1
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
2
|
Li L, Wang T, Chen S, Yue Y, Xu Z, Yuan Y. DNA methylations of brain-derived neurotrophic factor exon VI are associated with major depressive disorder and antidepressant-induced remission in females. J Affect Disord 2021; 295:101-107. [PMID: 34418778 DOI: 10.1016/j.jad.2021.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been suggested to play important roles in major depressive disorder (MDD) and antidepressant treatment. The main purpose of this study was to evaluate the association of DNA methylation changes in the BDNF gene with MDD and antidepressant treatment. METHODS A total of 291 MDD patients and 100 healthy controls were included and followed up for 6 weeks. The Hamilton Depression Rating Scale-17 (HDRS-17) was used to measure treatment improvement. The life events scales (LES) and childhood trauma questionnaire (CTQ) were used to rate recent and early life stress. DNA methylation levels of CpG sites in the BDNF gene were measured. RESULTS Two CpG sites in BDNF exon VI (BDNF133 and BDNF134) were demonstrated to have significantly higher methylation in MDD patients than in controls (both FDR-adjusted P = 0.001). A logistics regression model indicated that the interaction between the hypermethylation of BDNF133 and negative subscore of LES was associated to MDD (OR=0.0075, P<0.001). Methylation of BDNF140 at baseline was significantly elevated in remitters (FDR-adjusted P = 0.046) at week 6. In subgroup analyses, these findings could be replicated in females, but not in males. LIMITATIONS The methylation status of BDNF after 6 weeks of antidepressant treatment was not measured and the DNA methylation were detected in peripheral blood cells. CONCLUSIONS These findings highlight gender-specific alteration of methylation at several CpG sites in BDNF exon VI as a promising candidate indicator of MDD and antidepressant-induced remission.
Collapse
Affiliation(s)
- Lei Li
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, 210023, China; Department of Psychosomatics and Psychiatry, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China; Department of Sleep Medicine, The Fourth People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Tianyu Wang
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, 210023, China; Department of Psychosomatics and Psychiatry, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Suzhen Chen
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, 210023, China; Department of Psychosomatics and Psychiatry, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Yingying Yue
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, 210023, China; Department of Psychosomatics and Psychiatry, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Zhi Xu
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, 210023, China; Department of Psychosomatics and Psychiatry, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| | - Yonggui Yuan
- Institute of Psychosomatics, School of Medicine, Southeast University, Nanjing, 210023, China; Department of Psychosomatics and Psychiatry, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast university, Nanjing, 210009, China.
| |
Collapse
|
3
|
Abakumov M, Kilpeläinen A, Petkov S, Belikov S, Klyachko N, Chekhonin V, Isaguliants M. Evaluation of cyclic luciferin as a substrate for luminescence measurements in in vitro and in vivo applications. Biochem Biophys Res Commun 2019; 513:535-539. [PMID: 30979501 DOI: 10.1016/j.bbrc.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Bioluminescence imaging (BLI) is a powerful tool for cell tracking, monitoring of gene delivery and expression in small laboratory animals. An alternative luciferase (Luc) substrate cyclic luciferin (Cycluc) was recently advanced for BLI applications as providing a stronger, more stable signal at significantly lower doses than the classical substrate D-luciferin (D-Luc) increasing sensitivity of Luc detection 10 to 100 times. We evaluated benefits of using Cycluc in in vivo studies in mice injected with murine adenocarcinoma 4T1 cells expressing Luc, and in single-cell organisms, the oocytes of Xenopus laevis. No significant increase in the efficacy of detection of the luminescent signal was recorded in either of the systems. Kinetic studies demonstrated that Km for Cycluc was 10000 higher, whereas Vmax was 100 lower than that of D-Luc. Cycluc efficiently bound to the active center of luciferase, but its turnover was extremely low, leading to actual inhibition of bioluminescence. This compromises Cycluc as a substrate for measurement of the activity of the wild-type luciferases, still widely used as reporters for in vivo monitoring microorganisms and tumor cells. It may find better applications with the development of in vivo imaging based on the genetically engineered mutant luciferases with different substrate requirements.
Collapse
Affiliation(s)
- Maxim Abakumov
- Gamaleya Research Center for Epidemiology and Microbiology, Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, Moscow, Russia; National University of Science and Technology MISiS, Moscow, Russia.
| | - Athina Kilpeläinen
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, Moscow, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sergey Belikov
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm, Sweden; Institute of Molecular Medicine, Sechenov First Moscow State Medical Univeersity, Moscow, Russia
| | | | - Vladimir Chekhonin
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, Moscow, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia; Department of Research, Riga Stradins University, Riga, Latvia
| |
Collapse
|
4
|
Dukhanina EA, Portseva TN, Pankratova EV, Soshnikova NV, Stepchenko AG, Dukhanin AS, Georgieva SG. Oct-1 modifies S100A4 exchange between intra- and extracellular compartments in Namalwa cells and increases their sensitivity to glucocorticoids. Cell Cycle 2016; 15:1471-8. [PMID: 27096393 DOI: 10.1080/15384101.2016.1175260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
S100A4, a small intra- and extracellular Ca(2+)-binding protein, is involved in tumor progression and metastasis with S100A4 level shown to be correlated with tumor cells metastatic potential. Simultaneously, Octamer transcription factor 1 (Oct-1) regulates a wide range of genes and participates in tumor cell progression with high Oct-1 level associated with a poor prognosis for different tumors. In this study, following the establishment of Oct-1 binding site, we used Burkit lymphoma B cells (Namalwa cells) which express different isoforms of Oct-1 (Oct-1A, Oct-1L and Oct-1X) to investigate the role of Oct-1 in S100A4 expression and sustaining intra- and extra-cellular S100A4 levels. As antitumor agents, we used dexamethasone which effect is mediated by the activation of intracellular glucocorticoid receptors and camptothecin which molecular target is nuclear DNA topoisomerase I (TOP1). We established that, firstly, the most significant increase in S100A4 gene expression has been demonstrated in the cells transfected with Oct-1A. Secondly, we have established that high level of Oct-1 and decreased intracellular S100A4 level decline the survival of Namalwa cells under dexamethasone treatment. Thirdly, we have shown that the tumor cells transformation by different Oct-1 isoforms retained those cells' sensitivity to the antitumor effect of combined dexamethasone and camptothecin. In contrast, in the non-transformed Namalwa cells, dexamethasone decreased the camptothecin effect on the cells survivorship, thus, emphasizing Oct-1 role in the regulation of cell response to different antitumor agents. The results identify a necessity to consider Oct-1 level for combined chemotherapeutic drug treatment.
Collapse
Affiliation(s)
- Elena A Dukhanina
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Tatiana N Portseva
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Elizaveta V Pankratova
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Natalia V Soshnikova
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Alexander G Stepchenko
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Alexander S Dukhanin
- b Department of Molecular Pharmacology and Radiobiology , Pirogov Russian National Research Medical University , Moscow , Russia
| | - Sofia G Georgieva
- a Department of Transcription Factors , Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
5
|
Regulatory roles of Oct proteins in the mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:812-9. [PMID: 27044595 DOI: 10.1016/j.bbagrm.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
Abstract
The expression of Oct-1 and -2 and their binding to the octamer motif in the mammary gland are developmentally and hormonally regulated, consistent with the expression of milk proteins. Both of these transcription factors constitutively bind to the proximal promoter of the milk protein gene β-casein and might be involved in the inhibition or activation of promoter activity via interactions with other transcription factors or cofactors at different developmental stages. In particular, the lactogenic hormone prolactin and glucocorticoids induce Oct-1 and Oct-2 binding and interaction with both the signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid receptor on the β-casein promoter to activate β-casein expression. In addition, increasing evidence has shown the involvement of another Oct factor, Oct-3/4, in mammary tumorigenesis, making Oct-3/4 an emerging prognostic marker of breast cancer and a molecular target for the gene-directed therapeutic intervention, prevention and treatment of breast cancer. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
6
|
Belikov S, Berg OG, Wrange Ö. Quantification of transcription factor-DNA binding affinity in a living cell. Nucleic Acids Res 2015; 44:3045-58. [PMID: 26657626 PMCID: PMC4838337 DOI: 10.1093/nar/gkv1350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element.
Collapse
Affiliation(s)
- Sergey Belikov
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Otto G Berg
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-75124 Uppsala, Sweden
| | - Örjan Wrange
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
7
|
Belikov S, Bott LC, Fischbeck KH, Wrange Ö. The polyglutamine-expanded androgen receptor has increased DNA binding and reduced transcriptional activity. Biochem Biophys Rep 2015; 3:134-139. [PMID: 29124176 PMCID: PMC5668691 DOI: 10.1016/j.bbrep.2015.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 11/09/2022] Open
Abstract
Expansion of a polyglutamine-encoding trinucleotide CAG repeat in the androgen receptor (AR) to more than 37 repeats is responsible for the X-linked neuromuscular disease spinal and bulbar muscular atrophy (SBMA). Here we evaluated the effect of polyglutamine length on AR function in Xenopus oocytes. This allowed us to correlate the nuclear AR concentration to its capacity for specific DNA binding and transcription activation in vivo. AR variants with polyglutamine tracts containing either 25 or 64 residues were expressed in Xenopus oocytes by cytoplasmic injection of the corresponding mRNAs. The intranuclear AR concentration was monitored in isolated nuclei and related to specific DNA binding as well as transcriptional induction from the hormone response element in the mouse mammary tumor virus (MMTV) promoter. The expanded AR with 64 glutamines had increased capacity for specific DNA binding and a reduced capacity for transcriptional induction as related to its DNA binding activity. The possible mechanism behind these polyglutamine-induced alterations in AR function is discussed. Spinal bulbular muscular atrophy is caused by a polyQ expanded androgen receptor. Function of AR with expanded polyQ tract was analyzed in Xenopus oocytes. AR with expanded polyQ tract has increased DNA binding but reduced gene activation.
Collapse
Affiliation(s)
- Sergey Belikov
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Laura C Bott
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden.,Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Örjan Wrange
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
8
|
Miyamoto K, Simpson D, Gurdon JB. Manipulation and in vitro maturation of Xenopus laevis oocytes, followed by intracytoplasmic sperm injection, to study embryonic development. J Vis Exp 2015:e52496. [PMID: 25742326 PMCID: PMC4354630 DOI: 10.3791/52496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amphibian eggs have been widely used to study embryonic development. Early embryonic development is driven by maternally stored factors accumulated during oogenesis. In order to study roles of such maternal factors in early embryonic development, it is desirable to manipulate their functions from the very beginning of embryonic development. Conventional ways of gene interference are achieved by injection of antisense oligonucleotides (oligos) or mRNA into fertilized eggs, enabling under- or over-expression of specific proteins, respectively. However, these methods normally require more than several hours until protein expression is affected, and, hence, the interference of gene functions is not effective during early embryonic stages. Here, we introduce an experimental system in which expression levels of maternal proteins can be altered before fertilization. Xenopus laevis oocytes obtained from ovaries are defolliculated by incubating with enzymes. Antisense oligos or mRNAs are injected into defolliculated oocytes at the germinal vesicle (GV) stage. These oocytes are in vitro matured to eggs at the metaphase II (MII) stage, followed by intracytoplasmic sperm injection (ICSI). By this way, up to 10% of ICSI embryos can reach the swimming tadpole stage, thus allowing functional tests of specific gene knockdown or overexpression. This approach can be a useful way to study roles of maternally stored factors in early embryonic development.
Collapse
Affiliation(s)
- Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge; Department of Zoology, University of Cambridge;
| | - David Simpson
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge; Department of Zoology, University of Cambridge
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge; Department of Zoology, University of Cambridge
| |
Collapse
|
9
|
Jangani M, Poolman TM, Matthews L, Yang N, Farrow SN, Berry A, Hanley N, Williamson AJK, Whetton AD, Donn R, Ray DW. The methyltransferase WBSCR22/Merm1 enhances glucocorticoid receptor function and is regulated in lung inflammation and cancer. J Biol Chem 2014; 289:8931-46. [PMID: 24488492 PMCID: PMC3979408 DOI: 10.1074/jbc.m113.540906] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glucocorticoids (GC) regulate cell fate and immune function. We identified the metastasis-promoting methyltransferase, metastasis-related methyltransferase 1 (WBSCR22/Merm1) as a novel glucocorticoid receptor (GR) regulator relevant to human disease. Merm1 binds the GR co-activator GRIP1 but not GR. Loss of Merm1 impaired both GR transactivation and transrepression by reducing GR recruitment to its binding sites. This was accompanied by loss of GR-dependent H3K4Me3 at a well characterized promoter. Inflammation promotes GC resistance, in part through the actions of TNFα and IFNγ. These cytokines suppressed Merm1 protein expression by driving ubiquitination of two conserved lysine residues. Restoration of Merm1 expression rescued GR transactivation. Cytokine suppression of Merm1 and of GR function was also seen in human lung explants. In addition, striking loss of Merm1 protein was observed in both inflammatory and neoplastic human lung pathologies. In conclusion, Merm1 is a novel regulator of chromatin structure affecting GR recruitment and function, contributing to loss of GC sensitivity in inflammation, with suppressed expression in pulmonary disease.
Collapse
Affiliation(s)
- Maryam Jangani
- From the Centre in Endocrinology and Diabetes, Institute of Human Development, and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Burd CJ, Archer TK. Chromatin architecture defines the glucocorticoid response. Mol Cell Endocrinol 2013; 380:25-31. [PMID: 23545159 PMCID: PMC3762934 DOI: 10.1016/j.mce.2013.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 01/10/2023]
Abstract
The glucocorticoid receptor (GR) functions to regulate a wide group of physiological processes through hormone inducible interaction with genomic loci and subsequent manipulation of the transcriptional output of target genes. Despite expression in a wide variety of tissues, the GR has diverse roles that are regulated tightly in a cell type specific manner. With the advent of whole genome approaches, the details of that diversity and the mechanisms regulating them are beginning to be elucidated. This review aims describe the recent advances detailing the role chromatin structure plays in dictating GR specificity.
Collapse
Affiliation(s)
- Craig J Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States.
| | | |
Collapse
|
11
|
Wahlström T, Belikov S, Arsenian Henriksson M. Chromatin dynamics at the hTERT promoter during transcriptional activation and repression by c-Myc and Mnt in Xenopus leavis oocytes. Exp Cell Res 2013; 319:3160-9. [PMID: 23860446 DOI: 10.1016/j.yexcr.2013.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 12/22/2022]
Abstract
The transcription factors c-Myc and Mnt regulate gene expression through dimerization with Max and binding to E-boxes in target genes. While c-Myc activates gene expression via recruitment of histone modifying complexes, Mnt acts as a transcriptional repressor. Here, we used the Xenopus leavis oocyte system to address the effect of c-Myc and Mnt on transcription and chromatin remodeling over the E-box region in the human telomerase reverse transcriptase (hTERT) promoter. As expected we found elevated and decreased levels of hTERT transcription upon exogenously expressed c-Myc/Max and Mnt/Max, respectively. In addition, we confirmed binding of these heterodimers to both E-boxes already enriched with H3K9ac and H4K16ac. These chromatin marks were further enhanced upon c-Myc/Max binding followed by increased DNA accessibility in the E-box region. In contrast, Mnt/Max inhibited Myc-induced transcription and mediated repression through complete chromatin condensation and deacetylation of H3K9 and H4K16 across the E-box region. Importantly, Mnt was able to counteract c-Myc mediated activation even when expressed at low levels, suggesting Mnt to act as a strong repressor by closing the chromatin structure. Collectively our data demonstrate that the balance between c-Myc and Mnt activity determines the transcriptional outcome of the hTERT promoter by modulation of the chromatin architecture.
Collapse
Affiliation(s)
- Therese Wahlström
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
12
|
Wang S, Huang J, Lyu H, Lee CK, Tan J, Wang J, Liu B. Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis 2013; 4:e556. [PMID: 23519125 PMCID: PMC3615747 DOI: 10.1038/cddis.2013.79] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We reported that the class I HDAC inhibitor entinostat induced apoptosis in erbB2-overexpressing breast cancer cells via downregulation of erbB2 and erbB3. Here, we study the molecular mechanism by which entinostat dual-targets erbB2/erbB3. Treatment with entinostat had no effect on erbB2/erbB3 mRNA, suggesting a transcription-independent mechanism. Entinostat decreased endogenous but not exogenous erbB2/erbB3, indicating it did not alter their protein stability. We hypothesized that entinostat might inhibit erbB2/erbB3 protein translation via specific miRNAs. Indeed, entinostat significantly upregulated miR-125a, miR-125b, and miR-205, that have been reported to target erbB2 and/or erbB3. Specific inhibitors were then used to determine whether these miRNAs had a causal role in entinostat-induced downregulation of erbB2/erbB3 and apoptosis. Transfection with a single inhibitor dramatically abrogated entinostat induction of miR-125a, miR-125b, or miR-205; however, none of the inhibitors blocked entinostat action on erbB2/erbB3. In contrast, co-transfection with two inhibitors not only reduced their corresponding miRNAs, but also significantly abrogated entinostat-mediated reduction of erbB2/erbB3. Moreover, simultaneous inhibition of two, but not one miRNA significantly attenuated entinostat-induced apoptosis. Interestingly, although the other HDAC inhibitors, such as SAHA and panobinostat, exhibited activity as potent as entinostat to induce growth inhibition and apoptosis in erbB2-overexpressing breast cancer cells, they had no significant effects on the three miRNAs. Instead, both SAHA- and panobinostat-decreased erbB2/erbB3 expression correlated with the reduction of their mRNA levels. Collectively, we demonstrate that entinostat specifically induces expression of miR-125a, miR-125b, and miR-205, which act in concert to downregulate erbB2/erbB3 in breast cancer cells. Our data suggest that epigenetic regulation via miRNA-dependent or -independent mechanisms may represent a novel approach to treat breast cancer patients with erbB2-overexpressing tumors.
Collapse
Affiliation(s)
- S Wang
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Belikov S, Öberg C, Jääskeläinen T, Rahkama V, Palvimo JJ, Wrange Ö. FoxA1 corrupts the antiandrogenic effect of bicalutamide but only weakly attenuates the effect of MDV3100 (Enzalutamide™). Mol Cell Endocrinol 2013; 365:95-107. [PMID: 23063623 DOI: 10.1016/j.mce.2012.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/26/2012] [Accepted: 10/02/2012] [Indexed: 01/04/2023]
Abstract
Prostate cancer growth depends on androgens. Synthetic antiandrogens are used in the cancer treatment. However, antiandrogens, such as bicalutamide (BIC), have a mixed agonist/antagonist activity. Here we compare the antiandrogenic capacity of BIC to a new antiandrogen, MDV3100 (MDV) or Enzalutamide™. By reconstitution of a hormone-regulated enhancer in Xenopus oocytes we show that both antagonists trigger the androgen receptor (AR) translocation to the nucleus, albeit with a reduced efficiency for MDV. Once in the nucleus, both AR-antagonist complexes can bind sequence specifically to DNA in vivo. The forkhead box transcription factor A (FoxA1) is a negative prognostic indicator for prostate cancer disease. FoxA1 expression presets the enhancer chromatin and makes the DNA more accessible for AR binding. In this context the BIC-AR antiandrogenic effect is seriously compromised as demonstrated by a significant chromatin remodeling and induction of a robust MMTV transcription whereas the MDV-AR complex displays a more persistent antagonistic character.
Collapse
Affiliation(s)
- S Belikov
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Jullien J, Astrand C, Szenker E, Garrett N, Almouzni G, Gurdon JB. HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenetics Chromatin 2012; 5:17. [PMID: 23102146 PMCID: PMC3538669 DOI: 10.1186/1756-8935-5-17] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/04/2012] [Indexed: 12/17/2022] Open
Abstract
Background Nuclear reprogramming is potentially important as a route to cell replacement and drug discovery, but little is known about its mechanism. Nuclear transfer to eggs and oocytes attempts to identify the mechanism of this direct route towards reprogramming by natural components. Here we analyze how the reprogramming of nuclei transplanted to Xenopus oocytes exploits the incorporation of the histone variant H3.3. Results After nuclear transplantation, oocyte-derived H3.3 but not H3.2, is deposited on several regions of the genome including rDNA, major satellite repeats, and the regulatory regions of Oct4. This major H3.3 deposition occurs in absence of DNA replication, and is HIRA-and transcription-dependent. It is necessary for the shift from a somatic- to an oocyte-type of transcription after nuclear transfer. Conclusions This study demonstrates that the incorporation of histone H3.3 is an early and necessary step in the direct reprogramming of somatic cell nuclei by oocyte. It suggests that the incorporation of histone H3.3 is necessary during global changes in transcription that accompany changes in cell fate.
Collapse
Affiliation(s)
- Jerome Jullien
- The Welcome Trust/Cancer Research UK Gurdon Institute, The Henry Welcome building of Cancer and Developmental Biology, and Department of Zoology, Cambridge, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Öberg C, Izzo A, Schneider R, Wrange Ö, Belikov S. Linker Histone Subtypes Differ in Their Effect on Nucleosomal Spacing In Vivo. J Mol Biol 2012; 419:183-97. [DOI: 10.1016/j.jmb.2012.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/17/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
|
16
|
Öberg C, Belikov S. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin. Biochem Biophys Res Commun 2012; 420:321-4. [DOI: 10.1016/j.bbrc.2012.02.157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
|
17
|
Belikov S, Holmqvist PH, Åstrand C, Wrange Ö. FoxA1 and glucocorticoid receptor crosstalk via histone H4K16 acetylation at a hormone regulated enhancer. Exp Cell Res 2012; 318:61-74. [DOI: 10.1016/j.yexcr.2011.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/02/2011] [Accepted: 09/29/2011] [Indexed: 12/17/2022]
|
18
|
Miyamoto K, Pasque V, Jullien J, Gurdon JB. Nuclear actin polymerization is required for transcriptional reprogramming of Oct4 by oocytes. Genes Dev 2011; 25:946-58. [PMID: 21536734 DOI: 10.1101/gad.615211] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amphibian oocytes can rapidly and efficiently reprogram the transcription of transplanted somatic nuclei. To explore the factors and mechanisms involved, we focused on nuclear actin, an especially abundant component of the oocyte's nucleus (the germinal vesicle). The existence and significance of nuclear actin has long been debated. Here, we found that nuclear actin polymerization plays an essential part in the transcriptional reactivation of the pluripotency gene Oct4 (also known as Pou5f1). We also found that an actin signaling protein, Toca-1, enhances Oct4 reactivation by regulating nuclear actin polymerization. Toca-1 overexpression has an effect on the chromatin state of transplanted nuclei, including the enhanced binding of nuclear actin to gene regulatory regions. This is the first report showing that naturally stored actin in an oocyte nucleus helps transcriptional reprogramming in a polymerization-dependent manner.
Collapse
Affiliation(s)
- Kei Miyamoto
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | | | | | |
Collapse
|
19
|
Simeoni I, Gilchrist MJ, Garrett N, Armisen J, Gurdon JB. Widespread transcription in an amphibian oocyte relates to its reprogramming activity on transplanted somatic nuclei. Stem Cells Dev 2011; 21:181-90. [PMID: 21504359 DOI: 10.1089/scd.2011.0162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amphibian oocytes have the special ability to directly induce the transcription of pluripotency and other genes in transplanted somatic nuclei. To this extent, oocytes induce a stem cell-like pattern of transcription in somatic cell nuclei. We ask whether the induced transcription in transplanted nuclei reflects the normal transcriptional activity of oocyte genes. We describe here the transcript content of a wide range of genes in Xenopus tropicalis oocytes. Using accurate quantitation, we find that each mature oocyte has accumulated several hundred transcripts of cell-type specific genes. This value is several orders of magnitude greater than the "leakage" level found in most somatic cells and about the same level found in somatic cells where these genes are fully expressed. Illumina sequencing confirms the high transcript content of a mature Xenopus oocyte. Most of the transcripts from these highly expressed genes in oocytes are correctly and efficiently spliced. Our results contribute a more quantitative view of certain amphibian oocyte transcripts than previously available. Our results also show that transplanted somatic nuclei conform, with respect to the genes analyzed, to the transcriptional characteristics of the recipient oocytes.
Collapse
Affiliation(s)
- Ilenia Simeoni
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y, Kawakami-Mori F, Marumo T, Yatomi Y, Geller DS, Tanaka H, Fujita T. Epigenetic modulation of the renal β-adrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med 2011; 17:573-80. [PMID: 21499270 DOI: 10.1038/nm.2337] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/28/2011] [Indexed: 12/11/2022]
Abstract
How high salt intake increases blood pressure is a key question in the study of hypertension. Salt intake induces increased renal sympathetic activity resulting in sodium retention. However, the mechanisms underlying the sympathetic control of renal sodium excretion remain unclear. In this study, we found that β(2)-adrenergic receptor (β(2)AR) stimulation led to decreased transcription of the gene encoding WNK4, a regulator of sodium reabsorption. β(2)AR stimulation resulted in cyclic AMP-dependent inhibition of histone deacetylase-8 (HDAC8) activity and increased histone acetylation, leading to binding of the glucocorticoid receptor to a negative glucocorticoid-responsive element in the promoter region. In rat models of salt-sensitive hypertension and sympathetic overactivity, salt loading suppressed renal WNK4 expression, activated the Na(+)-Cl(-) cotransporter and induced salt-dependent hypertension. These findings implicate the epigenetic modulation of WNK4 transcription in the development of salt-sensitive hypertension. The renal β(2)AR-WNK4 pathway may be a therapeutic target for salt-sensitive hypertension.
Collapse
Affiliation(s)
- ShengYu Mu
- Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Halley-Stott R, Pasque V, Astrand C, Miyamoto K, Simeoni I, Jullien J, Gurdon J. Mammalian nuclear transplantation to Germinal Vesicle stage Xenopus oocytes - a method for quantitative transcriptional reprogramming. Methods 2010; 51:56-65. [PMID: 20123126 PMCID: PMC2877800 DOI: 10.1016/j.ymeth.2010.01.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 01/01/2023] Open
Abstract
Full-grown Xenopus oocytes in first meiotic prophase contain an immensely enlarged nucleus, the Germinal Vesicle (GV), that can be injected with several hundred somatic cell nuclei. When the nuclei of mammalian somatic cells or cultured cell lines are injected into a GV, a wide range of genes that are not transcribed in the donor cells, including pluripotency genes, start to be transcriptionally activated, and synthesize primary transcripts continuously for several days. Because of the large size and abundance of Xenopus laevis oocytes, this experimental system offers an opportunity to understand the mechanisms by which somatic cell nuclei can be reprogrammed to transcribe genes characteristic of oocytes and early embryos. The use of mammalian nuclei ensures that there is no background of endogenous maternal transcripts of the kind that are induced. The induced gene transcription takes place in the absence of cell division or DNA synthesis and does not require protein synthesis. Here we summarize new as well as established results that characterize this experimental system. In particular, we describe optimal conditions for transplanting somatic nuclei to oocytes and for the efficient activation of transcription by transplanted nuclei. We make a quantitative determination of transcript numbers for pluripotency and housekeeping genes, comparing cultured somatic cell nuclei with those of embryonic stem cells. Surprisingly we find that the transcriptional activation of somatic nuclei differs substantially from one donor cell-type to another and in respect of different pluripotency genes. We also determine the efficiency of an injected mRNA translation into protein.
Collapse
Key Words
- gv, germinal vesicle
- mbs, barth-hepes saline
- pbs-bsa, phosphate buffered saline containing bovine serum albumin
- slo, streptolysin o
- dtt, dithiothreitol
- sunasp, sucrose, sodium chloride, spermine and spermidine
- sunasp-bsa, sunasp with bovine serum albumin
- ra, retinoic acid
- es, embryonic stem cell
- esra, embryonic stem cell, treated with ra to differentiate and cease oct4, nanog and sox2 transcription
- xenopus laevis
- nuclear transfer
- germinal vesicle
- oocyte
- reprogramming
- microinjection
- quantitative pcr
Collapse
Affiliation(s)
| | | | | | | | | | | | - J.B. Gurdon
- Corresponding author. Address: Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. Fax: +44 (0)1223 334089.
| |
Collapse
|
22
|
Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc Natl Acad Sci U S A 2010; 107:5483-8. [PMID: 20212135 DOI: 10.1073/pnas.1000599107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
When transplanted into Xenopus oocytes, the nuclei of mammalian somatic cells are reprogrammed to express stem cell genes such as Oct4, Nanog, and Sox2. We now describe an experimental system in which the pluripotency genes Sox2 and Oct4 are repressed in retinoic acid-treated ES cells but are reprogrammed up to 100% within 24 h by injection of nuclei into the germinal vesicle (GV) of growing Xenopus oocytes. The isolation of GVs in nonaqueous medium allows the reprogramming of individual injected nuclei to be seen in real time. Analysis using fluorescence recovery after photobleaching shows that nuclear transfer is associated with an increase in linker histone mobility. A simultaneous loss of somatic H1 linker histone and incorporation of the oocyte-specific linker histone B4 precede transcriptional reprogramming. The loss of H1 is not required for gene reprogramming. We demonstrate both by antibody injection experiments and by dominant negative interference that the incorporation of B4 linker histone is required for pluripotency gene reactivation during nuclear reprogramming. We suggest that the binding of oocyte-specific B4 linker histone to chromatin is a key primary event in the reprogramming of somatic nuclei transplanted to amphibian oocytes.
Collapse
|
23
|
Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Hue Beauvais C, Vassetzky Y, Rosen JM, Devinoy E. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia 2010; 15:85-100. [PMID: 20157770 PMCID: PMC3006238 DOI: 10.1007/s10911-010-9170-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 12/16/2022] Open
Abstract
Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conformation initiated by DNA methylation, histone variants, post-translational modifications of histones, non-histone chromatin proteins, and non-coding RNAs. Epigenetics plays a key role in development. However, very little is known about its role in the developing mammary gland or how it might integrate the many signalling pathways involved in mammary gland development and function that have been discovered during the past few decades. An inverse relationship between marks of closed (DNA methylation) or open chromatin (DnaseI hypersensitivity, certain histone modifications) and milk protein gene expression has been documented. Recent studies have shown that during development and functional differentiation, both global and local chromatin changes occur. Locally, chromatin at distal regulatory elements and promoters of milk protein genes gains a more open conformation. Furthermore, changes occur both in looping between regulatory elements and attachment to nuclear matrix. These changes are induced by developmental signals and environmental conditions. Additionally, distinct epigenetic patterns have been identified in mammary gland stem and progenitor cell sub-populations. Together, these findings suggest that epigenetics plays a role in mammary development and function. With the new tools for epigenomics developed in recent years, we now can begin to establish a framework for the role of epigenetics in mammary gland development and disease.
Collapse
Affiliation(s)
- Monique Rijnkels
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Paakinaho V, Makkonen H, Jääskeläinen T, Palvimo JJ. Glucocorticoid receptor activates poised FKBP51 locus through long-distance interactions. Mol Endocrinol 2010; 24:511-25. [PMID: 20093418 DOI: 10.1210/me.2009-0443] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies have identified FKBP51 (FK506-binding protein 51) as a sensitive biomarker of corticosteroid responsiveness in vivo. In this work, we have elucidated the molecular mechanisms underlying the induction of FKBP51 by the glucocorticoid receptor (GR) in human A549 lung cancer cells showing robust accumulation of FKBP51 mRNA in response to dexamethasone exposure. Our quantitative chromatin immunoprecipitation scans and enhancer activity analyses indicate that activation of the FKBP51 locus by glucocorticoids in vivo is triggered by the loading of GR to enhancers at about 34 kb 5' and about 87 kb 3' of the transcription start site. Interestingly, the region encompassing these enhancers is bordered by CCCTC-binding factor- and cohesin-binding sites. Dexamethasone treatment also decreased the histone density at several regions of the gene, which was paralleled with the occupancy of SWI/SNF chromatin remodeling complexes within the locus. Moreover, silencing of BRM subunit of the SWI/SNF complex blunted the glucocorticoid induction of the locus. The proximal promoter region along with the major intronic enhancer at approximately 87 kb, at which the GR binding peaked, had elevated levels of histone 3 acetylation and H3K4 trimethylation, whereas H3K36 trimethylation more generally marked the gene body and reflected the occupancy of RNA polymerase II. The occurrence of these active chromatin marks within the FKBP51 locus before glucocorticoid exposure suggests that it is poised for transcription in A549 cells. Taken together, these results indicate that the holo-GR is capable of activating transcription and evoking changes in chromatin structure through distant-acting enhancers.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
25
|
FoxA1 binding directs chromatin structure and the functional response of a glucocorticoid receptor-regulated promoter. Mol Cell Biol 2009; 29:5413-25. [PMID: 19687299 DOI: 10.1128/mcb.00368-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reconstitution of the glucocorticoid receptor (GR)-regulated mouse mammary tumor virus (MMTV) promoter in Xenopus oocytes was used to monitor the effects of different transcription factor contexts. Three constitutively binding factors, nuclear factor 1 (NF1), octamer transcription factor 1 (Oct1), and the Forkhead box A1 (FoxA1), were shown to act in concert, to direct the chromatin structure, and to enhance the GR response. FoxA1 has a dominant effect in the absence of hormone and induces a cluster of DNase I-hypersensitive sites in the segment comprising bp -400 to +25. This FoxA1-mediated chromatin remodeling does not induce MMTV transcription, as opposed to that of the GR. However, the robust FoxA1-dependent chromatin opening has the following drastic functional consequences on the hormone regulation: (i) GR-DNA binding is facilitated, as revealed by dimethyl sulfate in vivo footprinting, leading to increased hormone-induced transcription, and (ii) the GR antagonist RU486 is converted into a partial agonist in the presence of FoxA1 via ligand-independent GR activation. We conclude that FoxA1 mediates a preset chromatin structure and directs a context-specific response of a nuclear receptor. Furthermore, the alternative nucleosome arrangement induced by GR and FoxA1 implies this to be determined by constitutive binding of transcription factors rather than by the DNA sequence itself.
Collapse
|