: 10.1016/j.ajhg.2011.05.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/08/2011] [Accepted: 05/18/2011] [Indexed: 12/21/2022] Open
Abstract
Autosomal-dominant spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative disorders. In this study, we performed genetic analysis of a unique form of SCA (SCA36) that is accompanied by motor neuron involvement. Genome-wide linkage analysis and subsequent fine mapping for three unrelated Japanese families in a cohort of SCA cases, in whom molecular diagnosis had never been performed, mapped the disease locus to the region of a 1.8 Mb stretch (LOD score of 4.60) on 20p13 (D20S906-D20S193) harboring 37 genes with definitive open reading frames. We sequenced 33 of these and observed a large expansion of an intronic GGCCTG hexanucleotide repeat in NOP56 and an unregistered missense variant (Phe265Leu) in C20orf194, but we found no mutations in PDYN and TGM6. The expansion showed complete segregation with the SCA phenotype in family studies, whereas Phe265Leu in C20orf194 did not. Screening of the expansions in the SCA cohort cases revealed four additional occurrences, but none were revealed in the cohort of 27 Alzheimer disease cases, 154 amyotrophic lateral sclerosis cases, or 300 controls. In total, nine unrelated cases were found in 251 cohort SCA patients (3.6%). A founder haplotype was confirmed in these cases. RNA foci formation was detected in lymphoblastoid cells from affected subjects by fluorescence in situ hybridization. Double staining and gel-shift assay showed that (GGCCUG)n binds the RNA-binding protein SRSF2 but that (CUG)(6) does not. In addition, transcription of MIR1292, a neighboring miRNA, was significantly decreased in lymphoblastoid cells of SCA patients. Our finding suggests that SCA36 is caused by hexanucleotide repeat expansions through RNA gain of function.
Collapse
|
20
|
Koiwai K, Noma S, Takahashi Y, Hayano T, Maezawa S, Kouda K, Matsumoto T, Suzuki M, Furuichi M, Koiwai O. TdIF2 is a nucleolar protein that promotes rRNA gene promoter activity. Genes Cells 2011; 16:748-64. [PMID: 21668587 DOI: 10.1111/j.1365-2443.2011.01524.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Terminal deoxynucleotidyltransferase (TdT) interacting factor 2 (TdIF2) is an acidic protein that binds to TdT. TdIF2 binds to DNA and core histones and contains an acidic-amino acid-rich region in its C-terminus. It has therefore been suggested to function as a histone chaperone within the nucleus. TdIF2 localized within the nucleolus in HEK 293T cells, and its N-terminal (residues 1-234) and C-terminal (residues 606-756) regions were crucial for the nucleolar localization. A chromatin immunoprecipitation (ChIP) assay showed that TdIF2 associated with the promoter of human ribosomal RNA genes (hrDNAP), and an in vitro luciferase assay system showed that it promoted hrDNAP activity. Using the yeast two-hybrid system with TdIF2 as the bait, we isolated the cDNA encoding HIV Tat interactive protein 60 (Tip60), which has histone acetyltransferase (HAT) activity, as a TdIF2-binding protein. TdIF2 bound to Tip60 in vitro and in vivo, inhibited the Tip60 HAT activity in vitro and co-localized with Tip60 within the nucleolus. In addition, TdIF2 promotes upstream binding factor (UBF) acetylation in vivo. Thus, TdIF2 might promote hrDNAP activity by suppressing Tip60's HAT activity and promoting UBF acetylation.
Collapse
Affiliation(s)
- Kotaro Koiwai
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Urcuqui-Inchima S, Patiño C, Zapata X, García MP, Arteaga J, Chamot C, Kumar A, Hernandez-Verdun D. Production of HIV particles is regulated by altering sub-cellular localization and dynamics of Rev induced by double-strand RNA binding protein. PLoS One 2011; 6:e16686. [PMID: 21364984 PMCID: PMC3043055 DOI: 10.1371/journal.pone.0016686] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/11/2011] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication.
Collapse
Affiliation(s)
- Silvio Urcuqui-Inchima
- Grupo de Inmunoviología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Westman BJ, Verheggen C, Hutten S, Lam YW, Bertrand E, Lamond AI. A proteomic screen for nucleolar SUMO targets shows SUMOylation modulates the function of Nop5/Nop58. Mol Cell 2010; 39:618-31. [PMID: 20797632 PMCID: PMC2938476 DOI: 10.1016/j.molcel.2010.07.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/30/2010] [Accepted: 06/08/2010] [Indexed: 11/23/2022]
Abstract
Posttranslational SUMO modification is an important mechanism of regulating protein function, especially in the cell nucleus. The nucleolus is the subnuclear organelle responsible for rRNA synthesis, processing, and assembly of the large and small ribosome subunits. Here, we have used SILAC-based quantitative proteomics to identify nucleolar SUMOylated proteins. This reveals a role for SUMOylation in the biogenesis and/or function of small nucleolar ribonucleoprotein complexes (snoRNPs) via the targeting of Nhp2 and Nop58. Using combined in vitro and in vivo approaches, both Nhp2 and Nop58 (also known as Nop5) are shown to be substrates for SUMOylation. Mutational analyses revealed the sites of modification on Nhp2 as K5, and on Nop58 as K467 and K497. Unlike Nop58 and Nhp2, the closely related Nop56 and 15.5K proteins appear not to be SUMO targets. SUMOylation is essential for high-affinity Nop58 binding to snoRNAs. This study provides direct evidence linking SUMO modification with snoRNP function.
Collapse
Affiliation(s)
- Belinda J Westman
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | | | | | |
Collapse
|